1
|
Li JZ, Mills EP, Osborne NR, Cheng JC, Sanmugananthan VV, El-Sayed R, Besik A, Kim JA, Bosma RL, Rogachov A, Davis KD. Individual differences in conditioned pain modulation are associated with functional connectivity within the descending antinociceptive pathway. Pain 2024:00006396-990000000-00774. [PMID: 39661368 DOI: 10.1097/j.pain.0000000000003478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/11/2024] [Indexed: 12/12/2024]
Abstract
ABSTRACT The perception of pain and ability to cope with it varies widely amongst people, which in part could be due to the presence of inhibitory (antinociceptive) or facilitatory (pronociceptive) effects in conditioned pain modulation (CPM). This study examined whether individual differences in CPM reflect functional connectivity (FC) strengths within nodes of the descending antinociceptive pathway (DAP). A heat-based CPM paradigm and resting-state functional magnetic resonance imaging (rs-fMRI) were used to test the hypothesis that an individual's capacity to exhibit inhibitory CPM (changes in test stimuli [TS] pain due to a conditioning stimulus [CS]) reflects FC of the subgenual anterior cingulate cortex (sgACC), periaqueductal gray (PAG), and rostral ventromedial medulla (RVM). A total of 151 healthy participants (72 men, 79 women) underwent CPM testing and rs-fMRI. Three types of CPM were identified based on the effect of the CS on TS pain: (1) Antinociception: CS reduced TS pain in 45% of participants, (2) No-CPM: CS did not change TS pain in 15% of participants, and (3) Pronociception: CS increased TS pain in 40% of participants. Only the Antinociceptive subgroup exhibited FC between the left sgACC and PAG, right sgACC and PAG, and RVM and PAG. Furthermore, only the Antinociceptive subgroup exhibited a correlation of both left and right sgACC-RVM FC (medium effect sizes) with CPM effect magnitude. Women, compared with men were more likely to be categorized as pronociceptive. These data support the proposition that FC of the DAP reflects or contributes to inhibitory CPM.
Collapse
Affiliation(s)
- Janet Z Li
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Emily P Mills
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Natalie R Osborne
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Joshua C Cheng
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Vaidhehi V Sanmugananthan
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Rima El-Sayed
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Ariana Besik
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Junseok A Kim
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Rachael L Bosma
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Anton Rogachov
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Karen D Davis
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Lepping RJ, Hoffart CM, Bruce AS, Taylor JM, Mardis NJ, Lim SL, Wallace DP. Pediatric Neural Changes to Physical and Emotional Pain After Intensive Interdisciplinary Pain Treatment: A Pilot Study. Clin J Pain 2024; 40:665-672. [PMID: 39514716 DOI: 10.1097/ajp.0000000000001237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 08/05/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE Brain areas activated during pain can contribute to enhancing or reducing the pain experience, showing a potential connection between chronic pain and the neural response to pain in adolescents and youth. METHODS This study examined changes in brain activation associated with experiencing physical pain and observing physical and emotional pain in others by using functional magnetic resonance imaging (fMRI) before and after intensive interdisciplinary pain treatment (IIPT). Eighteen youths (age 14 to 18) with widespread chronic pain completed fMRI testing before and after IIPT to assess changes in brain activation in response to physical and emotional pain. RESULTS Broadly, brain activation changes were observed in frontal, somatosensory, and limbic regions. These changes may suggest improvements in descending pain modulation via thalamus and caudate, and the different pattern of brain activation after treatment suggests potentially better discrimination between physical and emotional pain. Brain activation changes were also correlated with improvements in clinical outcomes of catastrophizing (reduced activation in right caudate, right mid-cingulate, and postcentral gyrus) and pain-related disability (increased activation in precentral gyrus, left hippocampus, right middle occipital cortex, and left superior frontal gyrus). DISCUSSION These changes could indicate that reduced brain protective responses to pain were associated with treatment-related improvements. This pilot study highlights the need for larger trials designed to better understand the brain mechanisms involved in pediatric widespread pain treatment.
Collapse
Affiliation(s)
- Rebecca J Lepping
- Department of Neurology, University of Kansas Medical Center
- Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, KS
| | - Cara M Hoffart
- Pain Management, Department of Pediatrics, Children's Mercy Hospital
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine
- Center for Children's Healthy Lifestyles & Nutrition
| | - Amanda S Bruce
- Center for Children's Healthy Lifestyles & Nutrition
- Department of Pediatrics, University of Kansas Medical Center, Kansas City, KS
| | - Jasmine M Taylor
- Department of Neurology, University of Kansas Medical Center
- Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, KS
| | - Neil J Mardis
- Department of Pediatric Radiology, Children's Mercy Hospital
| | - Seung-Lark Lim
- Department of Psychology, University of Missouri-Kansas City, Kansas City, MO
| | - Dustin P Wallace
- Pain Management, Department of Pediatrics, Children's Mercy Hospital
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine
- Center for Children's Healthy Lifestyles & Nutrition
| |
Collapse
|
3
|
Mills EP, Bosma RL, Rogachov A, Cheng JC, Osborne NR, Kim JA, Besik A, Bhatia A, Davis KD. Pretreatment Brain White Matter Integrity Associated With Neuropathic Pain Relief and Changes in Temporal Summation of Pain Following Ketamine. THE JOURNAL OF PAIN 2024; 25:104536. [PMID: 38615801 DOI: 10.1016/j.jpain.2024.104536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/07/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
Neuropathic pain (NP) is a prevalent condition often associated with heightened pain responsiveness suggestive of central sensitization. Neuroimaging biomarkers of treatment outcomes may help develop personalized treatment strategies, but white matter (WM) properties have been underexplored for this purpose. Here we assessed whether WM pathways of the default mode network (DMN: medial prefrontal cortex [mPFC], posterior cingulate cortex, and precuneus) and descending pain modulation system (periaqueductal gray [PAG]) are associated with ketamine analgesia and attenuated temporal summation of pain (TSP, reflecting central sensitization) in NP. We used a fixel-based analysis of diffusion-weighted imaging data to evaluate WM microstructure (fiber density [FD]) and macrostructure (fiber bundle cross-section) within the DMN and mPFC-PAG pathways in 70 individuals who underwent magnetic resonance imaging and TSP testing; 35 with NP who underwent ketamine treatment and 35 age- and sex-matched pain-free individuals. Individuals with NP were assessed before and 1 month after treatment; those with ≥30% pain relief were considered responders (n = 18), or otherwise as nonresponders (n = 17). We found that WM structure within the DMN and mPFC-PAG pathways did not differentiate responders from nonresponders. However, pretreatment FD in the anterior limb of the internal capsule correlated with pain relief (r=.48). Moreover, pretreatment FD in the DMN (left mPFC-precuneus/posterior cingulate cortex; r=.52) and mPFC-PAG (r=.42) negatively correlated with changes in TSP. This suggests that WM microstructure in the DMN and mPFC-PAG pathway is associated with the degree to which ketamine reduces central sensitization. Thus, fixel metrics of WM structure may hold promise to predict ketamine NP treatment outcomes. PERSPECTIVE: We used advanced fixel-based analyses of MRI diffusion-weighted imaging data to identify pretreatment WM microstructure associated with ketamine outcomes, including analgesia and markers of attenuated central sensitization. Exploring associations between brain structure and treatment outcomes could contribute to a personalized approach to treatment for individuals with NP.
