1
|
Li L, Dou X, Song X, Wang F. The Current Status and Future Prospects of Intra-articular Injection Therapy for Hip Osteoarthritis: A Review. Curr Pain Headache Rep 2025; 29:64. [PMID: 40100299 PMCID: PMC11919992 DOI: 10.1007/s11916-025-01378-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2025] [Indexed: 03/20/2025]
Abstract
PURPOSE OF REVIEW Hip osteoarthritis constitutes a prevalent condition among individuals aged 55 and above, serving as one of the primary triggers for joint discomfort and impairment, and marking a substantial origin of chronic pain particularly affecting the elderly population. Our article provides an exhaustive summary of the mechanisms of action, therapeutic efficacy, and potential adverse consequences associated with novel therapeutic modalities including glucocorticoids, hyaluronic acid, platelet-rich plasma, mesenchymal stem cells, and stromal vascular fraction. Concurrently, we conducted a comprehensive evaluation of the clinical efficacy and potential applications of various medications. RECENT FINDINGS In comparison to physical therapy, oral analgesics, and other nonsurgical modalities, intra-articular injection therapy is characterized by enhanced safety and greater efficacy. Moreover, when contrasted with surgical intervention, intra-articular injection demonstrates a lower degree of invasiveness and incurs fewer adverse reactions. Intra-articular treatments have shown excellent local efficacy while significantly minimizing adverse reactions in patients. These methods hold significant potential for development but require comprehensive research and thorough discussion within the academic community.
Collapse
Affiliation(s)
- Li Li
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People'S Hospital (Affiliated People'S Hospital, Hangzhou Medical College), No. 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China
- Nursing department, Zhejiang Provincial People'S Hospital (Affiliated People'S Hospital, Hangzhou Medical College), No. 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China
| | - Xiaofan Dou
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People'S Hospital (Affiliated People'S Hospital, Hangzhou Medical College), No. 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China
- Nursing department, Zhejiang Provincial People'S Hospital (Affiliated People'S Hospital, Hangzhou Medical College), No. 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China
| | - Xueliang Song
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People'S Hospital (Affiliated People'S Hospital, Hangzhou Medical College), No. 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China
- Nursing department, Zhejiang Provincial People'S Hospital (Affiliated People'S Hospital, Hangzhou Medical College), No. 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China
| | - Fengxian Wang
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People'S Hospital (Affiliated People'S Hospital, Hangzhou Medical College), No. 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China.
- Nursing department, Zhejiang Provincial People'S Hospital (Affiliated People'S Hospital, Hangzhou Medical College), No. 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China.
| |
Collapse
|
2
|
Tang Y, Wang Z, Cao J, Tu Y. Bone-brain crosstalk in osteoarthritis: pathophysiology and interventions. Trends Mol Med 2025; 31:281-295. [PMID: 39438197 DOI: 10.1016/j.molmed.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024]
Abstract
Osteoarthritis (OA) is a prevalent articular disorder characterized by joint degeneration and persistent pain; it imposes a significant burden on both individuals and society. While OA has traditionally been viewed as a localized peripheral disorder, recent preclinical and clinical studies have revealed the crucial interconnections between the bone and the brain, highlighting the systemic nature of OA. The neuronal pathway, molecular signaling, circadian rhythms, and genetic underpinnings within the bone-brain axis play vital roles in the complex interplay that contributes to OA initiation and progression. This review explores emerging evidence of the crosstalk between the bone and brain in OA progression, and discusses the potential contributions of the bone-brain axis to the development of effective interventions for managing OA.
Collapse
Affiliation(s)
- Yilan Tang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiyan Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Cao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100105, China
| | - Yiheng Tu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Shih YRV, Tao H, Gilpin A, Lee YW, Perikamana SM, Varghese S. Specialized pro-resolving mediator Maresin 1 attenuates pain in a mouse model of osteoarthritis. Osteoarthritis Cartilage 2025; 33:341-350. [PMID: 39617202 PMCID: PMC11842212 DOI: 10.1016/j.joca.2024.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/11/2024] [Accepted: 10/22/2024] [Indexed: 12/10/2024]
Abstract
OBJECTIVE We test whether the specialized pro-resolving molecule Maresin 1 (MaR1) attenuates nociceptive behaviors in mice with osteoarthritis-like pain. DESIGN Osteoarthritis (OA)-like pain behavior was induced by intra-articular injection of monosodium iodoacetate (MIA) and treated with MaR1 (N=6) or vehicle (N=5) by intraperitoneal injection 8 weeks after injury. Mice without MIA injection were used as control (N=6). Nociceptive behaviors were examined by von Frey and dynamic weight bearing measurements. Calcitonin gene-related peptide (CGRP) expression and activated macrophages in the dorsal root ganglion (DRG) were examined by immunofluorescence staining. The inflammatory profile in circulation was assessed by cytokine array. Calcium imaging was performed to assess the in vitro functional response of DRG neurons from animals with OA-like pain behavior to MaR1 with or without RAR Related Orphan Receptor A (RORA) inverse agonist SR3335. RESULTS MaR1 attenuated knee pain behavior in treated mice (N=6) compared to non-treated mice (N=5) as shown by increased paw withdrawal threshold with a mean difference of 112.2% (95% CI [49.79, 174.6], p=0.0784) at 4 h and 150.9% (95% CI [104.2, 197.5], p=0.0001) at 4 days post-MaR1 treatment, and increased weight bearing with a mean difference of 20.08% (95% CI [2.798, 37.37], p=0.0277) at 1 day post-MaR1 treatment. CGRP expression and activated macrophages were decreased in the DRG, and inflammatory cytokine levels in the circulation were attenuated. Calcium imaging showed MaR1 reduced the functional response of DRG neurons through RORA. CONCLUSIONS Our results show that MaR1 reduces OA-like pain behavior in mice and could be a potential treatment for OA pain.
Collapse
MESH Headings
- Animals
- Docosahexaenoic Acids/pharmacology
- Docosahexaenoic Acids/therapeutic use
- Ganglia, Spinal/metabolism
- Ganglia, Spinal/drug effects
- Mice
- Disease Models, Animal
- Calcitonin Gene-Related Peptide/metabolism
- Calcitonin Gene-Related Peptide/drug effects
- Male
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/metabolism
- Osteoarthritis, Knee/drug therapy
- Osteoarthritis, Knee/metabolism
- Macrophages/metabolism
- Macrophages/drug effects
- Pain Measurement
- Osteoarthritis/drug therapy
- Behavior, Animal/drug effects
- Injections, Intra-Articular
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Yu-Ru V Shih
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Huchen Tao
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27710, USA.
| | - Anna Gilpin
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA.
| | - Yuan-Wen Lee
- Department of Anesthesiology, Taipei Medical University Hospital, Taipei 11031, Taiwan; Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | | | - Shyni Varghese
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA; Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27710, USA; Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
4
|
Huang S, Gao D, Li Z, He H, Yu X, You X, Wu D, Du Z, Zeng J, Shi X, Hu Q, Nie Y, Zhang Z, Luo Z, Wang D, Zhao Z, Li L, Wang G, Wang L, Zhou Z, Chen D, Yang F. Neuronal guidance factor Sema3A inhibits neurite ingrowth and prevents chondrocyte hypertrophy in the degeneration of knee cartilage in mice, monkeys and humans. Bone Res 2025; 13:4. [PMID: 39746903 PMCID: PMC11695747 DOI: 10.1038/s41413-024-00382-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 09/11/2024] [Accepted: 10/15/2024] [Indexed: 01/04/2025] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease accompanied with the loss of cartilage and consequent nociceptive symptoms. Normal articular cartilage maintains at aneural state. Neuron guidance factor Semaphorin 3A (Sema3A) is a membrane-associated secreted protein with chemorepulsive properties for axons. However, the role of Sema3A in articular cartilage is still not clear. In the present studies, we investigated the functions of Sema3A in OA development in mice, non-human primates, and patients with OA. Sema3A has a protective effect on cartilage degradation, validated by the organoid culture in vitro and confirmed in chondrocyte-specific Sema3A conditional knockout mice. We demonstrated that Sema3A is a key molecule in maintaining cartilage homeostasis from chondrocyte hypertrophy via activating the PI3K pathway. The potential usage of Sema3A for OA treatment was validated in mouse and Rhesus macaque OA models through intra-articular injection of Sema3A, and also in patients by administering Sema3A containing platelet-rich plasma into the knee joints. Our studies demonstrated that Sema3A exerts a critical role in inhibiting neurite ingrowth and preventing chondrocyte hypertrophy in cartilage, and could be potentially used for OA treatment.
