1
|
Maruta T, Kouroki S, Kurogi M, Hidaka K, Koshida T, Miura A, Nakagawa H, Yanagita T, Takeya R, Tsuneyoshi I. Comparison of Nocifensive Behavior in Na V1.7-, Na V1.8-, and Na V1.9-Channelrhodopsin-2 Mice by Selective Optogenetic Activation of Targeted Sodium Channel Subtype-Expressing Afferents. J Neurosci Res 2024; 102:e25386. [PMID: 39364619 DOI: 10.1002/jnr.25386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/12/2024] [Accepted: 09/03/2024] [Indexed: 10/05/2024]
Abstract
Voltage-gated sodium channels, including NaV1.7, NaV1.8, and NaV1.9, play important roles in pain transmission and chronic pain development. However, the specific mechanisms of their action remain unclear, highlighting the need for in vivo stimulation studies of these channels. Optogenetics, a novel technique for targeting the activation or inhibition of specific neural circuits using light, offers a promising solution. In our previous study, we used optogenetics to selectively excite NaV1.7-expressing neurons in the dorsal root ganglion of mice to induce nocifensive behavior. Here, we further characterize the impact of nocifensive behavior by activation of NaV1.7, NaV1.8, or NaV1.9-expressing neurons. Using CRISPR/Cas9-mediated homologous recombination, NaV1.7-iCre, NaV1.8-iCre, or NaV1.9-iCre mice expressing iCre recombinase under the control of the endogenous NaV1.7, NaV1.8, or NaV1.9 gene promoter were produced. These mice were then bred with channelrhodopsin-2 (ChR2) Cre-reporter Ai32 mice to obtain NaV1.7-ChR2, NaV1.8-ChR2, or NaV1.9-ChR2 mice. Blue light exposure triggered paw withdrawal in all mice, with the strongest response in NaV1.8-ChR2 mice. These light sensitivity differences observed across NaV1.x-ChR2 mice may be dependent on ChR2 expression or reflect the inherent disparities in their pain transmission roles. In conclusion, we have generated noninvasive pain models, with optically activated peripheral nociceptors. We believe that studies using optogenetics will further elucidate the role of sodium channel subtypes in pain transmission.
Collapse
Affiliation(s)
- Toyoaki Maruta
- Department of Anesthesiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Satoshi Kouroki
- Department of Anesthesiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Mio Kurogi
- Department of Anesthesiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Kotaro Hidaka
- Department of Anesthesiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Tomohiro Koshida
- Department of Anesthesiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Ayako Miura
- Department of Pharmacology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Hikaru Nakagawa
- Department of Pharmacology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Toshihiko Yanagita
- Department of Clinical Pharmacology, School of Nursing, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Ryu Takeya
- Department of Pharmacology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Isao Tsuneyoshi
- Department of Anesthesiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
2
|
Kc E, Islam J, Lee G, Park YS. Optogenetic Approach in Trigeminal Neuralgia and Potential Concerns: Preclinical Insights. Mol Neurobiol 2024; 61:1769-1780. [PMID: 37775720 DOI: 10.1007/s12035-023-03652-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/11/2023] [Indexed: 10/01/2023]
Abstract
The integration of optogenetics in the trigeminal pain circuitry broadens and reinforces existing pain investigations. Similar to research on spinal neuropathic pain, the exploration of the underlying determinants of orofacial pain is expanding. Optogenetics facilitates more direct, specific, and subtle investigations of the neuronal circuits involved in orofacial pain. One of the most significant concerns of both dentistry and medicine is trigeminal neuralgia (TN) management due to its substantial impact on a patient's quality of life. Our objective is to gather insights from preclinical studies conducted in TN employing an optogenetic paradigm, thereby extending the prospects for in-depth neurobiological research. This review highlights optogenetic research in trigeminal pain circuitry involving TN. We outline the central and peripheral regions associated with pain-that have been investigated using optogenetics in the trigeminal pain circuitry. The study further reports its scope and limitations as well as its potential for future applications from bench to bedside.
Collapse
Affiliation(s)
- Elina Kc
- Program in Neuroscience, Department of Medicine, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Jaisan Islam
- Program in Neuroscience, Department of Medicine, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Gabsang Lee
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Solomon H. Snyder, Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Young Seok Park
- Program in Neuroscience, Department of Medicine, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea.