Collapse
Affiliation(s)
- Emily P Mills
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
| | - Rachael L Bosma
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
| | - Anton Rogachov
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Joshua C Cheng
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Natalie R Osborne
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Junseok A Kim
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Ariana Besik
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
| | - Anuj Bhatia
- Department of Anesthesia and Pain Management, University Health Network, Toronto, Ontario, Canada; Department of Anesthesia, University of Toronto, Toronto, Ontario, Canada
| | - Karen D Davis
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Berardi G, Dailey DL, Chimenti R, Merriwether E, Vance CGT, Rakel BA, Crofford LJ, Sluka KA. Influence of Transcutaneous Electrical Nerve Stimulation (TENS) on Pressure Pain Thresholds and Conditioned Pain Modulation in a Randomized Controlled Trial in Women With Fibromyalgia. THE JOURNAL OF PAIN 2024; 25:104452. [PMID: 38154621 PMCID: PMC11128356 DOI: 10.1016/j.jpain.2023.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023]
Abstract
Transcutaneous electrical nerve stimulation (TENS) effectively reduces pain in fibromyalgia (FM). The purpose of this study was to examine the influence of TENS use on pressure pain thresholds (PPT) and conditioned pain modulation (CPM) in individuals with FM using data from the Fibromyalgia Activity Study with TENS trial (NCT01888640). Individuals with FM were randomly assigned to receive active TENS, placebo TENS, or no TENS for 4 weeks. A total of 238 females satisfied the per-protocol analysis among the active TENS (n = 76), placebo TENS (n = 68), and no TENS (n = 94) groups. Following 4 weeks of group allocation, the active TENS group continued for an additional 4 weeks of active TENS totaling 8 weeks (n = 66), the placebo and no TENS groups transitioned to receive 4 weeks of active TENS (delayed TENS, n = 161). Assessment of resting pain, movement-evoked pain (MEP), PPT, and CPM occurred prior to and following active, placebo, or no TENS. There were no significant changes in PPT or CPM among the active TENS, placebo TENS, or no TENS groups after 4 weeks. Individuals who reported clinically relevant improvements in MEP (≥30% decrease) demonstrated increases in PPT (P < .001), but not CPM, when compared to MEP non-responders. There were no significant correlations among the change in PPT or CPM compared to MEP and resting pain following active TENS use (active TENS + delayed TENS). PPT and CPM may provide insight to underlying mechanisms contributing to pain; however, these measures may not relate to self-reported pain symptoms. PERSPECTIVE: Pressure pain threshold increased in individuals with clinically relevant improvement (≥30%) in MEP, indicating the clinical relevance of PPT for understanding mechanisms contributing to pain. CPM was not a reliable indicator of treatment response in MEP responders.
Collapse
Affiliation(s)
| | - Dana L Dailey
- University of Iowa, Iowa City, IA
- St Ambrose University, Davenport, IA
| | | | | | | | | | | | | |
Collapse
|
5
|
Rosner J, de Andrade DC, Davis KD, Gustin SM, Kramer JLK, Seal RP, Finnerup NB. Central neuropathic pain. Nat Rev Dis Primers 2023; 9:73. [PMID: 38129427 PMCID: PMC11329872 DOI: 10.1038/s41572-023-00484-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/21/2023] [Indexed: 12/23/2023]
Abstract
Central neuropathic pain arises from a lesion or disease of the central somatosensory nervous system such as brain injury, spinal cord injury, stroke, multiple sclerosis or related neuroinflammatory conditions. The incidence of central neuropathic pain differs based on its underlying cause. Individuals with spinal cord injury are at the highest risk; however, central post-stroke pain is the most prevalent form of central neuropathic pain worldwide. The mechanisms that underlie central neuropathic pain are not fully understood, but the pathophysiology likely involves intricate interactions and maladaptive plasticity within spinal circuits and brain circuits associated with nociception and antinociception coupled with neuronal hyperexcitability. Modulation of neuronal activity, neuron-glia and neuro-immune interactions and targeting pain-related alterations in brain connectivity, represent potential therapeutic approaches. Current evidence-based pharmacological treatments include antidepressants and gabapentinoids as first-line options. Non-pharmacological pain management options include self-management strategies, exercise and neuromodulation. A comprehensive pain history and clinical examination form the foundation of central neuropathic pain classification, identification of potential risk factors and stratification of patients for clinical trials. Advanced neurophysiological and neuroimaging techniques hold promise to improve the understanding of mechanisms that underlie central neuropathic pain and as predictive biomarkers of treatment outcome.
Collapse
Affiliation(s)
- Jan Rosner
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- Department of Neurology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - Daniel C de Andrade
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Karen D Davis
- Division of Brain, Imaging and Behaviour, Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Department of Surgery and Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Sylvia M Gustin
- Centre for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
- NeuroRecovery Research Hub, School of Psychology, University of New South Wales, Sydney, New South Wales, Australia
| | - John L K Kramer
- International Collaboration on Repair Discoveries, ICORD, University of British Columbia, Vancouver, Canada
- Department of Anaesthesiology, Pharmacology & Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Rebecca P Seal
- Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Departments of Neurobiology and Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nanna B Finnerup
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
6
|
Lepping RJ, Hoffart CM, Bruce AS, Taylor JM, Mardis NJ, Lim SL, Wallace DP. Pediatric Neural Changes to Physical and Emotional Pain After Intensive Interdisciplinary Pain Treatment: A Pilot Study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.03.23295921. [PMID: 37873243 PMCID: PMC10593005 DOI: 10.1101/2023.10.03.23295921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Brain areas activated during pain can contribute to enhancing or reducing the pain experience, showing a potential connection between chronic pain and the neural response to pain in adolescents and youth. This study examined changes in brain activation associated with experiencing physical pain, and the observation of physical and emotional pain in others, by using functional magnetic resonance imaging (fMRI) before and after intensive interdisciplinary pain treatment (IIPT). Eighteen youth (age 14 to 18) with widespread chronic pain completed fMRI testing before and after IIPT to assess changes in brain activation in response to physical and emotional pain. Broadly, brain activation changes were observed in frontal, somatosensory, and limbic regions. These changes suggest improvements in descending pain modulation via thalamus and caudate, and the different pattern of brain activation after treatment suggests better discrimination between physical and emotional pain. Brain activation changes were also correlated with improvements in clinical outcomes of catastrophizing (reduced activation in right caudate, right mid-cingulate, and postcentral gyrus) and pain-related disability (increased activation in precentral gyrus, left hippocampus, right middle occipital cortex, and left superior frontal gyrus). These changes support interpretation that reduced brain protective responses to pain were associated with treatment-related improvements. This pilot study highlights the need for larger trials designed to better understand the brain mechanisms involved in pediatric widespread pain treatment.