Collapse
Grants
- T2394532, 82072489 National Natural Science Foundation of China (National Science Foundation of China)
- 81874027 National Natural Science Foundation of China (National Science Foundation of China)
- the National Key R&D Program of China (2023YFA1801200, 2023YFA1801202),Key Research Program of Frontier Sciences of Chinese Academy of Sciences (QYZDB-SSW-SMC056),The Foundation of Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions (NYKFKT2019007).Shenzhen Medical Research Fund (B2302011).
- 2021HXFH036, 1.3.5 project for disciplines of excellence, West China Hospital, Sichuan University (ZYGD18026); 2021YFSY0003, 2022YFS0051,Sichuan Science Project; The Foundation of Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions (NYKFKT2019007).
- The China Postdoctoral Science Foundational, 2023M743679.The Sanming Project of Medicine in Shenzhen (SZZYSM202311013)
Collapse
Affiliation(s)
- Shishu Huang
- Department of Orthopedics Surgery and Orthopedic Research Institute, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- The Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Dashuang Gao
- The Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
- The seventh Clinical Medical School of Guangzhou University of Chinese Medicine, Bao'an District TCM Hospital, Shenzhen, Guangdong, China
| | - Zhenxia Li
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai, China
| | - Hongchen He
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xi Yu
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xuanhe You
- Department of Orthopedics Surgery and Orthopedic Research Institute, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Diwei Wu
- Department of Orthopedics Surgery and Orthopedic Research Institute, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Ze Du
- Department of Orthopedics Surgery and Orthopedic Research Institute, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jiancheng Zeng
- Department of Orthopedics Surgery and Orthopedic Research Institute, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaojun Shi
- Department of Orthopedics Surgery and Orthopedic Research Institute, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Qinshen Hu
- Department of Orthopedics Surgery and Orthopedic Research Institute, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Nie
- Department of Orthopedics Surgery and Orthopedic Research Institute, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Zhong Zhang
- Department of Orthopedics Surgery and Orthopedic Research Institute, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Zeyu Luo
- Department of Orthopedics Surgery and Orthopedic Research Institute, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Duan Wang
- Department of Orthopedics Surgery and Orthopedic Research Institute, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lingli Li
- Department of Nursing, West China Hospital, Sichuan University, Chengdu, China
| | - Guanglin Wang
- Department of Orthopedics Surgery and Orthopedic Research Institute, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Liping Wang
- The Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Zongke Zhou
- Department of Orthopedics Surgery and Orthopedic Research Institute, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
| | - Di Chen
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Fan Yang
- The Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
5
|
Mathew S, Ashraf S, Shorter S, Tozzi G, Koutsikou S, Ovsepian SV. Neurobiological Correlates of Rheumatoid Arthritis and Osteoarthritis: Remodelling and Plasticity of Nociceptive and Autonomic Innervations in Synovial Joints. Neuroscientist 2024:10738584241293049. [PMID: 39668598 DOI: 10.1177/10738584241293049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Swelling, stiffness, and pain in synovial joints are primary hallmarks of osteoarthritis and rheumatoid arthritis. Hyperactivity of nociceptors and excessive release of inflammatory factors and pain mediators play a crucial role, with emerging data suggesting extensive remodelling and plasticity of joint innervations. Herein, we review structural, functional, and molecular alterations in sensory and autonomic axons wiring arthritic joints and revisit mechanisms implicated in the sensitization of nociceptors, leading to chronic pain. Sprouting and reorganization of sensory and autonomic fibers with the invasion of ectopic branches into surrounding inflamed tissues are associated with the upregulation of pain markers. These changes are frequently complemented by a phenotypic switch of sensory and autonomic profiles and activation of silent axons, inferring homeostatic adjustments and reprogramming of innervations. Identifying critical molecular players and neurobiological mechanisms underpinning the rewiring and sensitization of joints is likely to elucidate causatives of neuroinflammation and chronic pain, assisting in finding new therapeutic targets and opportunities for interventions.
Collapse
Affiliation(s)
- Sharon Mathew
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent, UK
| | - Sadaf Ashraf
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent, UK
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, Kent, UK
| | - Susan Shorter
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent, UK
| | - Gianluca Tozzi
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent, UK
| | - Stella Koutsikou
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent, UK
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, Kent, UK
| | - Saak V Ovsepian
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent, UK
- Faculty of Medicine, Tbilisi State University, Tbilisi, Republic of Georgia
| |
Collapse
|
6
|
Zhou K, Wu S, Wu Z, Ran R, Song W, Dong H, Zhang H. Integrating bioinformatics and experimental validation to Investigate IRF1 as a novel biomarker for nucleus pulposus cells necroptosis in intervertebral disc degeneration. Sci Rep 2024; 14:30138. [PMID: 39627301 PMCID: PMC11615235 DOI: 10.1038/s41598-024-81681-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 11/28/2024] [Indexed: 12/06/2024] Open
Abstract
Intervertebral disc degeneration (IDD) is a prevalent spinal disorder and the principal cause of lower back pain (LBP). Diverse forms of programmed cell death (PCD) have been identified as the key phenotypes of the disease and have the potential to serve as new indicators for the diagnosis and prognosis of IDD. However, the mechanism underlying necroptosis in IDD remains unclear. This study aimed to identify novel biomarkers that promote nucleus pulposus cell necroptosis in IDD using bioinformatic analysis and experimental validation. We analyzed multiple datasets of IDD from the Gene Expression Omnibus (GEO) database to identify necroptosis-related IDD differential genes (NRDEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed, followed by logistic least absolute shrinkage and selection operator (LASSO) and support vector machine-recursive (SVM) algorithms to identify key genes. Gene set enrichment analysis (GSEA) and logistic regression analysis were used to ascertain the potential functions of these genes and to identify key genes, respectively. We then constructed mRNA-miRNA, mRNA-TF, mRNA-drug, and functional similarity gene interaction networks for the seven key genes identified. We used IDD clinical samples and necroptotic cell model to validate our findings. Immunohistochemical staining, RT-qPCR, and western blotting results indicated that IRF1 may be a hub necroptosis-related gene. To further elucidate the function of IRF1, we constructed IRF1 knockdown and overexpression models, which revealed that IRF1 promotes necroptosis in rat nucleus pulposus cells, increases mitochondrial ROS levels, and decreases ATP levels. These findings provide new insights into the development of necroptosis in IDD and, for the first time, validate the role of IRF1 as a novel biomarker for the diagnosis and treatment of IDD.
Collapse
Affiliation(s)
- Kaisheng Zhou
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, China
| | - Shaobo Wu
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, China
| | - Zuolong Wu
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, China
| | - Rui Ran
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, China
| | - Wei Song
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, China
| | - Hao Dong
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, China
| | - Haihong Zhang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China.
| |
Collapse
|
7
|
Tomić M, Nastić K, Dinić M, Brdarić E, Kotur-Stevuljević J, Pecikoza U, Pavićević D, Micov A, Milenković D, Jovanović A, Stepanović-Petrović R. Vortioxetine reduces the development of pain-related behaviour in a knee osteoarthritis model in rats: Involvement of nerve growth factor (NGF) down-regulation. Br J Pharmacol 2024; 181:5079-5093. [PMID: 39299793 DOI: 10.1111/bph.17342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/31/2024] [Accepted: 08/04/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND AND PURPOSE Vortioxetine, a multimodal-acting antidepressant, has recently shown analgesic properties. We aimed to investigate its prophylactic effect in the osteoarthritis (OA) model and gain insights into the underlying molecular mechanisms. Duloxetine was studied as a reference. EXPERIMENTAL APPROACH In the monoiodoacetate (MIA)-induced rat model of knee OA, pain-related behaviour was assessed in weight-bearing and Von Frey tests. Antidepressants were administered orally once daily for 28 days. Gene expression of pain-related mediators (Ngf, Il-1β, Tnf-α, Bdnf, and Tac1 encoding substance P) and oxidative stress parameters were determined after completion of the treatment/behavioural testing protocol. KEY RESULTS Vortioxetine and duloxetine dose dependently reduced weight-bearing asymmetry and mechanical hyperalgesia of the paw ipsilateral to the MIA-injected knee. Vortioxetine reduced the increased Ngf mRNA expression in the MIA-injected knees to the level in sham-injected counterparts. It reduced oxidative stress parameters in the affected knees, more effectively in females than males. Duloxetine showed no effect on Ngf mRNA expression and oxidative stress. Both antidepressants decreased mRNA expression of pain-related mediators in the lumbar L3-L5 ipsilateral DRGs and spinal cords, which were up-regulated in MIA-injected rats. This effect was male-specific. CONCLUSION AND IMPLICATIONS Vortioxetine may be effective against the development of chronic pain in OA. Its antihyperalgesic effect may be mediated, at least in part, by normalization of NGF expression in the affected joint. Decrease of localized oxidative stress and of expression of pain-related mediators that contribute to central sensitization are also involved in vortioxetine's antihyperalgesic effect, in a sex-specific pattern.