- Department of Neurosurgery, Chungbuk National University Hospital, Cheongju, Republic of Korea.
| |
Collapse
|
3
|
Chen HH, Mohsin M, Ge JY, Feng YT, Wang JG, Ou YS, Jiang ZJ, Hu BY, Liu XJ. Optogenetic Activation of Peripheral Somatosensory Neurons in Transgenic Mice as a Neuropathic Pain Model for Assessing the Therapeutic Efficacy of Analgesics. ACS Pharmacol Transl Sci 2024; 7:236-248. [PMID: 38230281 PMCID: PMC10789130 DOI: 10.1021/acsptsci.3c00254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 01/18/2024]
Abstract
Optogenetics is a novel biotechnology widely used to precisely manipulate a specific peripheral sensory neuron or neural circuit. However, the use of optogenetics to assess the therapeutic efficacy of analgesics is elusive. In this study, we generated a transgenic mouse stain in which all primary somatosensory neurons can be optogenetically activated to mimic neuronal hyperactivation in the neuropathic pain state for the assessment of analgesic effects of drugs. A transgenic mouse was generated using the advillin-Cre line mated with the Ai32 strain, in which channelrhodopsin-2 fused to enhanced yellow fluorescence protein (ChR2-EYFP) was conditionally expressed in all types of primary somatosensory neurons (advillincre/ChR2+/+). Immunofluorescence and transdermal photostimulation on the hindpaws were used to verify the transgenic mice. Optical stimulation to evoke pain-like paw withdrawal latency was used to assess the analgesic effects of a series of drugs. Injury- and pain-related molecular biomarkers were investigated with immunohistofluorescence. We found that the expression of ChR2-EYFP was observed in many primary afferents of paw skin and sciatic nerves and in primary sensory neurons and laminae I and II of the spinal dorsal horns in advillincre/ChR2+/+ mice. Transdermal blue light stimulation of the transgenic mouse hindpaw evoked nocifensive paw withdrawal behavior. Treatment with gabapentin, some channel blockers, and local anesthetics, but not opioids or COX-1/2 inhibitors, prolonged the paw withdrawal latency in the transgenic mice. The analgesic effect of gabapentin was also verified by the decreased expression of injury- and pain-related molecular biomarkers. These optogenetic mice provide a promising model for assessing the therapeutic efficacy of analgesics in neuropathic pain.
Collapse
Affiliation(s)
- Hao-Hao Chen
- School
of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
- Pain
and Related Diseases Research Laboratory, Shantou University Medical College, Shantou, Guangdong Province 515041, China
| | - Muhammad Mohsin
- Pain
and Related Diseases Research Laboratory, Shantou University Medical College, Shantou, Guangdong Province 515041, China
| | - Jia-Yi Ge
- School
of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Yu-Ting Feng
- School
of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Jing-Ge Wang
- School
of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Yu-Sen Ou
- Pain
and Related Diseases Research Laboratory, Shantou University Medical College, Shantou, Guangdong Province 515041, China
| | - Zuo-Jie Jiang
- Pain
and Related Diseases Research Laboratory, Shantou University Medical College, Shantou, Guangdong Province 515041, China
| | - Bo-Ya Hu
- Pain
and Related Diseases Research Laboratory, Shantou University Medical College, Shantou, Guangdong Province 515041, China
| | - Xing-Jun Liu
- School
of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
- Pain
and Related Diseases Research Laboratory, Shantou University Medical College, Shantou, Guangdong Province 515041, China
| |
Collapse
|
4
|
Ferreyra S, González S. Therapeutic potential of progesterone in spinal cord injury-induced neuropathic pain: At the crossroads between neuroinflammation and N-methyl-D-aspartate receptor. J Neuroendocrinol 2023; 35:e13181. [PMID: 35924434 DOI: 10.1111/jne.13181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/13/2022] [Accepted: 06/19/2022] [Indexed: 10/17/2022]
Abstract
In recent decades, an area of active research has supported the notion that progesterone promotes a wide range of remarkable protective actions in experimental models of nervous system trauma or disease, and has also provided a strong basis for considering this steroid as a promising molecule for modulating the complex maladaptive changes that lead to neuropathic pain, especially after spinal cord injury. In this review, we intend to give the readers a brief appraisal of the main mechanisms underlying the increased excitability of the spinal circuit in the pain pathway after trauma, with particular emphasis on those mediated by the activation of resident glial cells, the subsequent release of proinflammatory cytokines and their impact on N-methyl-D-aspartate receptor function. We then summarize the available preclinical data pointing to progesterone as a valuable repurposing molecule for blocking critical cellular and molecular events that occur in the dorsal horn of the injured spinal cord and are related to the development of chronic pain. Since the treatment and management of neuropathic pain after spinal injury remains challenging, the potential therapeutic value of progesterone opens new traslational perspectives to prevent central pain.