Collapse
Affiliation(s)
- Rebecca J Lepping
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
- Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Cara M Hoffart
- Pain Management, Department of Pediatrics, Children's Mercy Hospital, Kansas City, MO, USA; Center for Children's Healthy Lifestyles & Nutrition, Kansas City, MO, USA; Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Amanda S Bruce
- Pediatrics, University of Kansas Medical Center, USA; Center for Children's Healthy Lifestyles and Nutrition, Children's Mercy Hospital, Kansas City, MO, USA
| | - Jasmine M Taylor
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
- Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Neil J Mardis
- Pediatric Radiology, Children's Mercy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Seung-Lark Lim
- Department of Psychology, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Dustin P Wallace
- Pain Management, Department of Pediatrics, Children's Mercy Hospital, Kansas City, MO, USA; Center for Children's Healthy Lifestyles & Nutrition, Kansas City, MO, USA; Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| |
Collapse
|
7
|
Hector MS, Cheng JC, Hemington KS, Rogachov A, Kim JA, Osborne NR, Bosma RL, Fauchon C, Ayoub LJ, Inman R, Oh J, Anastakis DJ, Davis KD. Resilience is associated with cortical gray matter of the antinociceptive pathway in people with chronic pain. Biol Psychol 2023; 183:108658. [PMID: 37567549 DOI: 10.1016/j.biopsycho.2023.108658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/12/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Resilience is an important personal characteristic that influences health and recovery. Previous studies of chronic pain suggest that highly resilient people may be more effective at modulating their pain. Since brain gray matter in the antinociceptive pathway has also been shown to be abnormal in people with chronic pain, we examined whether resilience is related to gray matter in regions of interest (ROIs) of the antinociceptive pathway (rostral and subgenual anterior cingulate cortex (rACC, sgACC), anterior insula (aINS), dorsolateral prefrontal cortex (dlPFC)) normally and in people who are experiencing chronic pain. We extracted gray matter volume (GMV) and cortical thickness (CT) from 3T MRIs of 88 people with chronic pain (half males/females) and 86 healthy controls (HCs), who completed The Resilience Scale and Brief Pain Inventory. We found that resilience scores were significantly lower in people with chronic pain compared to HCs, whereas ROI GMV and CT were not different between groups. Resilience negatively correlated with average pain scores and positively correlated with GMV in the bilateral rACC, sgACC, and left dlPFC of people with chronic pain. Mediation analyses revealed that GMV in the right rACC and left sgACC partially co-mediated the relationship between resilience and average pain in people with chronic pain. The resilience-pain and some resilience-GMV relationships were sex-dependent. These findings suggest that the antinociceptive pathway may play a role in the impact of resilience on one's ability to modulate chronic pain. A better understanding of the brain-resilience relationship may help advance evidence-based approaches to pain management.
Collapse
Affiliation(s)
- Melinda S Hector
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Joshua C Cheng
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Kasey S Hemington
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Anton Rogachov
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Junseok A Kim
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Natalie R Osborne
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Rachael L Bosma
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Camille Fauchon
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Lizbeth J Ayoub
- Centre for Multimodal Sensorimotor and Pain Research, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada; Division of Clinical and Computational Neuroscience, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Robert Inman
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada; Division of Immunology, University of Toronto, Toronto, ON, Canada
| | - Jiwon Oh
- Division of Neurology, Department of Medicine, St. Michael's Hospital, Toronto, ON, Canada
| | - Dimitri J Anastakis
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Surgery, University of Toronto, Toronto, Canada
| | - Karen D Davis
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Surgery, University of Toronto, Toronto, Canada.
| |
Collapse
|
8
|
Liu J, Quan S, Zhao L, Yuan K, Wang Y, Zhang Y, Wang Z, Sun M, Hu L. Evaluation of a Clustering Approach to Define Distinct Subgroups of Patients With Migraine to Select Electroacupuncture Treatments. Neurology 2023; 101:e699-e709. [PMID: 37349112 PMCID: PMC10437024 DOI: 10.1212/wnl.0000000000207484] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/18/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND AND OBJECTIVES The objective of this study was to propose a clustering approach to identify migraine subgroups and test the clinical usefulness of the approach by providing prognostic information for electroacupuncture treatment selection. METHODS Participants with migraine without aura (MWoA) were asked to complete a daily headache diary, self-rating depression and anxiety, and quality-of-life questionnaires. Whole-brain functional connectivities (FCs) were assessed on resting-state functional MRI (fMRI). By integrating clinical measurements and fMRI data, partial least squares correlation and hierarchical clustering analysis were used to cluster participants with MWoA. Multivariate pattern analysis was applied to validate the proposed subgrouping strategy. Some participants had an 8-week electroacupuncture treatment, and the response rate was compared between different MWoA subgroups. RESULTS In study 1, a total of 97 participants (age of 28.2 ± 1.0 years, 70 female participants) with MWoA and 77 healthy controls (HCs) (age of 26.8 ± 0.1 years, 61 female participants) were enrolled (dataset 1), and 2 MWoA subgroups were defined. The participants in subgroup 1 had a significantly lower headache frequency (times/month of 4.4 ± 1.1) and significantly higher self-ratings of depression (depression score of 49.5 ± 2.3) when compared with participants in subgroup 2 (times/month of 7.0 ± 0.6 and depression score of 43.4 ± 1.2). The between-group differences of FCs were predominantly related to the amygdala, thalamus, hippocampus, and parahippocampal area. In study 2, 33 participants with MWoA (age of 30.9 ± 2.0 years, 28 female participants) and 23 HCs (age of 29.8 ± 1.1 years, 13 female participants) were enrolled as an independent dataset (dataset 2). The classification analysis validated the effectiveness of the 2-cluster solution of participants with MWoA in datasets 1 and 2. In study 3, 58 participants with MWoA were willing to receive electroacupuncture treatment and were assigned to different subgroups. Participants in different subgroups exhibited different response rates (p = 0.03, OR CI 0.086-0.93) to electroacupuncture treatment (18% and 44% for subgroups 1 and 2, respectively). DISCUSSION Our study proposed a novel clustering approach to define distinct MWoA subgroups, which could be useful for refining the diagnosis of participants with MWoA and guiding individualized strategies for pain prophylaxis and analgesia.