Collapse
Affiliation(s)
- Maja Tomić
- Department of Pharmacology, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Katarina Nastić
- Department of Pharmacology, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Miroslav Dinić
- Group for Probiotics and Microbiota-Host Interaction, Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Belgrade, Serbia
| | - Emilija Brdarić
- Group for Probiotics and Microbiota-Host Interaction, Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Belgrade, Serbia
| | - Jelena Kotur-Stevuljević
- Department of Medical Biochemistry, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Uroš Pecikoza
- Department of Pharmacology, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - David Pavićević
- Department of Pharmacology, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Ana Micov
- Department of Pharmacology, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Danijela Milenković
- Department of Physics and Mathematics, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Aleksandar Jovanović
- Department of Basic and Clinical Sciences, University of Nicosia - Medical School, Nicosia, Cyprus
- Center for Neuroscience and Integrative Brain Research (CENIBRE), University of Nicosia - Medical School, Nicosia, Cyprus
| | | |
Collapse
|
8
|
Zhou H, Wu C, Jin Y, Wu O, Chen L, Guo Z, Wang X, Chen Q, Kwan KYH, Li YM, Xia D, Chen T, Wu A. Role of oxidative stress in mitochondrial dysfunction and their implications in intervertebral disc degeneration: Mechanisms and therapeutic strategies. J Orthop Translat 2024; 49:181-206. [PMID: 39483126 PMCID: PMC11526088 DOI: 10.1016/j.jot.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/03/2024] [Accepted: 08/22/2024] [Indexed: 11/03/2024] Open
Abstract
Background Intervertebral disc degeneration (IVDD) is widely recognized as one of the leading causes of low back pain. Intervertebral disc cells are the main components of the intervertebral disc (IVD), and their functions include synthesizing and secreting collagen and proteoglycans to maintain the structural and functional stability of the IVD. In addition, IVD cells are involved in several physiological processes. They help maintain nutrient metabolism balance in the IVD. They also have antioxidant and anti-inflammatory effects. Because of these roles, IVD cells are crucial in IVDD. When IVD cells are subjected to oxidative stress, mitochondria may become damaged, affecting normal cell function and accelerating degenerative changes. Mitochondria are the energy source of the cell and regulate important intracellular processes. As a key site for redox reactions, excessive oxidative stress and reactive oxygen species can damage mitochondria, leading to inflammation, DNA damage, and apoptosis, thus accelerating disc degeneration. Aim of review Describes the core knowledge of IVDD and oxidative stress. Comprehensively examines the complex relationship and potential mechanistic pathways between oxidative stress, mitochondrial dysfunction and IVDD. Highlights potential therapeutic targets and frontier therapeutic concepts. Draws researchers' attention and discussion on the future research of all three. Key scientific concepts of review Origin, development and consequences of IVDD, molecular mechanisms of oxidative stress acting on mitochondria, mechanisms of oxidative stress damage to IVD cells, therapeutic potential of targeting mitochondria to alleviate oxidative stress in IVDD. The translational potential of this article Targeted therapeutic strategies for oxidative stress and mitochondrial dysfunction are particularly critical in the treatment of IVDD. Using antioxidants and specific mitochondrial therapeutic agents can help reduce symptoms and pain. This approach is expected to significantly improve the quality of life for patients. Individualized therapeutic approaches, on the other hand, are based on an in-depth assessment of the patient's degree of oxidative stress and mitochondrial functional status to develop a targeted treatment plan for more precise and effective IVDD management. Additionally, we suggest preventive measures like customized lifestyle changes and medications. These are based on understanding how IVDD develops. The aim is to slow down the disease and reduce the chances of it coming back. Actively promoting clinical trials and evaluating the safety and efficacy of new therapies helps translate cutting-edge treatment concepts into clinical practice. These measures not only improve patient outcomes and quality of life but also reduce the consumption of healthcare resources and the socio-economic burden, thus having a positive impact on the advancement of the IVDD treatment field.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, 315010, China
| | - Chenyu Wu
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, 315010, China
| | - Yuxin Jin
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Ouqiang Wu
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Linjie Chen
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Zhenyu Guo
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Xinzhou Wang
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Qizhu Chen
- Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200082, China
| | - Kenny Yat Hong Kwan
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 5/F Professorial Block, Queen Mary Hospital, 102 Pokfulam Road, Pokfulam, China
| | - Yan Michael Li
- Minimally Invasive Brain and Spine Institute, Upstate Medical University 475 Irving Ave, #402 Syracuse, NY, 13210, USA
| | - Dongdong Xia
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, 315010, China
| | - Tao Chen
- Department of Orthopaedics, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Tongji Hospital, Tongji University School of Medicine, School of Life Science and Technology, Tongji University, Shanghai, 200065, China
| | - Aimin Wu
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| |
Collapse
|
9
|
Qiao L, Li Z, Li B, Zhang F, Yao Z, Wu C, Tang H, Pan Q, Shi P, Ping Y. Combination of anti-inflammatory therapy and RNA interference by light-inducible hybrid nanomedicine for osteoarthritis treatment. Acta Pharm Sin B 2024; 14:5008-5025. [PMID: 39664429 PMCID: PMC11628851 DOI: 10.1016/j.apsb.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 12/13/2024] Open
Abstract
Osteoarthritis (OA) is a type of highly prevalent heterogeneous degenerative disease that leads to joint pain, deformity, the destruction of articular cartilage, and eventual disability. The current treatment strategies for OA often suffer from systemic side effects, poor anti-inflammatory efficacy, and persistent pain. To address these issues, we develop light-inducible nanomedicine that enables the co-delivery of anti-inflammatory drug (diacerein, DIA) and small interfering RNA (siRNA) targeting nerve growth factor (NGF) for pain relief to enhance the therapeutic efficacy of OA. The nanomedicine is based on poly(β-amino-ester)-coated gold nanocages (AuNCs), which is further incorporated with the phase-change material (lauric acid/stearic acid, LA/SA). Following intra-articular (IA) injection in vivo, the nanomedicine displays high degree of drug accumulation and retention in the joint lesion of OA mouse models. The photothermal effect, induced by AuNCs, not only promotes DIA and siRNA release, but also upregulates the expression of heat shock protein 70 (HSP-70) to resist the apoptosis of chondrocytes in the inflammatory condition. The internalization of both DIA and siRNA results in strong anti-inflammatory and pain-relieving effects, which greatly contribute to the joint repair of OA mice. This study offers a promising combination strategy for OA treatment.
Collapse
Affiliation(s)
- Li Qiao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou 310016, China
| | - Zhiyao Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bowen Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fu Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhuo Yao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chongzhi Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Honglin Tang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| | - Qi Pan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Peihua Shi
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou 310016, China
| | - Yuan Ping
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| |
Collapse
|
10
|
do Nascimento AM, Marques RB, Roldão AP, Rodrigues AM, Eslava RM, Dale CS, Reis EM, Schechtman D. Exploring protein-protein interactions for the development of new analgesics. Sci Signal 2024; 17:eadn4694. [PMID: 39378285 DOI: 10.1126/scisignal.adn4694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 06/13/2024] [Accepted: 09/16/2024] [Indexed: 10/10/2024]
Abstract
The development of new analgesics has been challenging. Candidate drugs often have limited clinical utility due to side effects that arise because many drug targets are involved in signaling pathways other than pain transduction. Here, we explored the potential of targeting protein-protein interactions (PPIs) that mediate pain signaling as an approach to developing drugs to treat chronic pain. We reviewed the approaches used to identify small molecules and peptide modulators of PPIs and their ability to decrease pain-like behaviors in rodent animal models. We analyzed data from rodent and human sensory nerve tissues to build associated signaling networks and assessed both validated and potential interactions and the structures of the interacting domains that could inform the design of synthetic peptides and small molecules. This resource identifies PPIs that could be explored for the development of new analgesics, particularly between scaffolding proteins and receptors for various growth factors and neurotransmitters, as well as ion channels and other enzymes. Targeting the adaptor function of CBL by blocking interactions between its proline-rich carboxyl-terminal domain and its SH3-domain-containing protein partners, such as GRB2, could disrupt endosomal signaling induced by pain-associated growth factors. This approach would leave intact its E3-ligase functions, which are mediated by other domains and are critical for other cellular functions. This potential of PPI modulators to be more selective may mitigate side effects and improve the clinical management of pain.