Collapse
Affiliation(s)
- Sol Ferreyra
- Instituto de Biología y Medicina Experimental, Laboratorio de Nocicepción y Dolor Neuropático, CONICET, Buenos Aires, Argentina
| | - Susana González
- Instituto de Biología y Medicina Experimental, Laboratorio de Nocicepción y Dolor Neuropático, CONICET, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Buenos Aires, Argentina
| |
Collapse
|
5
|
Ishibashi T, Sueto D, Yoshikawa Y, Koga K, Yamaura K, Tsuda M. Identification of Spinal Inhibitory Interneurons Required for Attenuating Effect of Duloxetine on Neuropathic Allodynia-like Signs in Rats. Cells 2022; 11:cells11244051. [PMID: 36552814 PMCID: PMC9777279 DOI: 10.3390/cells11244051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Neuropathic pain is a chronic pain condition that occurs after nerve damage; allodynia, which refers to pain caused by generally innocuous stimuli, is a hallmark symptom. Although allodynia is often resistant to analgesics, the antidepressant duloxetine has been used as an effective therapeutic option. Duloxetine increases spinal noradrenaline (NA) levels by inhibiting its transporter at NAergic terminals in the spinal dorsal horn (SDH), which has been proposed to contribute to its pain-relieving effect. However, the mechanism through which duloxetine suppresses neuropathic allodynia remains unclear. Here, we identified an SDH inhibitory interneuron subset (captured by adeno-associated viral (AAV) vectors incorporating a rat neuropeptide Y promoter; AAV-NpyP+ neurons) that is mostly depolarized by NA. Furthermore, this excitatory effect was suppressed by pharmacological blockade or genetic knockdown of α1B-adrenoceptors (ARs) in AAV-NpyP+ SDH neurons. We found that duloxetine suppressed Aβ fiber-mediated allodynia-like behavioral responses after nerve injury and that this effect was not observed in AAV-NpyP+ SDH neuron-selective α1B-AR-knockdown. These results indicate that α1B-AR and AAV-NpyP+ neurons are critical targets for spinal NA and are necessary for the therapeutic effect of duloxetine on neuropathic pain, which can support the development of novel analgesics.
Collapse
Affiliation(s)
- Tadayuki Ishibashi
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Daichi Sueto
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yu Yoshikawa
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Keisuke Koga
- Department of Neurophysiology, Hyogo College of Medicine, Nishinomiya 663-8501, Japan
| | - Ken Yamaura
- Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Makoto Tsuda
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Kyushu University Institute for Advanced Study, Fukuoka 819-0395, Japan
- Correspondence:
| |
Collapse
|
6
|
Ishibashi T, Yoshikawa Y, Sueto D, Tashima R, Tozaki-Saitoh H, Koga K, Yamaura K, Tsuda M. Selective Involvement of a Subset of Spinal Dorsal Horn Neurons Operated by a Prodynorphin Promoter in Aβ Fiber-Mediated Neuropathic Allodynia-Like Behavioral Responses in Rats. Front Mol Neurosci 2022; 15:911122. [PMID: 35813063 PMCID: PMC9260077 DOI: 10.3389/fnmol.2022.911122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022] Open
Abstract
Mechanical allodynia (pain produced by innocuous stimuli such as touch) is the main symptom of neuropathic pain. Its underlying mechanism remains to be elucidated, but peripheral nerve injury (PNI)-induced malfunction of neuronal circuits in the central nervous system, including the spinal dorsal horn (SDH), is thought to be involved in touch-pain conversion. Here, we found that intra-SDH injection of adeno-associated viral vectors including a prodynorphin promoter (AAV-PdynP) captured a subset of neurons that were mainly located in the superficial laminae, including lamina I, and exhibited mostly inhibitory characteristics. Using transgenic rats that enable optogenetic stimulation of touch-sensing Aβ fibers, we found that the light-evoked paw withdrawal behavior and aversive responses after PNI were attenuated by selective ablation of AAV-PdynP-captured SDH neurons. Notably, the ablation had no effect on withdrawal behavior from von Frey filaments. Furthermore, Aβ fiber stimulation did not excite AAV-PdynP+ SDH neurons under normal conditions, but after PNI, this induced excitation, possibly due to enhanced Aβ fiber-evoked excitatory synaptic inputs and elevated resting membrane potentials of these neurons. Moreover, the chemogenetic silencing of AAV-PdynP+ neurons of PNI rats attenuated the Aβ fiber-evoked paw withdrawal behavior and c-FOS expression in superficial SDH neurons. Our findings suggest that PNI renders AAV-PdynP-captured neurons excitable to Aβ fiber stimulation, which selectively contributes to the conversion of Aβ fiber-mediated touch signal to nociceptive. Thus, reducing the excitability of AAV-PdynP-captured neurons may be a new option for the treatment of neuropathic allodynia.