Collapse
Affiliation(s)
- Jixin Liu
- From the Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information (J.L., S.Q., K.Y.), School of Life Science and Technology, Xidian University, Shaanxi; Acupuncture and Tuina School (L.Z., Y.W., Y.Z., Z.W., M.S.), Chengdu University of Traditional Chinese Medicine; CAS Key Laboratory of Mental Health (L.H.), Institute of Psychology, Chinese Academy of Sciences; and Department of Psychology (L.H.), University of Chinese Academy of Sciences, Beijing, China
| | - Shilan Quan
- From the Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information (J.L., S.Q., K.Y.), School of Life Science and Technology, Xidian University, Shaanxi; Acupuncture and Tuina School (L.Z., Y.W., Y.Z., Z.W., M.S.), Chengdu University of Traditional Chinese Medicine; CAS Key Laboratory of Mental Health (L.H.), Institute of Psychology, Chinese Academy of Sciences; and Department of Psychology (L.H.), University of Chinese Academy of Sciences, Beijing, China
| | - Ling Zhao
- From the Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information (J.L., S.Q., K.Y.), School of Life Science and Technology, Xidian University, Shaanxi; Acupuncture and Tuina School (L.Z., Y.W., Y.Z., Z.W., M.S.), Chengdu University of Traditional Chinese Medicine; CAS Key Laboratory of Mental Health (L.H.), Institute of Psychology, Chinese Academy of Sciences; and Department of Psychology (L.H.), University of Chinese Academy of Sciences, Beijing, China
| | - Kai Yuan
- From the Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information (J.L., S.Q., K.Y.), School of Life Science and Technology, Xidian University, Shaanxi; Acupuncture and Tuina School (L.Z., Y.W., Y.Z., Z.W., M.S.), Chengdu University of Traditional Chinese Medicine; CAS Key Laboratory of Mental Health (L.H.), Institute of Psychology, Chinese Academy of Sciences; and Department of Psychology (L.H.), University of Chinese Academy of Sciences, Beijing, China
| | - Yanan Wang
- From the Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information (J.L., S.Q., K.Y.), School of Life Science and Technology, Xidian University, Shaanxi; Acupuncture and Tuina School (L.Z., Y.W., Y.Z., Z.W., M.S.), Chengdu University of Traditional Chinese Medicine; CAS Key Laboratory of Mental Health (L.H.), Institute of Psychology, Chinese Academy of Sciences; and Department of Psychology (L.H.), University of Chinese Academy of Sciences, Beijing, China
| | - Yutong Zhang
- From the Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information (J.L., S.Q., K.Y.), School of Life Science and Technology, Xidian University, Shaanxi; Acupuncture and Tuina School (L.Z., Y.W., Y.Z., Z.W., M.S.), Chengdu University of Traditional Chinese Medicine; CAS Key Laboratory of Mental Health (L.H.), Institute of Psychology, Chinese Academy of Sciences; and Department of Psychology (L.H.), University of Chinese Academy of Sciences, Beijing, China
| | - Ziwen Wang
- From the Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information (J.L., S.Q., K.Y.), School of Life Science and Technology, Xidian University, Shaanxi; Acupuncture and Tuina School (L.Z., Y.W., Y.Z., Z.W., M.S.), Chengdu University of Traditional Chinese Medicine; CAS Key Laboratory of Mental Health (L.H.), Institute of Psychology, Chinese Academy of Sciences; and Department of Psychology (L.H.), University of Chinese Academy of Sciences, Beijing, China
| | - Mingsheng Sun
- From the Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information (J.L., S.Q., K.Y.), School of Life Science and Technology, Xidian University, Shaanxi; Acupuncture and Tuina School (L.Z., Y.W., Y.Z., Z.W., M.S.), Chengdu University of Traditional Chinese Medicine; CAS Key Laboratory of Mental Health (L.H.), Institute of Psychology, Chinese Academy of Sciences; and Department of Psychology (L.H.), University of Chinese Academy of Sciences, Beijing, China
| | - Li Hu
- From the Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information (J.L., S.Q., K.Y.), School of Life Science and Technology, Xidian University, Shaanxi; Acupuncture and Tuina School (L.Z., Y.W., Y.Z., Z.W., M.S.), Chengdu University of Traditional Chinese Medicine; CAS Key Laboratory of Mental Health (L.H.), Institute of Psychology, Chinese Academy of Sciences; and Department of Psychology (L.H.), University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
9
|
Büchel C. The role of expectations, control and reward in the development of pain persistence based on a unified model. eLife 2023; 12:81795. [PMID: 36972108 PMCID: PMC10042542 DOI: 10.7554/elife.81795] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
Chronic, or persistent pain affects more than 10% of adults in the general population. This makes it one of the major physical and mental health care problems. Although pain is an important acute warning signal that allows the organism to take action before tissue damage occurs, it can become persistent and its role as a warning signal thereby inadequate. Although per definition, pain can only be labeled as persistent after 3 months, the trajectory from acute to persistent pain is likely to be determined very early and might even start at the time of injury. The biopsychosocial model has revolutionized our understanding of chronic pain and paved the way for psychological treatments for persistent pain, which routinely outperform other forms of treatment. This suggests that psychological processes could also be important in shaping the very early trajectory from acute to persistent pain and that targeting these processes could prevent the development of persistent pain. In this review, we develop an integrative model and suggest novel interventions during early pain trajectories, based on predictions from this model.
Collapse
Affiliation(s)
- Christian Büchel
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
10
|
Kutafina E, Becker S, Namer B. Measuring pain and nociception: Through the glasses of a computational scientist. Transdisciplinary overview of methods. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1099282. [PMID: 36926544 PMCID: PMC10013045 DOI: 10.3389/fnetp.2023.1099282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/04/2023] [Indexed: 02/12/2023]
Abstract
In a healthy state, pain plays an important role in natural biofeedback loops and helps to detect and prevent potentially harmful stimuli and situations. However, pain can become chronic and as such a pathological condition, losing its informative and adaptive function. Efficient pain treatment remains a largely unmet clinical need. One promising route to improve the characterization of pain, and with that the potential for more effective pain therapies, is the integration of different data modalities through cutting edge computational methods. Using these methods, multiscale, complex, and network models of pain signaling can be created and utilized for the benefit of patients. Such models require collaborative work of experts from different research domains such as medicine, biology, physiology, psychology as well as mathematics and data science. Efficient work of collaborative teams requires developing of a common language and common level of understanding as a prerequisite. One of ways to meet this need is to provide easy to comprehend overviews of certain topics within the pain research domain. Here, we propose such an overview on the topic of pain assessment in humans for computational researchers. Quantifications related to pain are necessary for building computational models. However, as defined by the International Association of the Study of Pain (IASP), pain is a sensory and emotional experience and thus, it cannot be measured and quantified objectively. This results in a need for clear distinctions between nociception, pain and correlates of pain. Therefore, here we review methods to assess pain as a percept and nociception as a biological basis for this percept in humans, with the goal of creating a roadmap of modelling options.
Collapse
Affiliation(s)
- Ekaterina Kutafina
- Institute of Medical Informatics, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Faculty of Applied Mathematics, AGH University of Science and Technology, Krakow, Poland
| | - Susanne Becker
- Clinical Psychology, Department of Experimental Psychology, Heinrich Heine University, Düsseldorf, Germany
- Integrative Spinal Research, Department of Chiropractic Medicine, University Hospital Balgrist, University of Zurich, Zurich, Switzerland
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Barbara Namer
- Junior Research Group Neuroscience, Interdisciplinary Center for Clinical Research Within the Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Institute of Physiology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
11
|
Edwards RR, Schreiber KL, Dworkin RH, Turk DC, Baron R, Freeman R, Jensen TS, Latremoliere A, Markman JD, Rice ASC, Rowbotham M, Staud R, Tate S, Woolf CJ, Andrews NA, Carr DB, Colloca L, Cosma-Roman D, Cowan P, Diatchenko L, Farrar J, Gewandter JS, Gilron I, Kerns RD, Marchand S, Niebler G, Patel KV, Simon LS, Tockarshewsky T, Vanhove GF, Vardeh D, Walco GA, Wasan AD, Wesselmann U. Optimizing and Accelerating the Development of Precision Pain Treatments for Chronic Pain: IMMPACT Review and Recommendations. THE JOURNAL OF PAIN 2023; 24:204-225. [PMID: 36198371 PMCID: PMC10868532 DOI: 10.1016/j.jpain.2022.08.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/01/2022] [Accepted: 08/17/2022] [Indexed: 11/06/2022]
Abstract
Large variability in the individual response to even the most-efficacious pain treatments is observed clinically, which has led to calls for a more personalized, tailored approach to treating patients with pain (ie, "precision pain medicine"). Precision pain medicine, currently an aspirational goal, would consist of empirically based algorithms that determine the optimal treatments, or treatment combinations, for specific patients (ie, targeting the right treatment, in the right dose, to the right patient, at the right time). Answering this question of "what works for whom" will certainly improve the clinical care of patients with pain. It may also support the success of novel drug development in pain, making it easier to identify novel treatments that work for certain patients and more accurately identify the magnitude of the treatment effect for those subgroups. Significant preliminary work has been done in this area, and analgesic trials are beginning to utilize precision pain medicine approaches such as stratified allocation on the basis of prespecified patient phenotypes using assessment methodologies such as quantitative sensory testing. Current major challenges within the field include: 1) identifying optimal measurement approaches to assessing patient characteristics that are most robustly and consistently predictive of inter-patient variation in specific analgesic treatment outcomes, 2) designing clinical trials that can identify treatment-by-phenotype interactions, and 3) selecting the most promising therapeutics to be tested in this way. This review surveys the current state of precision pain medicine, with a focus on drug treatments (which have been most-studied in a precision pain medicine context). It further presents a set of evidence-based recommendations for accelerating the application of precision pain methods in chronic pain research. PERSPECTIVE: Given the considerable variability in treatment outcomes for chronic pain, progress in precision pain treatment is critical for the field. An array of phenotypes and mechanisms contribute to chronic pain; this review summarizes current knowledge regarding which treatments are most effective for patients with specific biopsychosocial characteristics.