Collapse
Affiliation(s)
- Alexandre Martins do Nascimento
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP 05508-000, Brazil
- Laboratory of Neuromodulation of Experimental Pain (LaNed), Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, SP 05508-000, Brazil
| | - Rauni Borges Marques
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP 05508-000, Brazil
- Interunit Graduate Program in Bioinformatics, University of São Paulo, SP 05508-000, Brazil
| | - Allan Pradelli Roldão
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP 05508-000, Brazil
| | - Ana Maria Rodrigues
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP 05508-000, Brazil
| | - Rodrigo Mendes Eslava
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP 05508-000, Brazil
| | - Camila Squarzoni Dale
- Laboratory of Neuromodulation of Experimental Pain (LaNed), Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, SP 05508-000, Brazil
| | - Eduardo Moraes Reis
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP 05508-000, Brazil
| | - Deborah Schechtman
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP 05508-000, Brazil
| |
Collapse
|
11
|
Jaffal S, Khalil R. Targeting nerve growth factor for pain relief: pros and cons. Korean J Pain 2024; 37:288-298. [PMID: 39322310 PMCID: PMC11450303 DOI: 10.3344/kjp.24235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/27/2024] [Accepted: 09/02/2024] [Indexed: 09/27/2024] Open
Abstract
Nerve growth factor (NGF) is a neurotrophic protein that has crucial roles in survival, growth and differentiation. It is expressed in neuronal and non-neuronal tissues. NGF exerts its effects via two types of receptors including the high affinity receptor, tropomyosin receptor kinase A and the low affinity receptor p75 neurotrophin receptor highlighting the complex signaling pathways that underlie the roles of NGF. In pain perception and transmission, multiple studies shed light on the effects of NGF on different types of pain including inflammatory, neuropathic, cancer and visceral pain. Also, the binding of NGF to its receptors increases the availability of many nociceptive receptors such as transient receptor potential vanilloid 1, transient receptor potential ankyrin 1, N-methyl-D-aspartic acid, and P2X purinoceptor 3 as well as nociceptive transmitters such as substance P and calcitonin gene-related peptide. The role of NGF in pain has been documented in pre-clinical and clinical studies. This review aims to shed light on the role of NGF and its signaling in different types of pain.
Collapse
Affiliation(s)
- Sahar Jaffal
- Department of Biotechnology and Genetic Engineering, Faculty of Science, Philadelphia University, Amman, Jordan
| | - Raida Khalil
- Department of Biotechnology and Genetic Engineering, Faculty of Science, Philadelphia University, Amman, Jordan
| |
Collapse
|
12
|
Manoleras AV, Sloan EK, Chang A. The sympathetic nervous system shapes the tumor microenvironment to impair chemotherapy response. Front Oncol 2024; 14:1460493. [PMID: 39381049 PMCID: PMC11458372 DOI: 10.3389/fonc.2024.1460493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 08/30/2024] [Indexed: 10/10/2024] Open
Abstract
The tumor microenvironment influences cancer progression and response to treatments, which ultimately impacts the survival of patients with cancer. The sympathetic nervous system (SNS) is a core component of solid tumors that arise in the body. In addition to influencing cancer progression, a role for the SNS in the effectiveness of cancer treatments is beginning to emerge. This review explores evidence that the SNS impairs chemotherapy efficacy. We review findings of studies that evaluated the impact of neural ablation on chemotherapy outcomes and discuss plausible mechanisms for the impact of neural signaling on chemotherapy efficacy. We then discuss implications for clinical practice, including opportunities to block neural signaling to improve response to chemotherapy.
Collapse
Affiliation(s)
| | | | - Aeson Chang
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| |
Collapse
|
13
|
Li Y, Zhang B, Xu J, Jiang X, Jing L, Tian Y, Wang K, Zhang J. Inhibiting the JNK Signaling Pathway Attenuates Hypersensitivity and Anxiety-Like Behavior in a Rat Model of Non-specific Chronic Low Back Pain. J Mol Neurosci 2024; 74:73. [PMID: 39046556 DOI: 10.1007/s12031-024-02252-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/17/2024] [Indexed: 07/25/2024]
Abstract
Low back pain (LBP) has become a leading cause of disability worldwide. Astrocyte activation in the spinal cord plays an important role in the maintenance of latent sensitization of dorsal horn neurons in LBP. However, the role of spinal c-Jun N-terminal kinase (JNK) in astrocytes in modulating pain behavior of LBP model rats and its neurobiological mechanism have not been elucidated. Here, we investigate the role of the JNK signaling pathway on hypersensitivity and anxiety-like behavior caused by repetitive nerve growth factor (NGF) injections in male non-specific LBP model rats. LBP was produced by two injections (day 0, day 5) of NGF into multifidus muscle of the low backs of rats. We observed prolonged mechanical and thermal hypersensitivity in the low backs or hindpaws. Persistent anxiety-like behavior was observed, together with astrocyte, p-JNK, and neuronal activation and upregulated expression of monocyte chemoattractant protein-1 (MCP-1), and chemokine (C-X-C motif) ligand 1 (CXCL1) proteins in the spinal L2 segment. Second, the JNK inhibitor SP600125 was intrathecally administrated in rats from day 10 to day 12. It attenuated mechanical and thermal hypersensitivity of the low back or hindpaws and anxiety-like behavior. Meanwhile, SP600125 decreased astrocyte and neuronal activation and the expression of MCP-1 and CXCL1 proteins. These results showed that hypersensitivity and anxiety-like behavior induced by NGF in LBP rats could be attenuated by the JNK inhibitor, together with downregulation of spinal astrocyte activation, neuron activation, and inflammatory cytokines. Our results indicate that intervening with the spinal JNK signaling pathway presents an effective therapeutic approach to alleviating LBP.
Collapse
Affiliation(s)
- Yifan Li
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230000, Anhui Province, China
| | - Bingyu Zhang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230000, Anhui Province, China
| | - Jie Xu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230000, Anhui Province, China
| | - Xiao Jiang
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230000, China
| | - Liang Jing
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230000, China
| | - Yanghua Tian
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230000, Anhui Province, China
- The Second Affiliated Hospital of Anhui Medical University, Hefei, 230000, China
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230000, Anhui Province, China
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230000, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230000, China
- Collaborative Innovation Center for Neuropsychiatric Disorders and Mental Health, Hefei, 230000, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230000, China
| | - Juanjuan Zhang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230000, Anhui Province, China.
| |
Collapse
|
14
|
Liu A, Mohr MA, Hope JM, Wang J, Chen X, Cui B. Light-Inducible Activation of TrkA for Probing Chronic Pain in Mice. ACS Chem Biol 2024; 19:1626-1637. [PMID: 39026469 PMCID: PMC11756861 DOI: 10.1021/acschembio.4c00300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Chronic pain is a prevalent problem that plagues modern society, and better understanding its mechanisms is critical for developing effective therapeutics. Nerve growth factor (NGF) and its primary receptor, Tropomyosin receptor kinase A (TrkA), are known to be potent mediators of chronic pain, but there is a lack of established methods for precisely perturbing the NGF/TrkA signaling pathway in the study of pain and nociception. Optobiological tools that leverage light-induced protein-protein interactions allow for precise spatial and temporal control of receptor signaling. Previously, our lab reported a blue light-activated version of TrkA generated using light-induced dimerization of the intracellular TrkA domain, opto-iTrkA. In this work, we show that opto-iTrkA activation is able to activate endogenous ERK and Akt signaling pathways and causes the retrograde transduction of phospho-ERK signals in dorsal root ganglion (DRG) neurons. Opto-iTrkA activation also sensitizes the transient receptor potential vanilloid 1 (TRPV1) channel in cellular models, further corroborating the physiological relevance of the optobiological stimulus. Finally, we show that opto-iTrkA enables light-inducible potentiation of mechanical sensitization in mice. Light illumination enables nontraumatic and reversible (<2 days) sensitization of mechanical pain in mice transduced with opto-iTrkA, which provides a platform for dissecting TrkA pathways for nociception in vitro and in vivo.
Collapse
Affiliation(s)
- Aofei Liu
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Manuel A Mohr
- Department of Biology, Stanford University, Stanford, California 94305, United States
| | - Jen M Hope
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Jennifer Wang
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Xiaoke Chen
- Department of Biology, Stanford University, Stanford, California 94305, United States
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
15
|
Gavioli E, Mantelli F, Cesta MC, Sacchetti M, Allegretti M. The History of Nerve Growth Factor: From Molecule to Drug. Biomolecules 2024; 14:635. [PMID: 38927039 PMCID: PMC11201509 DOI: 10.3390/biom14060635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/12/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Nerve growth factor (NGF), the first neurotrophin to be discovered, has a long and eventful research journey with a series of turning points, setbacks, and achievements. Since the groundbreaking investigations led by Nobel Prize winner Rita Levi-Montalcini, advancements in the comprehension of NGF's functions have revolutionized the field of neuroscience, offering new insights and opportunities for therapeutic innovation. However, the clinical application of NGF has historically been hindered by challenges in determining appropriate dosing, administration strategies, and complications related to the production process. Recent advances in the production and scientific knowledge of recombinant NGF have enabled its clinical development, and in 2018, the United States Food and Drug Administration approved cenegermin-bkbj, a recombinant human NGF, for the treatment of all stages of neurotrophic keratitis. This review traces the evolutionary path that transformed NGF from a biological molecule into a novel therapy with potential research applications beyond the eye. Special emphasis is put on the studies that advanced NGF from discovery to the first medicinal product approved to treat a human disease.