Collapse
Affiliation(s)
- Tadayuki Ishibashi
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
- Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yu Yoshikawa
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Daichi Sueto
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryoichi Tashima
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Hidetoshi Tozaki-Saitoh
- Department of Pharmaceutical Sciences, International University of Health and Welfare, Fukuoka, Japan
| | - Keisuke Koga
- Department of Neurophysiology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Ken Yamaura
- Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Makoto Tsuda
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
- Kyushu University Institute for Advanced Study, Fukuoka, Japan
- *Correspondence: Makoto Tsuda
| |
Collapse
|
7
|
Shinu P, Morsy MA, Nair AB, Mouslem AKA, Venugopala KN, Goyal M, Bansal M, Jacob S, Deb PK. Novel Therapies for the Treatment of Neuropathic Pain: Potential and Pitfalls. J Clin Med 2022; 11:3002. [PMID: 35683390 PMCID: PMC9181614 DOI: 10.3390/jcm11113002] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 12/15/2022] Open
Abstract
Neuropathic pain affects more than one million people across the globe. The quality of life of people suffering from neuropathic pain has been considerably declining due to the unavailability of appropriate therapeutics. Currently, available treatment options can only treat patients symptomatically, but they are associated with severe adverse side effects and the development of tolerance over prolonged use. In the past decade, researchers were able to gain a better understanding of the mechanisms involved in neuropathic pain; thus, continuous efforts are evident, aiming to develop novel interventions with better efficacy instead of symptomatic treatment. The current review discusses the latest interventional strategies used in the treatment and management of neuropathic pain. This review also provides insights into the present scenario of pain research, particularly various interventional techniques such as spinal cord stimulation, steroid injection, neural blockade, transcranial/epidural stimulation, deep brain stimulation, percutaneous electrical nerve stimulation, neuroablative procedures, opto/chemogenetics, gene therapy, etc. In a nutshell, most of the above techniques are at preclinical stage and facing difficulty in translation to clinical studies due to the non-availability of appropriate methodologies. Therefore, continuing research on these interventional strategies may help in the development of promising novel therapies that can improve the quality of life of patients suffering from neuropathic pain.
Collapse
Affiliation(s)
- Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mohamed A. Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.M.); (A.B.N.); (A.K.A.M.); (K.N.V.)
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.M.); (A.B.N.); (A.K.A.M.); (K.N.V.)
| | - Abdulaziz K. Al Mouslem
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.M.); (A.B.N.); (A.K.A.M.); (K.N.V.)
| | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.M.); (A.B.N.); (A.K.A.M.); (K.N.V.)