Collapse
Affiliation(s)
| | | | | | - Dennis C Turk
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington
| | - Ralf Baron
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Arnold-Heller-Straße 3, House D, 24105 Kiel, Germany
| | - Roy Freeman
- Harvard Medical School, Boston, Massachusetts
| | | | | | | | | | | | | | | | | | - Nick A Andrews
- Salk Institute for Biological Studies, San Diego, California
| | | | | | | | - Penney Cowan
- American Chronic Pain Association, Rocklin, California
| | - Luda Diatchenko
- Department of Anesthesia and Faculty of Dentistry, McGill University, Montreal, California
| | - John Farrar
- University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | - Robert D Kerns
- Yale University, Departments of Psychiatry, Neurology, and Psychology, New Haven, Connecticut
| | | | | | - Kushang V Patel
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington
| | | | | | | | | | - Gary A Walco
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington
| | - Ajay D Wasan
- University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ursula Wesselmann
- Department of Anesthesiology/Division of Pain Medicine, Neurology and Psychology, The University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
12
|
Argaman Y, Granovsky Y, Sprecher E, Sinai A, Yarnitsky D, Weissman-Fogel I. Resting-state functional connectivity predicts motor cortex stimulation-dependent pain relief in fibromyalgia syndrome patients. Sci Rep 2022; 12:17135. [PMID: 36224244 PMCID: PMC9556524 DOI: 10.1038/s41598-022-21557-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/28/2022] [Indexed: 01/04/2023] Open
Abstract
MRI-based resting-state functional connectivity (rsFC) has been shown to predict response to pharmacological and non-pharmacological treatments for chronic pain, but not yet for motor cortex transcranial magnetic stimulation (M1-rTMS). Twenty-seven fibromyalgia syndrome (FMS) patients participated in this double-blind, crossover, and sham-controlled study. Ten daily treatments of 10 Hz M1-rTMS were given over 2 weeks. Before treatment series, patients underwent resting-state fMRI and clinical pain evaluation. Significant pain reduction occurred following active, but not sham, M1-rTMS. The following rsFC patterns predicted reductions in clinical pain intensity after the active treatment: weaker rsFC of the default-mode network with the middle frontal gyrus (r = 0.76, p < 0.001), the executive control network with the rostro-medial prefrontal cortex (r = 0.80, p < 0.001), the thalamus with the middle frontal gyrus (r = 0.82, p < 0.001), and the pregenual anterior cingulate cortex with the inferior parietal lobule (r = 0.79, p < 0.001); and stronger rsFC of the anterior insula with the angular gyrus (r = - 0.81, p < 0.001). The above regions process the attentional and emotional aspects of pain intensity; serve as components of the resting-state networks; are modulated by rTMS; and are altered in FMS. Therefore, we suggest that in FMS, the weaker pre-existing interplay between pain-related brain regions and networks, the larger the pain relief resulting from M1-rTMS.
Collapse
Affiliation(s)
- Yuval Argaman
- grid.6451.60000000121102151Clinical Neurophysiology Lab, Bruce Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
| | - Yelena Granovsky
- grid.6451.60000000121102151Clinical Neurophysiology Lab, Bruce Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel ,grid.413731.30000 0000 9950 8111Department of Neurology, Rambam Health Care Campus, Haifa, Israel
| | - Elliot Sprecher
- grid.413731.30000 0000 9950 8111Department of Neurology, Rambam Health Care Campus, Haifa, Israel
| | - Alon Sinai
- grid.413731.30000 0000 9950 8111Department of Neurosurgery, Rambam Health Care Campus, Haifa, Israel
| | - David Yarnitsky
- grid.6451.60000000121102151Clinical Neurophysiology Lab, Bruce Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel ,grid.413731.30000 0000 9950 8111Department of Neurology, Rambam Health Care Campus, Haifa, Israel
| | - Irit Weissman-Fogel
- grid.18098.380000 0004 1937 0562Department of Physical Therapy, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
13
|
Diaz MM, Caylor J, Strigo I, Lerman I, Henry B, Lopez E, Wallace MS, Ellis RJ, Simmons AN, Keltner JR. Toward Composite Pain Biomarkers of Neuropathic Pain-Focus on Peripheral Neuropathic Pain. FRONTIERS IN PAIN RESEARCH 2022; 3:869215. [PMID: 35634449 PMCID: PMC9130475 DOI: 10.3389/fpain.2022.869215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/21/2022] [Indexed: 01/09/2023] Open
Abstract
Chronic pain affects ~10-20% of the U.S. population with an estimated annual cost of $600 billion, the most significant economic cost of any disease to-date. Neuropathic pain is a type of chronic pain that is particularly difficult to manage and leads to significant disability and poor quality of life. Pain biomarkers offer the possibility to develop objective pain-related indicators that may help diagnose, treat, and improve the understanding of neuropathic pain pathophysiology. We review neuropathic pain mechanisms related to opiates, inflammation, and endocannabinoids with the objective of identifying composite biomarkers of neuropathic pain. In the literature, pain biomarkers typically are divided into physiological non-imaging pain biomarkers and brain imaging pain biomarkers. We review both types of biomarker types with the goal of identifying composite pain biomarkers that may improve recognition and treatment of neuropathic pain.