Collapse
Affiliation(s)
| | - Flavio Mantelli
- Dompé farmaceutici S.p.A., Via Santa Lucia, 6, 20122 Milano, Italy; (F.M.); (M.C.C.); (M.S.)
| | - Maria Candida Cesta
- Dompé farmaceutici S.p.A., Via Santa Lucia, 6, 20122 Milano, Italy; (F.M.); (M.C.C.); (M.S.)
| | - Marta Sacchetti
- Dompé farmaceutici S.p.A., Via Santa Lucia, 6, 20122 Milano, Italy; (F.M.); (M.C.C.); (M.S.)
| | - Marcello Allegretti
- Dompé farmaceutici S.p.A., Via Santa Lucia, 6, 20122 Milano, Italy; (F.M.); (M.C.C.); (M.S.)
| |
Collapse
|
16
|
Rusbridge C. Neuropathic pain in cats: Mechanisms and multimodal management. J Feline Med Surg 2024; 26:1098612X241246518. [PMID: 38710218 PMCID: PMC11156241 DOI: 10.1177/1098612x241246518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
PRACTICAL RELEVANCE Chronic pain is a significant welfare concern in cats, and neuropathic pain, which arises from aberrant processing of sensory signals within the nervous system, is a subcategory of this type of pain. To comprehend this condition and how multimodal pharmacotherapy plays a central role in alleviating discomfort, it is crucial to delve into the anatomy of nociception and pain perception. In addition, there is an intricate interplay between emotional health and chronic pain in cats, and understanding and addressing the emotional factors that contribute to pain perception, and vice versa, is essential for comprehensive care.Clinical approach:Neuropathic pain is suspected if there is abnormal sensation in the area of the distribution of pain, together with a positive response to trial treatment with drugs effective for neuropathic pain. Ideally, this clinical suspicion would be supported by confirmation of a lesion at this neurolocalisation using diagnostic modalities such as MRI and neuroelectrophysiology. Alternatively, there may be a history of known trauma at that site. A variety of therapies, including analgesic, anti-inflammatory and adjuvant drugs, and neuromodulation (eg, TENS or acupuncture), can be employed to address different facets of pain pathways.Aim:This review article, aimed at primary care/ general practitioners, focuses on the identification and management of neuropathic pain in cats. Three case vignettes are included and a structured treatment algorithm is presented to guide veterinarians in tailoring interventions.Evidence base:The review draws on current literature, where available, along with the author's extensive experience and research.
Collapse
Affiliation(s)
- Clare Rusbridge
- BVMS, PhD, DipECVN, FRCVS School of Veterinary Medicine, The University of Surrey, Guildford, Surrey, UK; and Wear Referrals Veterinary Specialist & Emergency Hospital, Bradbury, Stockton-on-Tees, UK
| |
Collapse
|
17
|
Sofat N, Lambarth A. Can we achieve pain stratification in musculoskeletal conditions? Implications for clinical practice. FRONTIERS IN PAIN RESEARCH 2024; 5:1362757. [PMID: 38524267 PMCID: PMC10958789 DOI: 10.3389/fpain.2024.1362757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/26/2024] [Indexed: 03/26/2024] Open
Abstract
In the last few years there has been an increased appreciation that pain perception in rheumatic and musculoskeletal diseases (RMDs) has several mechanisms which include nociceptive, inflammatory, nociplastic and neuropathic components. Studies in specific patient groups have also demonstrated that the pain experienced by people with specific diagnoses can present with distinctive components over time. For example, the pain observed in rheumatoid arthritis has been widely accepted to be caused by the activation of nociceptors, potentiated by the release of inflammatory mediators, including prostaglandins, leukotrienes and cytokine networks in the joint environment. However, people with RA may also experience nociplastic and neuropathic pain components, particularly when treatments with disease modifying anti-rheumatic drugs (DMARDs) have been implemented and are insufficient to control pain symptoms. In other RMDs, the concept of pain sensitisation or nociplastic pain in driving ongoing pain symptoms e.g. osteoarthritis and fibromyalgia, is becoming increasingly recognised. In this review, we explore the hypothesis that pain has distinct modalities based on clinical, pathophysiological, imaging and genetic factors. The concept of pain stratification in RMD is explored and implications for future management are also discussed.
Collapse
Affiliation(s)
- Nidhi Sofat
- Institute for Infection and Immunity, St George’s, University of London, London, United Kingdom
- Department of Rheumatology, St George’s University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Andrew Lambarth
- Institute for Infection and Immunity, St George’s, University of London, London, United Kingdom
- Department of Rheumatology, St George’s University Hospitals NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
18
|
Karimi SA, Zahra FT, Martin LJ. IUPHAR review: Navigating the role of preclinical models in pain research. Pharmacol Res 2024; 200:107073. [PMID: 38232910 DOI: 10.1016/j.phrs.2024.107073] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/19/2024]
Abstract
Chronic pain is a complex and challenging medical condition that affects millions of people worldwide. Understanding the underlying mechanisms of chronic pain is a key goal of preclinical pain research so that more effective treatment strategies can be developed. In this review, we explore nociception, pain, and the multifaceted factors that lead to chronic pain by focusing on preclinical models. We provide a detailed look into inflammatory and neuropathic pain models and discuss the most used animal models for studying the mechanisms behind these conditions. Additionally, we emphasize the vital role of these preclinical models in developing new pain-relief drugs, focusing on biologics and the therapeutic potential of NMDA and cannabinoid receptor antagonists. We also discuss the challenges of TRPV1 modulation for pain treatment, the clinical failures of neurokinin (NK)- 1 receptor antagonists, and the partial success story of Ziconotide to provide valuable lessons for preclinical pain models. Finally, we highlight the overall success and limitations of current treatments for chronic pain while providing critical insights into the development of more effective therapies to alleviate the burden of chronic pain.
Collapse
Affiliation(s)
- Seyed Asaad Karimi
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Fatama Tuz Zahra
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Loren J Martin
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada.
| |
Collapse
|
19
|
Fallon M, Sopata M, Dragon E, Brown MT, Viktrup L, West CR, Bao W, Agyemang A. A Randomized Placebo-Controlled Trial of the Anti-Nerve Growth Factor Antibody Tanezumab in Subjects With Cancer Pain Due to Bone Metastasis. Oncologist 2023; 28:e1268-e1278. [PMID: 37343145 PMCID: PMC10712717 DOI: 10.1093/oncolo/oyad188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 05/16/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND This phase III, randomized, double-blind, placebo-controlled, parallel-group study assessed the efficacy and safety of tanezumab in subjects with cancer pain predominantly due to bone metastasis receiving background opioid therapy. METHODS Subjects were randomized (stratified by (1) tumor aggressiveness and (2) presence/absence of concomitant anticancer treatment) to placebo or tanezumab 20 mg. Treatment was administered by subcutaneous injection every 8 weeks for 24 weeks (3 doses) followed by a 24-week safety follow-up period. The primary outcome was change in daily average pain in the index bone metastasis cancer pain site (from 0 = no pain to 10 = worst possible pain) from baseline to week 8. RESULTS LS mean (SE) change in pain at week 8 was -1.25 (0.35) for placebo (n = 73) and -2.03 (0.35) for tanezumab 20 mg (n = 72). LS mean (SE) [95% CI] difference from placebo was -0.78 (0.37) [-1.52, -0.04]; P = .0381 with α = 0.0478. The number of subjects with a treatment-emergent adverse event during the treatment period was 50 (68.5%) for placebo and 53 (73.6%) for tanezumab 20 mg. The number of subjects with a prespecified joint safety event was 0 for placebo and 2 (2.8%) for tanezumab 20 mg (pathologic fracture; n = 2). CONCLUSION Tanezumab 20 mg met the primary efficacy endpoint at week 8. Conclusions on longer-term efficacy are limited since the study was not designed to evaluate the durability of the effect beyond 8 weeks. Safety findings were consistent with adverse events expected in subjects with cancer pain due to bone metastasis and the known safety profile of tanezumab. Clinicaltrials.gov identifier: NCT02609828.