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4000, South Africa
| | - Manoj Goyal
- Department of Anesthesia Technology, College of Applied Medical Sciences in Jubail, Imam Abdul Rahman Bin Faisal University, Jubail 35816, Saudi Arabia;
| | - Monika Bansal
- Department of Neuroscience Technology, College of Applied Medical Sciences in Jubail, Imam Abdul Rahman Bin Faisal University, Jubail 35816, Saudi Arabia;
| | - Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates;
| | - Pran Kishore Deb
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, Amman 19392, Jordan;
| |
Collapse
|
8
|
Biet M, Dansereau M, Sarret P, Dumaine R. The neuronal potassium current I A is a potential target for pain during chronic inflammation. Physiol Rep 2021; 9:e14975. [PMID: 34405579 PMCID: PMC8371350 DOI: 10.14814/phy2.14975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/10/2021] [Accepted: 06/25/2021] [Indexed: 11/24/2022] Open
Abstract
Voltage-gated ion channels play a key role in the action potential (AP) initiation and its propagation in sensory neurons. Modulation of their activity during chronic inflammation creates a persistent pain state. In this study, we sought to determine how peripheral inflammation caused by complete Freund's adjuvant (CFA) alters the fast sodium (INa ), L-type calcium (ICaL ), and potassium (IK ) currents in primary afferent fibers to increase nociception. In our model, intraplantar administration of CFA induced mechanical allodynia and thermal hyperalgesia at day 14 post-injection. Using whole-cell patch-clamp recording in dissociated small (C), medium (Aδ), and large-sized (Aβ) rat dorsal root ganglion (DRG) neurons, we found that CFA prolonged the AP duration and increased the amplitude of the tetrodotoxin-resistant (TTX-r) INa in Aβ fibers. In addition, CFA accelerated the recovery of INa from inactivation in C and Aδ nociceptive fibers but enhanced the late sodium current (INaL ) only in Aδ and Aβ neurons. Inflammation similarly reduced the amplitude of ICaL in each neuronal cell type. Fourteen days after injection, CFA reduced both components of IK (IKdr and IA ) in Aδ fibers. We also found that IA was significantly larger in C and Aδ neurons in normal conditions and during chronic inflammation. Our data, therefore, suggest that targeting the transient potassium current IA represents an efficient way to shift the balance toward antinociception during inflammation, since its activation will selectively decrease the AP duration in nociceptive fibers. Altogether, our data indicate that complex interactions between IK , INa , and ICaL reduce pain threshold by concomitantly enhancing the activity of nociceptive neurons and reducing the inhibitory action of Aβ fibers during chronic inflammation.
Collapse
MESH Headings
- Action Potentials
- Animals
- Calcium Channels, L-Type/metabolism
- Cells, Cultured
- Ganglia, Spinal/cytology
- Ganglia, Spinal/metabolism
- Ganglia, Spinal/physiology
- Male
- Neurons, Afferent/drug effects
- Neurons, Afferent/metabolism
- Neurons, Afferent/physiology
- Nociception
- Nociceptive Pain/metabolism
- Nociceptive Pain/physiopathology
- Potassium Channels, Voltage-Gated/metabolism
- Rats
- Rats, Sprague-Dawley
- Sodium Channel Blockers/pharmacology
- Sodium Channels/metabolism
- Tetrodotoxin/pharmacology
Collapse
Affiliation(s)
- Michael Biet
- Département de Pharmacologie et PhysiologieInstitut de pharmacologie de SherbrookeCentre de Recherche du Centre Hospitalier Universitaire de SherbrookeFaculté de médecine et des Sciences de la SantéUniversité de SherbrookeSherbrookeQuébecCanada
| | - Marc‐André Dansereau
- Département de Pharmacologie et PhysiologieInstitut de pharmacologie de SherbrookeCentre de Recherche du Centre Hospitalier Universitaire de SherbrookeFaculté de médecine et des Sciences de la SantéUniversité de SherbrookeSherbrookeQuébecCanada
| | - Philippe Sarret
- Département de Pharmacologie et PhysiologieInstitut de pharmacologie de SherbrookeCentre de Recherche du Centre Hospitalier Universitaire de SherbrookeFaculté de médecine et des Sciences de la SantéUniversité de SherbrookeSherbrookeQuébecCanada
| | - Robert Dumaine
- Département de Pharmacologie et PhysiologieInstitut de pharmacologie de SherbrookeCentre de Recherche du Centre Hospitalier Universitaire de SherbrookeFaculté de médecine et des Sciences de la SantéUniversité de SherbrookeSherbrookeQuébecCanada
| |
Collapse
|
9
|
A subset of spinal dorsal horn interneurons crucial for gating touch-evoked pain-like behavior. Proc Natl Acad Sci U S A 2021; 118:2021220118. [PMID: 33431693 DOI: 10.1073/pnas.2021220118] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A cardinal, intractable symptom of neuropathic pain is mechanical allodynia, pain caused by innocuous stimuli via low-threshold mechanoreceptors such as Aβ fibers. However, the mechanism by which Aβ fiber-derived signals are converted to pain remains incompletely understood. Here we identify a subset of inhibitory interneurons in the spinal dorsal horn (SDH) operated by adeno-associated viral vectors incorporating a neuropeptide Y promoter (AAV-NpyP+) and show that specific ablation or silencing of AAV-NpyP+ SDH interneurons converted touch-sensing Aβ fiber-derived signals to morphine-resistant pain-like behavioral responses. AAV-NpyP+ neurons received excitatory inputs from Aβ fibers and transmitted inhibitory GABA signals to lamina I neurons projecting to the brain. In a model of neuropathic pain developed by peripheral nerve injury, AAV-NpyP+ neurons exhibited deeper resting membrane potentials, and their excitation by Aβ fibers was impaired. Conversely, chemogenetic activation of AAV-NpyP+ neurons in nerve-injured rats reversed Aβ fiber-derived neuropathic pain-like behavior that was shown to be morphine-resistant and reduced pathological neuronal activation of superficial SDH including lamina I. These findings suggest that identified inhibitory SDH interneurons that act as a critical brake on conversion of touch-sensing Aβ fiber signals into pain-like behavioral responses. Thus, enhancing activity of these neurons may offer a novel strategy for treating neuropathic allodynia.