Collapse
Affiliation(s)
- Monica M. Diaz
- Department of Neurology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - Jacob Caylor
- Department of Anesthesiology, University of California, San Diego, San Diego, CA, United States
| | - Irina Strigo
- Department of Psychiatry, San Francisco Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Imanuel Lerman
- Department of Anesthesiology, University of California, San Diego, San Diego, CA, United States
| | - Brook Henry
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - Eduardo Lopez
- Department of Psychiatry, San Francisco Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Mark S. Wallace
- Department of Anesthesiology, University of California, San Diego, San Diego, CA, United States
| | - Ronald J. Ellis
- Department of Neurosciences, University of California, San Diego, San Diego, CA, United States
| | - Alan N. Simmons
- Department of Psychiatry, San Diego & Center of Excellence in Stress and Mental Health, Veteran Affairs Health Care System, University of California, San Diego, San Diego, CA, United States
| | - John R. Keltner
- Department of Psychiatry, San Diego & San Diego VA Medical Center, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
14
|
Terry EL, Tanner JJ, Cardoso JS, Sibille KT, Lai S, Deshpande H, Deutsch G, Price CC, Staud R, Goodin BR, Redden DT, Fillingim RB. Associations between pain catastrophizing and resting-state functional brain connectivity: Ethnic/race group differences in persons with chronic knee pain. J Neurosci Res 2022; 100:1047-1062. [PMID: 35187703 PMCID: PMC8940639 DOI: 10.1002/jnr.25018] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 02/01/2023]
Abstract
Chronic pain is a significant public health problem, and the prevalence and societal impact continues to worsen annually. Multiple cognitive and emotional factors are known to modulate pain, including pain catastrophizing, which contributes to pain facilitation and is associated with altered resting-state functional connectivity in pain-related cortical and subcortical circuitry. Pain and catastrophizing levels are reported to be higher in non-Hispanic black (NHB) compared with non-Hispanic White (NHW) individuals. The current study, a substudy of a larger ongoing observational cohort investigation, investigated the pathways by which ethnicity/race influences the relationship between pain catastrophizing, clinical pain, and resting-state functional connectivity between anterior cingulate cortex (ACC), dorsolateral prefrontal cortex (dlPFC), insula, and primary somatosensory cortex (S1). Participants included 136 (66 NHBs and 70 NHWs) community-dwelling adults with knee osteoarthritis. Participants completed the Coping Strategies Questionnaire-Revised Pain Catastrophizing subscale and Western Ontario and McMaster Universities Osteoarthritis Index. Magnetic resonance imaging data were obtained, and resting-state functional connectivity was analyzed. Relative to NHW, the NHB participants were younger, reported lower income, were less likely to be married, and self-reported greater clinical pain and pain catastrophizing (ps < 0.05). Ethnicity/race moderated the mediation effects of catastrophizing on the relationship between clinical pain and resting-state functional connectivity between the ACC, dlPFC, insula, and S1. These results indicate the NHB and NHW groups demonstrated different relationships between pain, catastrophizing, and functional connectivity. These results provide evidence for a potentially important role of ethnicity/race in the interrelationships among pain, catastrophizing, and resting-state functional connectivity.
Collapse
Affiliation(s)
- Ellen L. Terry
- College of Nursing, Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, Florida, USA
- Pain Research and Intervention Center of Excellence (PRICE), University of Florida, Gainesville, Florida, USA
| | - Jared J. Tanner
- Department of Clinical and Health Psychology, University of Florida, Gainesville, Florida, USA
| | - Josue S. Cardoso
- Pain Research and Intervention Center of Excellence (PRICE), University of Florida, Gainesville, Florida, USA
| | - Kimberly T. Sibille
- Department of Aging and Geriatric Research, University of Florida, Gainesville, Florida, USA
| | - Song Lai
- Department of Radiation Oncology, University of Florida, Gainesville, Florida, USA
- CTSI Human Imaging Core, University of Florida, Gainesville, Florida, USA
| | - Hrishikesh Deshpande
- Division of Molecular Imaging and Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Division of Advanced Medical Imaging Research, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Georg Deutsch
- Division of Molecular Imaging and Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Division of Advanced Medical Imaging Research, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Catherine C. Price
- Department of Clinical and Health Psychology, University of Florida, Gainesville, Florida, USA
| | - Roland Staud
- Department of Medicine, University of Florida, Gainesville, Florida, USA
| | - Burel R. Goodin
- Department of Psychology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - David T. Redden
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Roger B. Fillingim
- Pain Research and Intervention Center of Excellence (PRICE), University of Florida, Gainesville, Florida, USA
| |
Collapse
|
15
|
Feng B, Hu X, Lu WW, Wang Y, Ip WY. Cultural Validation of the Chinese Central Sensitization Inventory in Patients with Chronic Pain and its Predictive Ability of Comorbid Central Sensitivity Syndromes. J Pain Res 2022; 15:467-477. [PMID: 35210847 PMCID: PMC8857991 DOI: 10.2147/jpr.s348842] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/26/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Central sensitization (CS) is frequently reported in chronic pain, and the central sensitization inventory (CSI) is popularly used to assess CS. However, a validated Chinese CSI is lacking and its predictive ability for the comorbidity of central sensitivity syndromes (CSSs) remains unclear. Hence, this study aimed to generate the Chinese CSI (CSI-C) with cultural adaptation and examine its psychometric properties. METHODS The CSI-C was formulated through forward and backward translation, panel review and piloting and then validated among patients with chronic pain (n = 235). Its internal consistency, test-retest reliability, and concurrent validity were measured. An exploratory factor analysis (EFA) was performed for the construct validity. Receiver operating characteristic (ROC) analysis was employed to determine the discriminative ability in the presence of comorbidity of CSSs. RESULTS About 70% of the participants in the study experienced at least mild CS symptoms. CSI-C demonstrates a high internal consistency (Cronbach's alpha = 0.896) and excellent test-retest reliability (ICC = 0.932). CSI-C scoring was significantly correlated with pain intensity (r = 0.188), EQ-5D index (r = -0.375), anxiety (r=0.525), and depression (r = 0.467). The EFA generated a 5-factor model, including physical symptoms, emotional distress, hypersensitivity syndromes and so on. An CSI cutoff of 42 had a sensitivity of 71.4% and a specificity of 70% for identifying chronic pain patients with ≥2 CSSs. CONCLUSION The CS manifestations are prevalent in those with persistent pain. CSI-C is a reliable and valid instrument for measuring CS. A CSI score ≥42 may predict the comorbidity of 2 or above CSSs in patients with chronic pain.
Collapse
Affiliation(s)
- Beibei Feng
- Rehabilitation Medicine Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, People’s Republic of China
- Department of Orthopaedics & Traumatology, The University of Hong Kong, Hong Kong SAR, People’s Republic of China
| | - Xiaoqian Hu
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, People’s Republic of China
| | - William Weijia Lu
- Department of Orthopaedics & Traumatology, The University of Hong Kong, Hong Kong SAR, People’s Republic of China
| | - Yuling Wang
- Rehabilitation Medicine Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, People’s Republic of China
| | - Wing Yuk Ip
- Department of Orthopaedics & Traumatology, The University of Hong Kong, Hong Kong SAR, People’s Republic of China
| |
Collapse
|
16
|
den Hollander M, Smeets RJEM, van Meulenbroek T, van Laake-Geelen CCM, Baadjou VA, Timmers I. Exposure in Vivo as a Treatment Approach to Target Pain-Related Fear: Theory and New Insights From Research and Clinical Practice. Phys Ther 2022; 102:6515749. [PMID: 35084025 DOI: 10.1093/ptj/pzab270] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 09/21/2021] [Accepted: 11/07/2021] [Indexed: 01/07/2023]
Abstract
UNLABELLED Pain-related fear (PRF) can be a significant factor contributing to the development and maintenance of pain-related disability in individuals with persistent pain. One treatment approach to target PRF and related avoidance behavior is exposure in vivo (EXP). EXP has a long history in the field of anxiety, a field that is constantly evolving. This Perspective outlines recent theoretical advancements and how they apply to EXP for PRF, including suggestions for how to optimize inhibitory learning during EXP; reviews mechanistic work from neuroimaging supporting the targeting of PRF in people with chronic pain; and focuses on clinical applications of EXP for PRF, as EXP is moving into new directions regarding who is receiving EXP (eg, EXP in chronic secondary pain) and how treatment is provided (EXP in primary care with a crucial role for physical therapists). Considerations are provided regarding challenges, remaining questions, and promising future perspectives. IMPACT For patients with chronic pain who have elevated pain-related fear (PRF), exposure is the treatment of choice. This Perspective highlights the inhibitory learning approach, summarizes mechanistic work from experimental psychology and neuroimaging regarding PRF in chronic pain, and describes possible clinical applications of EXP in chronic secondary pain as well as in primary care.