Collapse
Affiliation(s)
- Marie Fallon
- Edinburgh Cancer Research Centre, University of Edinburgh, Edinburgh, UK
| | - Maciej Sopata
- Department of Palliative Medicine, Hospice Palium, University of Medical Sciences, Poznan, Poland
| | | | | | | | | | | | | |
Collapse
|
20
|
Carrino JA, McAlindon TE, Schnitzer TJ, Guermazi A, Hochberg MC, Conaghan PG, Brown MT, Burr A, Fountaine RJ, Pixton GC, Viktrup L, Verburg KM, West CR. Characterization of adverse joint outcomes in patients with osteoarthritis treated with subcutaneous tanezumab. Osteoarthritis Cartilage 2023; 31:1612-1626. [PMID: 37652258 DOI: 10.1016/j.joca.2023.08.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 09/02/2023]
Abstract
OBJECTIVE Due to the risk of rapidly progressive osteoarthritis (RPOA), the phase III studies of subcutaneous (SC) tanezumab in patients with moderate to severe hip or knee osteoarthritis (OA) included comprehensive joint safety surveillance. This pooled analysis summarizes these findings. METHOD Joint safety events in the phase III studies of SC tanezumab (2 placebo- and 1- nonsteroidal anti-inflammatory drug [NSAID]-controlled) were adjudicated by a blinded external committee. Outcomes of RPOA1 and RPOA2, primary osteonecrosis, subchondral insufficiency fracture, and pathological fracture comprised the composite joint safety endpoint (CJSE). Potential patient- and joint-level risk factors for CJSE, RPOA, and total joint replacement (TJR) were explored. RESULTS Overall, 145/4541 patients (3.2%) had an adjudicated CJSE (0% placebo; 3.2% tanezumab 2.5 mg; 6.2% tanezumab 5 mg; 1.5% NSAID). There was a dose-dependent risk of adjudicated CJSE, RPOA1, and TJR with tanezumab vs NSAID. Patient-level cross-tabulation found associations between adjudicated RPOA with more severe radiographic/symptomatic (joint pain, swelling, and physical limitation) OA. Risk of adjudicated RPOA1 was highest in patients with Kellgren-Lawrence (KL) grade 2 or 3 OA at baseline. Risk of adjudicated RPOA2 or TJR was highest in patients with KL grade 4 joints at baseline. A higher proportion of joints with adjudicated RPOA2 had a TJR (14/26) than those with adjudicated RPOA1 (16/106). CONCLUSION In placebo- and NSAID controlled studies of SC tanezumab for OA, adjudicated CJSE, RPOA, and TJR most commonly occurred in patients treated with tanezumab and with more severe radiographic or symptomatic OA. NCT02697773; NCT02709486; NCT02528188.
Collapse
Affiliation(s)
| | | | - Tom J Schnitzer
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Ali Guermazi
- Boston University School of Medicine, Boston, MA, USA; Veteran Affairs Boston Healthcare System, Boston, MA, USA.
| | - Marc C Hochberg
- University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Philip G Conaghan
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK; NIHR Leeds Biomedical Research Centre, Leeds, UK.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Taslakian B, Swilling D, Attur M, Alaia EF, Kijowski R, Samuels J, Macaulay W, Ramos D, Liu S, Morris EM, Hickey R. Genicular Artery Embolization for Treatment of Knee Osteoarthritis: Interim Analysis of a Prospective Pilot Trial Including Effect on Serum Osteoarthritis-Associated Biomarkers. J Vasc Interv Radiol 2023; 34:2180-2189.e3. [PMID: 37640104 DOI: 10.1016/j.jvir.2023.08.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 08/31/2023] Open
Abstract
PURPOSE To characterize the safety, efficacy, and potential role of genicular artery embolization (GAE) as a disease-modifying treatment for symptomatic knee osteoarthritis (OA). MATERIALS AND METHODS This is an interim analysis of a prospective, single-arm clinical trial of patients with symptomatic knee OA who failed conservative therapy for greater than 3 months. Sixteen patients who underwent GAE using 250-μm microspheres and had at least 1 month of follow-up were included. Six patients completed the 12-month follow-up, and 10 patients remain enrolled. Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) was evaluated at baseline and at 1, 3, and 12 months. Serum and plasma samples were collected for biomarker analysis. The primary end point was the percentage of patients who achieved the minimal clinically important difference (MCID) for WOMAC pain score at 12 months. Baseline and follow-up outcomes were analyzed using the Wilcoxon matched-pairs signed-rank test. RESULTS Technical success of the procedure was 100%, with no major adverse events. The MCID was achieved in 5 of the 6 (83%) patients at 12 months. The mean WOMAC pain score decreased from 8.6 ± 2.7 at baseline to 4.9 ± 2.7 (P = .001), 4.4 ± 2.8 (P < .001), and 4.7 ± 2.7 (P = .094) at 1, 3, and 12 months, respectively. There was a statistically significant decrease in nerve growth factor (NGF) levels at 12 months. The remaining 8 biomarkers showed no significant change at 12 months. CONCLUSIONS GAE is a safe and efficacious treatment for symptomatic knee OA. Decreased NGF levels after GAE may contribute to pain reduction and slowing of cartilage degeneration.
Collapse
Affiliation(s)
- Bedros Taslakian
- Division of Vascular and Interventional Radiology, Department of Radiology, NYU Langone Health, New York, New York.
| | - David Swilling
- Division of Vascular and Interventional Radiology, Department of Radiology, NYU Langone Health, New York, New York
| | - Mukundan Attur
- Division of Rheumatology, Department of Medicine, NYU Langone Health, New York, New York
| | - Erin F Alaia
- Division of Vascular and Interventional Radiology, Department of Radiology, NYU Langone Health, New York, New York; Division of Musculoskeletal Imaging, Department of Radiology, NYU Langone Health, New York, New York
| | - Richard Kijowski
- Division of Vascular and Interventional Radiology, Department of Radiology, NYU Langone Health, New York, New York; Division of Musculoskeletal Imaging, Department of Radiology, NYU Langone Health, New York, New York
| | - Jonathan Samuels
- Division of Rheumatology, Department of Medicine, NYU Langone Health, New York, New York
| | - William Macaulay
- Department of Orthopedic Surgery, NYU Langone Health, New York, New York
| | - Danibel Ramos
- Division of Vascular and Interventional Radiology, Department of Radiology, NYU Langone Health, New York, New York
| | - Shu Liu
- Division of Vascular and Interventional Radiology, Department of Radiology, NYU Langone Health, New York, New York
| | - Elizabeth M Morris
- Division of Vascular and Interventional Radiology, Department of Radiology, NYU Langone Health, New York, New York
| | - Ryan Hickey
- Division of Vascular and Interventional Radiology, Department of Radiology, NYU Langone Health, New York, New York
| |
Collapse
|
22
|
Dahmani D, Taik FZ, Berrichi I, Fourtassi M, Abourazzak FE. Impact of central sensitization on pain, disability and psychological distress in patients with knee osteoarthritis and chronic low back pain. BMC Musculoskelet Disord 2023; 24:877. [PMID: 37950225 PMCID: PMC10636971 DOI: 10.1186/s12891-023-07019-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Central sensitization (CS) is becoming increasingly recognized as a significant factor in many chronic pain conditions, including knee osteoarthritis (KOA) and chronic low back pain (CLBP). Yet it presently remains unclear how strong is the involvement of CS in KOA and CLBP and which factors are involved in CS in these two chronic disabling diseases. METHODS This is a cross-sectional study in which included a total of 178 patients with KOA and 118 patients with CLBP. Inclusion criteria for eligible participants for the KOA group were a confirmed diagnosis of KOA according to the American College of Rheumatology criteria, and for the CLBP group a chronic low back pain for more than 3 months. Subjects were excluded if they presented with a diagnosed psychiatric disorder or if they lacked the capacity to provide informed consent, understand study questionnaires or perform physical performance tests. In each group, were assessed; CS-related symptoms using the Central Sentization Inventory (CSI); demographic and clinical characteristics such as disease duration, pain intensity on a visual analog scale, self-reported function using the Lequesne index for KOA patients and the Oswestry Disability index for CLBP patients, and physical performance with the 6 minutes' walk test; as well as psychosocial risk factors using the Patient Health Questionnaire for depression (PHQ-9), the Generalized Anxiety Disorder (GAD-7) and the Pain Catastrophizing Scale (PCS). RESULTS CSI scores significantly correlated with pain intensity and disability in KOA and CLBP patients, and were highly correlated with self-reported symptoms of depression, anxiety and pain catastrophizing. Depression significantly predicted the CSI score in both groups. CONCLUSION These findings provide further evidence for the impact of CS on pain, function and physical performance in KOA and CLBP patients. Psychosocial symptoms such as pain catastrophizing, anxiety and depression should also be considered as they are also associated with CS.