Collapse
|
10
|
Ohmichi Y, Ohmichi M, Tashima R, Osuka K, Fukushige K, Kanikowska D, Fukazawa Y, Yawo H, Tsuda M, Naito M, Nakano T. Physical disuse contributes to widespread chronic mechanical hyperalgesia, tactile allodynia, and cold allodynia through neurogenic inflammation and spino-parabrachio-amygdaloid pathway activation. Pain 2020; 161:1808-1823. [PMID: 32701841 DOI: 10.1097/j.pain.0000000000001867] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Physical disuse could lead to a state of chronic pain typified by complex regional pain syndrome type I due to fear of pain through movement (kinesiophobia) or inappropriate resting procedures. However, the mechanisms by which physical disuse is associated with acute/chronic pain and other pathological signs remain unresolved. We have previously reported that inflammatory signs, contractures, disuse muscle atrophy, spontaneous pain-like behaviors, and chronic widespread mechanical hyperalgesia based on central plasticity occurred after 2 weeks of cast immobilization in chronic post-cast pain (CPCP) rat model. In this study, we also demonstrated dystrophy-like changes, both peripheral nociceptive signals and activation of the central pain pathway in CPCP rats. This was done by the following methods: (1) vascular permeability (Evans blue dye) and inflammatory- and oxidative stress-related messenger RNA changes (real-time quantitative polymerase chain reaction); (2) immunofluorescence of pERK and/or c-Fos expression in the spino-parabrachio-amygdaloid pathway; and (3) blockade of nociceptive-related signals using sciatic nerve block. Furthermore, we demonstrated tactile allodynia using an optogenetic method in a transgenic rat line (W-TChR2V4), cold allodynia using the acetone test, and activation of dorsal horn neurons in the chronic phase associated with chronic mechanical hyperalgesia using c-Fos immunofluorescence. In addition, we showed that nociceptive signals in the acute phase are involved in chronic pathological pain-like behaviors by studying the effects of sciatic nerve block. Thus, we conclude that physical disuse contributes to dystrophy-like changes, spontaneous pain-like behavior, and chronic widespread pathological pain-like behaviors in CPCP rats after 2 weeks of cast immobilization.
Collapse
Affiliation(s)
- Yusuke Ohmichi
- Department of Anatomy, Aichi Medical University, Aichi, Japan
| | - Mika Ohmichi
- Department of Anatomy, Aichi Medical University, Aichi, Japan
| | - Ryoichi Tashima
- Department of Life Innovation, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Koji Osuka
- Department of Neurosurgery, Aichi Medical University, Aichi, Japan
| | - Kaori Fukushige
- Department of Anatomy, Aichi Medical University, Aichi, Japan
| | - Dominika Kanikowska
- Department of Pathophysiology, Poznań University of Medical Sciences, Poznań, Poland
| | - Yugo Fukazawa
- Department of Brain Structure and Function, Research Center for Child Mental Development, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Hiromu Yawo
- Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Makoto Tsuda
- Department of Life Innovation, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Munekazu Naito
- Department of Anatomy, Aichi Medical University, Aichi, Japan
| | - Takashi Nakano
- Department of Anatomy, Aichi Medical University, Aichi, Japan
| |
Collapse
|