Collapse
Affiliation(s)
- Marlies den Hollander
- Adelante Centre of Expertise in Rehabilitation and Audiology, Maastricht, the Netherlands.,Department of Rehabilitation Medicine, Care and Public Health Research Institute, Maastricht University, Maastricht, the Netherlands
| | - Rob J E M Smeets
- Department of Rehabilitation Medicine, Care and Public Health Research Institute, Maastricht University, Maastricht, the Netherlands.,CIR Revalidatie, location Eindhoven, the Netherlands
| | - Thijs van Meulenbroek
- Adelante Centre of Expertise in Rehabilitation and Audiology, Maastricht, the Netherlands.,Department of Rehabilitation Medicine, Care and Public Health Research Institute, Maastricht University, Maastricht, the Netherlands
| | - Charlotte C M van Laake-Geelen
- Adelante Centre of Expertise in Rehabilitation and Audiology, Maastricht, the Netherlands.,Department of Rehabilitation Medicine, Care and Public Health Research Institute, Maastricht University, Maastricht, the Netherlands
| | - Vera A Baadjou
- Adelante Centre of Expertise in Rehabilitation and Audiology, Maastricht, the Netherlands.,Department of Rehabilitation Medicine, Care and Public Health Research Institute, Maastricht University, Maastricht, the Netherlands
| | - Inge Timmers
- Department of Rehabilitation Medicine, Care and Public Health Research Institute, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
17
|
Weaver KR, Griffioen MA, Klinedinst NJ, Galik E, Duarte AC, Colloca L, Resnick B, Dorsey SG, Renn CL. Quantitative Sensory Testing Across Chronic Pain Conditions and Use in Special Populations. FRONTIERS IN PAIN RESEARCH (LAUSANNE, SWITZERLAND) 2022; 2:779068. [PMID: 35295425 PMCID: PMC8915716 DOI: 10.3389/fpain.2021.779068] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/07/2021] [Indexed: 02/01/2023]
Abstract
Chronic pain imposes a significant burden to the healthcare system and adversely affects patients' quality of life. Traditional subjective assessments, however, do not adequately capture the complex phenomenon of pain, which is influenced by a multitude of factors including environmental, developmental, genetic, and psychological. Quantitative sensory testing (QST), established as a protocol to examine thermal and mechanical sensory function, offers insight on potential mechanisms contributing to an individual's experience of pain, by assessing their perceived response to standardized delivery of stimuli. Although the use of QST as a research methodology has been described in the literature in reference to specific pain populations, this manuscript details application of QST across a variety of chronic pain conditions. Specific conditions include lower extremity chronic pain, knee osteoarthritis, chronic low back pain, temporomandibular joint disorder, and irritable bowel syndrome. Furthermore, we describe the use of QST in placebo/nocebo research, and discuss the use of QST in vulnerable populations such as those with dementia. We illustrate how the evaluation of peripheral sensory nerve function holds clinical promise in targeting interventions, and how using QST can enhance patient education regarding prognostic outcomes with particular treatments. Incorporation of QST methodology in research investigations may facilitate the identification of common mechanisms underlying chronic pain conditions, guide the development of non-pharmacological behavioral interventions to reduce pain and pain-related morbidity, and enhance our efforts toward reducing the burden of chronic pain.
Collapse
Affiliation(s)
- Kristen R. Weaver
- Department of Pain and Translational Symptom Science, School of Nursing, University of Maryland, Baltimore, MD, United States,Center to Advance Chronic Pain Research (CACPR), University of Maryland, Baltimore, MD, United States,*Correspondence: Kristen R. Weaver
| | - Mari A. Griffioen
- Center to Advance Chronic Pain Research (CACPR), University of Maryland, Baltimore, MD, United States,College of Health Sciences, School of Nursing, University of Delaware, Newark, DE, United States
| | - N. Jennifer Klinedinst
- Department of Organizational Systems and Adult Health, School of Nursing, University of Maryland, Baltimore, MD, United States
| | - Elizabeth Galik
- Department of Organizational Systems and Adult Health, School of Nursing, University of Maryland, Baltimore, MD, United States
| | - Ana C. Duarte
- Department of Family and Community Health, School of Nursing, University of Maryland, Baltimore, MD, United States
| | - Luana Colloca
- Department of Pain and Translational Symptom Science, School of Nursing, University of Maryland, Baltimore, MD, United States,Center to Advance Chronic Pain Research (CACPR), University of Maryland, Baltimore, MD, United States
| | - Barbara Resnick
- Center to Advance Chronic Pain Research (CACPR), University of Maryland, Baltimore, MD, United States,Department of Organizational Systems and Adult Health, School of Nursing, University of Maryland, Baltimore, MD, United States
| | - Susan G. Dorsey
- Department of Pain and Translational Symptom Science, School of Nursing, University of Maryland, Baltimore, MD, United States,Center to Advance Chronic Pain Research (CACPR), University of Maryland, Baltimore, MD, United States
| | - Cynthia L. Renn
- Department of Pain and Translational Symptom Science, School of Nursing, University of Maryland, Baltimore, MD, United States,Center to Advance Chronic Pain Research (CACPR), University of Maryland, Baltimore, MD, United States
| |
Collapse
|
18
|
Costa YM, Bonjardim LR, Conti PCR, Svensson P. Psychophysical evaluation of somatosensory function in oro-facial pain: achievements and challenges. J Oral Rehabil 2021; 48:1066-1076. [PMID: 34213796 DOI: 10.1111/joor.13223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/03/2021] [Indexed: 11/30/2022]
Abstract
AIM This critical review describes key methodological aspects for a successful oro-facial psychophysical evaluation of the somatosensory system and highlights the diagnostic value of somatosensory assessment and management perspectives based on somatosensory profiling. METHODS This topical review was based on a non-systematic search for studies about somatosensory evaluation in oro-facial pain in PubMed and Embase. RESULTS The recent progress regarding the psychophysical evaluation of somatosensory function was largely possible due to the development and application of valid, reliable and standardised psychophysical methods. Qualitative sensory testing may be useful as a screening tool to rule out relevant somatosensory abnormalities. Nevertheless, the patient should preferably be referred to a more comprehensive assessment with the quantitative sensory testing battery if confirmation of somatosensory abnormalities is necessary. Moreover, the identification of relevant somatosensory alterations in chronic pain disorders that do not fulfil the current criteria to be regarded as neuropathic has also increased the usefulness of somatosensory evaluation as a feasible method to better characterise the patients and perhaps elucidate some underpinnings of the so-called 'nociplastic' pain disorders. Finally, an additional benefit of oro-facial pain treatment based on somatosensory profiling still needs to be demonstrated and convincing evidence of somatosensory findings as predictors of treatment efficacy in chronic oro-facial pain awaits further studies. CONCLUSION Psychophysical evaluation of somatosensory function in oro-facial pain is still in its infancy but with a clear potential to continue to improve the assessment, diagnosis and management of oro-facial pain patients.