Collapse
Affiliation(s)
- Doha Dahmani
- Rheumatology Department, Faculty of Medicine and Pharmacy, Mohammed VI University Hospital, Abdelmalek Essaadi University, Tangier, Morocco.
| | - Fatima Zahrae Taik
- Rheumatology Department, Faculty of Medicine and Pharmacy, Mohammed VI University Hospital, Abdelmalek Essaadi University, Tangier, Morocco
- Laboratory of Life and Health Sciences, Faculty of Medicine and Pharmacy of Tangier, Abdelmalek Essaadi University, Tangier, Morocco
| | - Imane Berrichi
- Rheumatology Department, Faculty of Medicine and Pharmacy, Mohammed VI University Hospital, Abdelmalek Essaadi University, Tangier, Morocco
| | - Maryam Fourtassi
- Laboratory of Life and Health Sciences, Faculty of Medicine and Pharmacy of Tangier, Abdelmalek Essaadi University, Tangier, Morocco
| | - Fatima Ezzahra Abourazzak
- Rheumatology Department, Faculty of Medicine and Pharmacy, Mohammed VI University Hospital, Abdelmalek Essaadi University, Tangier, Morocco
- Laboratory of Life and Health Sciences, Faculty of Medicine and Pharmacy of Tangier, Abdelmalek Essaadi University, Tangier, Morocco
| |
Collapse
|
23
|
Terracina S, Ferraguti G, Tarani L, Fanfarillo F, Tirassa P, Ralli M, Iannella G, Polimeni A, Lucarelli M, Greco A, Fiore M. Nerve Growth Factor and Autoimmune Diseases. Curr Issues Mol Biol 2023; 45:8950-8973. [PMID: 37998739 PMCID: PMC10670231 DOI: 10.3390/cimb45110562] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
NGF plays a crucial immunomodulatory role and increased levels are found in numerous tissues during autoimmune states. NGF directly modulates innate and adaptive immune responses of B and T cells and causes the release of neuropeptides and neurotransmitters controlling the immune system activation in inflamed tissues. Evidence suggests that NGF is involved in the pathogenesis of numerous immune diseases including autoimmune thyroiditis, chronic arthritis, multiple sclerosis, systemic lupus erythematosus, mastocytosis, and chronic granulomatous disease. Furthermore, as NGF levels have been linked to disease severity, it could be considered an optimal early biomarker to identify therapeutic approach efficacy. In conclusion, by gaining insights into how these molecules function and which cells they interact with, future studies can devise targeted therapies to address various neurological, immunological, and other disorders more effectively. This knowledge may pave the way for innovative treatments based on NGF manipulation aimed at improving the quality of life for individuals affected by diseases involving neurotrophins.
Collapse
Affiliation(s)
- Sergio Terracina
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Luigi Tarani
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Francesca Fanfarillo
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Paola Tirassa
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Department of Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Massimo Ralli
- Department of Sensory Organs, Sapienza University of Rome, 00185 Roma, Italy
| | - Giannicola Iannella
- Department of Sensory Organs, Sapienza University of Rome, 00185 Roma, Italy
| | - Antonella Polimeni
- Department of Odontostomatological and Maxillofacial Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
- Pasteur Institute, Cenci Bolognetti Foundation, Sapienza University of Rome, 00185 Rome, Italy
| | - Antonio Greco
- Department of Sensory Organs, Sapienza University of Rome, 00185 Roma, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Department of Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
24
|
Li X, Tao H, Zhou J, Zhang L, Shi Y, Zhang C, Sun W, Chu M, Chen K, Gu C, Yang X, Geng D, Hao Y. MAGL inhibition relieves synovial inflammation and pain via regulating NOX4-Nrf2 redox balance in osteoarthritis. Free Radic Biol Med 2023; 208:13-25. [PMID: 37516370 DOI: 10.1016/j.freeradbiomed.2023.07.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/31/2023]
Abstract
Osteoarthritis (OA) is a degenerative joint disease characterized by cartilage injury, hyperplasia of bone and inflammatory lesions of synovium. Monoacylglycerol lipase (MAGL), a member of the α/β hydrolase superfamily, is involved in regulation of injury protection and immune-inflammation response. Autoinflammatory response of the synovium and the release of inflammatory mediators play critical roles in occurrence of early-stage OA. Fibroblast-like synoviocytes (FLSs) are resident mesenchymal cells of the synovial tissue. Considering that MAGL inhibition regulates the inflammatory signaling cascade, it is crucial to ascertain the biological effects and specific mechanisms of MAGL in alleviating inflammatory infiltration of OA FLSs. The aim of this study was to investigate the effect of MAGL on biological function in OA FLSs. Results from in vitro experiments showed that MAGL blockade not only effectively inhibited proliferation, invasion and migration of FLSs, but also downregulated expression of inflammatory-associated proteins. Sequencing results indicated that MAGL inhibition significantly suppressed NOX4-mediated oxidative stress, thus promoting Nrf2 nuclear accumulation and inhibiting generation of intracellular reactive oxygen species (ROS). Attenuation of NOX4 further alleviated redox dysplasia and ultimately improved tumor-like phenotypes, such as abnormal proliferation, migration and migration of FLSs. In vivo results corroborated this finding, with MAGL inhibition found to modulate pain and disease progression in an OA rat model. Collectively, these results indicate that MAGL administration is an ideal therapy treating OA.
Collapse
Affiliation(s)
- Xueyan Li
- Anesthesiology Department, Suzhou Municipal Hospital (North District), Nanjing Medical University Affiliated Suzhou Hospital, 242, Guangji Road, Suzhou, Jiangsu, China
| | - Huaqiang Tao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu, China
| | - Jing Zhou
- Orthopedics and Sports Medicine Center, Suzhou Municipal Hospital, Nanjing Medical University Affiliated Suzhou Hospital, 242, Guangji Road, Suzhou, Jiangsu, 226000, China
| | - Liyuan Zhang
- Anesthesiology Department, Suzhou Municipal Hospital (North District), Nanjing Medical University Affiliated Suzhou Hospital, 242, Guangji Road, Suzhou, Jiangsu, China
| | - Yi Shi
- Anesthesiology Department, Suzhou Municipal Hospital (North District), Nanjing Medical University Affiliated Suzhou Hospital, 242, Guangji Road, Suzhou, Jiangsu, China
| | - Chun Zhang
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 999, Xiwang Road, Shanghai, China
| | - Wen Sun
- Anesthesiology Department, Suzhou Municipal Hospital (North District), Nanjing Medical University Affiliated Suzhou Hospital, 242, Guangji Road, Suzhou, Jiangsu, China
| | - Miao Chu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu, China
| | - Kai Chen
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu, China
| | - Chengyong Gu
- Anesthesiology Department, Suzhou Municipal Hospital (North District), Nanjing Medical University Affiliated Suzhou Hospital, 242, Guangji Road, Suzhou, Jiangsu, China.
| | - Xing Yang
- Orthopedics and Sports Medicine Center, Suzhou Municipal Hospital, Nanjing Medical University Affiliated Suzhou Hospital, 242, Guangji Road, Suzhou, Jiangsu, 226000, China.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu, China.
| | - Yuefeng Hao
- Orthopedics and Sports Medicine Center, Suzhou Municipal Hospital, Nanjing Medical University Affiliated Suzhou Hospital, 242, Guangji Road, Suzhou, Jiangsu, 226000, China.
| |
Collapse
|
25
|
Tahir S, Sadik O, Ezenwa V, Iguh C, Ravichandran V, Ashraf NN, O'Connor EM, Sayabugari R. Various Doses of Tanezumab in the Management of Chronic Low Back Pain (CLBP): A Pooled Analysis of 4,514 Patients. Cureus 2023; 15:e46790. [PMID: 37954824 PMCID: PMC10634383 DOI: 10.7759/cureus.46790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2023] [Indexed: 11/14/2023] Open
Abstract
Chronic low back pain (CLBP) is a persistent and debilitating condition characterized by pain and discomfort in the lower back region that lasts more than 12 weeks. This review aims to determine the efficacy and safety of various doses of tanezumab for managing CLBP. The present meta-analysis was reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines and the Cochrane Handbook for Systematic Reviews of Intervention standards. We searched multiple databases, including PubMed, Cochrane Library, Excerpta Medica Database (EMBASE), Scopus, and Web of Science, to identify randomized controlled trials comparing tanezumab to placebo or different dosage regimens for CLBP in adult patients. The primary outcome was the mean change in low back pain intensity (LBPI) score baseline to the end of treatment. Secondary outcomes included adverse events and the degree of disability or impairment. A total of six studies were included in the meta-analysis. Analysis of the data showed that tanezumab 5 mg significantly reduced LBPI compared to placebo at all time points (mean deviation (MD) ranging from -0.31 to -0.5). Similarly, tanezumab 10 mg showed a significant reduction in LBPI compared to placebo at all time points (MD ranging from -0.48 to -0.84). However, tanezumab 5 mg showed significantly less reduction of LBPI compared to 10 mg at two, four, eight, and 12 weeks (MD ranging from 0.19 to 0.32). These findings suggest that tanezumab is an effective treatment for CLBP, with 5 mg and 10 mg doses providing clinically meaningful reductions in LBPI.