Collapse
Affiliation(s)
- Yuri M Costa
- Department of Biosciences, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil.,Section for Orofacial Pain and Jaw Function, Department of Dentistry and Oral Health, Aarhus University, Aarhus, Denmark.,Scandinavian Center for Orofacial Neurosciences (SCON), Aarhus, Denmark.,Bauru Orofacial Pain Group, Bauru, Brazil
| | - Leonardo R Bonjardim
- Bauru Orofacial Pain Group, Bauru, Brazil.,Section of Head and Face Physiology, Department of Biological Sciences, Bauru School of Dentistry, University of Sao Paulo, Bauru, Brazil
| | - Paulo César R Conti
- Bauru Orofacial Pain Group, Bauru, Brazil.,Department of Prosthodontics, Bauru School of Dentistry, University of Sao Paulo, Bauru, Brazil
| | - Peter Svensson
- Section for Orofacial Pain and Jaw Function, Department of Dentistry and Oral Health, Aarhus University, Aarhus, Denmark.,Scandinavian Center for Orofacial Neurosciences (SCON), Aarhus, Denmark.,Faculty of Odontology, Malmo University, Malmo, Sweden
| |
Collapse
|
19
|
Timmers I, van de Ven VG, Vlaeyen JW, Smeets RJ, Verbunt JA, de Jong JR, Kaas AL. Corticolimbic Circuitry in Chronic Pain Tracks Pain Intensity Relief Following Exposure In Vivo. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2021; 1:28-36. [PMID: 36324433 PMCID: PMC9616294 DOI: 10.1016/j.bpsgos.2021.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 12/28/2022] Open
Abstract
Background A subset of patients with chronic pain who receive exposure in vivo (EXP) treatment experience clinically relevant relief of pain intensity. Although pain relief is not an explicit therapeutic target, it is important to understand how and why this concomitant effect occurs in some patients but not others. This longitudinal study therefore aimed to characterize brain plasticity as well as to explore pretreatment factors related to pain relief. Methods Resting-state functional magnetic resonance imaging data were acquired in 30 patients with chronic pain. Twenty-three patients completed EXP, and 6-month follow-up data were available in 20 patients (magnetic resonance imaging data in 17 patients). Pain-free control data were acquired at two time points (n = 29, n = 21). Seed-based resting-state functional connectivity (rsFC) analyses were performed, with seeds in the amygdala, hippocampus, and nucleus accumbens. Results Pain relief after EXP was highly variable, with 60% of patients reporting a clinically relevant improvement. Amygdala rsFC with the middle frontal gyrus decreased significantly over time in patients but was not associated with pain relief. In contrast, greater pain relief was associated with greater decreases over time in hippocampus rsFC with the precuneus, which was related to reductions in catastrophizing (EXP therapeutic target) as well. Greater pain relief was also associated with lower pretreatment rsFC between nucleus accumbens and postcentral gyrus. Conclusions While changes in hippocampus rsFC were associated with pain relief after EXP, pretreatment nucleus accumbens rsFC showed potential prognostic value. Our findings further support the importance of corticolimbic circuitry in chronic pain, emphasizing its relation to pain relief and identifying potential underlying mechanisms and prognostic factors, warranting further testing in independent samples.
Collapse
|
20
|
Cross-network coupling of neural oscillations in the dynamic pain connectome reflects chronic neuropathic pain in multiple sclerosis. NEUROIMAGE-CLINICAL 2020; 26:102230. [PMID: 32143136 PMCID: PMC7056723 DOI: 10.1016/j.nicl.2020.102230] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/20/2020] [Accepted: 02/24/2020] [Indexed: 12/22/2022]
Abstract
Sensory perceptions are coded by complex neural dynamics of regional communication in the brain. Thus, sensory abnormalities such as chronic pain may occur when neural dynamics go awry. Previous studies of cross-network dynamic functional connectivity in chronic pain identified abnormalities but were based on functional MRI which only captures slow temporal features. Here we conducted a magnetoencephalography (MEG) study to investigate fine temporal dynamics of aberrant cross-regional and cross-network communication of the dynamic pain connectome in patients with chronic pain. We also introduced a novel measure, dynamic functional coupling, to quantify the variability of brain communication. The study was performed in 33 people who had chronic pain associated with multiple sclerosis and 30 healthy controls. We found that patients with chronic pain exhibited abnormalities in cross-network functional coupling across multiple frequency bands (theta, alpha, beta, gamma), between the salience network and 3 other networks: the ascending nociceptive pathway, descending anti-nociceptive pathway, and the default mode network. However, these cross-network abnormalities involved different frequency bands in patients with neuropathic versus non-neuropathic chronic pain. Furthermore, cross-network abnormalities were linked to pain severity and pain interference. Our findings implicate broadband cross-network abnormalities as hallmark features of chronic pain in multiple sclerosis.
Collapse
|
21
|
The feasibility and acceptability of research magnetic resonance imaging in adolescents with moderate-severe neuropathic pain. Pain Rep 2020; 5:e807. [PMID: 32072101 PMCID: PMC7004507 DOI: 10.1097/pr9.0000000000000807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/14/2019] [Accepted: 11/27/2019] [Indexed: 11/26/2022] Open
Abstract
Supplemental Digital Content is Available in the Text. Introduction: Multimodal characterisation with questionnaires, Quantitative Sensory Testing (QST), and neuroimaging will improve understanding of neuropathic pain (NeuP) in adolescents. Magnetic resonance imaging (MRI) data in adolescents with NeuP are limited, and the perceived practical or ethical burden of scanning may represent a barrier to research. Objective: To determine the feasibility of MRI scanning in adolescents with moderate–severe NeuP, with respect to consent rate, postscan acceptability, and data quality. Methods: This prospective cohort study evaluating questionnaires and QST recruited adolescents aged 10 to 18 years with clinically diagnosed NeuP from a tertiary clinic. Eligible adolescents aged 11 years and older could additionally agree/decline an MRI scan. After the scan, families rated discomfort, perceived risk, and acceptability of current and future MRI scans (0–10 numerical rating scales). Head motion during scanning was compared with healthy controls to assess data quality. Results: Thirty-four families agreed to MRI (72% recruitment), and 21 adolescents with moderate–severe pain (average last week 6.7 ± 1.7; mean ± SD) and with neuropathic QST profiles were scanned. Three adolescents reported positional or noise-related discomfort during scanning. Perceived risk was low, and acceptability of the current scan was high for parents (range [median]: 7 to 10/10 [10]) and adolescents (8–10/10 [10]). Willingness to undergo a future research scan was high for parents (7–10/10 [10]) and adolescents (5–10/10 [10]) and did not differ from future scans for clinical purposes. Mean head motion during resting state functional MRI did not differ from control adolescents. Conclusion: Research MRI is feasible and acceptable for many adolescents with moderate–severe NeuP.
Collapse
|
22
|
Bommersbach T, Ross DA, De Aquino JP. Perpetual Hunger: The Neurobiological Consequences of Long-Term Opioid Use. Biol Psychiatry 2020; 87:e1-e3. [PMID: 31806086 PMCID: PMC7830805 DOI: 10.1016/j.biopsych.2019.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 10/15/2019] [Indexed: 11/16/2022]
Affiliation(s)
- Tanner Bommersbach
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - David A Ross
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Joao P De Aquino
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|