Collapse
Affiliation(s)
- Sophia Tahir
- Internal Medicine/Family Medicine, Windsor University School of Medicine, Basseterre, KNA
| | - Oman Sadik
- Family Medicine, Jackson Park Hospital, Chicago, USA
| | - Virginia Ezenwa
- Internal Medicine, Windsor University School of Medicine, Basseterre, KNA
| | - Chinenye Iguh
- Medicine, Windsor University School of Medicine, Basseterre, KNA
| | - Vidhya Ravichandran
- Pediatrics, Sri Muthukumaran Medical College Hospital and Research Institute, Chennai, IND
| | - Naufin N Ashraf
- Internal Medicine, Windsor University School of Medicine, Basseterre, KNA
| | - Erica M O'Connor
- Internal Medicine, Windsor University School of Medicine, Basseterre, KNA
| | | |
Collapse
|
26
|
Kou H, Qing Z, Zhao G, Sun X, Zhi L, Wang J, Chen X, Guo H, Zhang R, Ma J. Effect of lorecivivint on osteoarthritis: A systematic review and meta-analysis. Heliyon 2023; 9:e18682. [PMID: 37576256 PMCID: PMC10415637 DOI: 10.1016/j.heliyon.2023.e18682] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 06/26/2023] [Accepted: 07/25/2023] [Indexed: 08/15/2023] Open
Abstract
Objective To comprehensively evaluate the effectiveness and safety of lorecivivint inhibitors in the treatment of osteoarthritis through meta-analysis. Methods A comprehensive literature search on lorecivivint inhibitors in osteoarthritis was performed using electronic databases such as PubMed, Embase, Web of Science, and CochraneLibrary up to July 30, 2022. Two reviewers independently screened, evaluated, and reviewed the eligible studies. Data analysis and processing were carried out using RevMan 5.4 software. Results A total of six studies involving 3056 participants were included. Meta-analysis showed that compared with the control group, lorecivivint significantly increased WOMAC discomfort (0.03 mg Week 12) (MD = -0.21, 95% CI [-1.94 - 1.53]; P = 0.81), WOMAC function (0.07 mg Week 24) (MD = -1.81, 95% CI [-4.74 - 1.12]; P = 0.23) and Joint space width (0.23 mg Week 24) (MD = -1.16, 95% CI [-3.69 - 1.38]; P = 0.37). Conclusion A new treatment method combining Wnt pathway modulators with intra-articular CLK2/DYRK1A inhibitors could be a promising therapy for treating osteoarthritis. Lorecivivint was found to significantly improve WOMAC discomfort, WOMAC function, and joint space width in osteoarthritis patients. It is anticipated to be a reliable, safe, and effective treatment option for osteoarthritis with significant therapeutic utility and potential applications.
Collapse
Affiliation(s)
- Haiyang Kou
- Translational Medicine Center, Department of Joint Surgery, Yanliang Campus, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710000, Shaanxi, China
| | - Zhong Qing
- Translational Medicine Center, Department of Joint Surgery, Yanliang Campus, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710000, Shaanxi, China
| | - Guanghui Zhao
- Translational Medicine Center, Department of Joint Surgery, Yanliang Campus, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710000, Shaanxi, China
| | - Xiangxiang Sun
- Translational Medicine Center, Department of Joint Surgery, Yanliang Campus, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710000, Shaanxi, China
| | - Liqiang Zhi
- Translational Medicine Center, Department of Joint Surgery, Yanliang Campus, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710000, Shaanxi, China
| | - Jianpeng Wang
- Translational Medicine Center, Department of Joint Surgery, Yanliang Campus, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710000, Shaanxi, China
| | - Xinlin Chen
- Translational Medicine Center, Department of Joint Surgery, Yanliang Campus, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710000, Shaanxi, China
| | - Hao Guo
- Translational Medicine Center, Department of Joint Surgery, Yanliang Campus, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710000, Shaanxi, China
| | - Rui Zhang
- Translational Medicine Center, Department of Joint Surgery, Yanliang Campus, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710000, Shaanxi, China
- Department of Medical Technology, Guiyang Healthcare Vocational University, Guiyang, Guizhou, 550081, China
| | - Jianbing Ma
- Translational Medicine Center, Department of Joint Surgery, Yanliang Campus, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710000, Shaanxi, China
| |
Collapse
|
27
|
Brown MT, Cornblath DR, Koltzenburg M, Gorson KC, Hickman A, Pixton GC, Gaitonde P, Viktrup L, West CR. Peripheral Nerve Safety of Nerve Growth Factor Inhibition by Tanezumab: Pooled Analyses of Phase III Clinical Studies in Over 5000 Patients with Osteoarthritis. Clin Drug Investig 2023; 43:551-563. [PMID: 37460782 DOI: 10.1007/s40261-023-01286-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND Tanezumab, a humanized anti-nerve growth factor antibody, was developed for the treatment of pain associated with osteoarthritis. Due to its mechanism of action, peripheral nerve safety was assessed in all clinical studies. OBJECTIVES To summarize the neurological safety of intravenous (IV) and subcutaneous (SC) tanezumab versus placebo in patients with osteoarthritis. METHODS Data were pooled from 3389 patients across seven studies that investigated IV administration, and from 1840 patients across three studies that investigated SC administration. The treatment period of each study ranged from 16 to 24 weeks, and follow-up periods ranged from 8 to 24 weeks. Neurological safety evaluations focused on adverse events (AEs) of abnormal peripheral sensation (APS), neurologic examinations, and consultations. RESULTS Across datasets, the incidence of AEs of APS was higher in tanezumab groups versus placebo. Paresthesia and hypoesthesia were the most frequently reported AEs in tanezumab-treated patients, compared with placebo. In both datasets, most AEs were of mild severity, resolved, and rarely resulted in discontinuation. In all treatment groups in both IV and SC studies, over 90% of patients had no new or worsened neurological examination abnormalities at the last study visit. Across datasets, mononeuropathy was diagnosed more frequently in tanezumab groups compared with placebo. Polyneuropathy was diagnosed in ≤ 0.9% of patients in tanezumab and placebo groups. CONCLUSIONS Tanezumab IV or SC had an increased incidence of AEs of APS, such as paresthesia and hypoesthesia, and diagnoses of mononeuropathy compared with placebo. However, tanezumab was not associated with generalized peripheral neuropathy. CLINICALTRIALS GOV IDENTIFIERS NCT00733902, NCT00744471, NCT00830063, NCT00863304, NCT00863772, NCT01089725, NCT00985621, NCT02697773, and NCT02709486.
Collapse
Affiliation(s)
| | - David R Cornblath
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Martin Koltzenburg
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | | | | | | | | | | | | |
Collapse
|
28
|
Menges S, Michaelis M, Kleinschmidt-Dörr K. Anti-NGF treatment worsens subchondral bone and cartilage measures while improving symptoms in floor-housed rabbits with osteoarthritis. Front Physiol 2023; 14:1201328. [PMID: 37435308 PMCID: PMC10331818 DOI: 10.3389/fphys.2023.1201328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/14/2023] [Indexed: 07/13/2023] Open
Abstract
Objective: Osteoarthritis (OA) is a common joint disorder often affecting the knee. It is characterized by alterations of various joint tissues including subchondral bone and by chronic pain. Anti-nerve growth factor (NGF) antibodies have demonstrated improvement in pain associated with OA in phase 3 clinical trials but have not been approved due to an increased risk of developing rapidly progressive OA. The aim of this study was to investigate effects of systemic anti-NGF-treatment on structure and symptoms in rabbits with surgically induced joint instability. Methods: This was elicited by anterior cruciate ligament transection and partial resection of the medial meniscus in right knee of 63 female rabbits, housed altogether in a 56 m2 floor husbandry. Rabbits received either 0.1, 1 or 3 mg/kg anti-NGF antibody intra-venously at weeks 1, 5 and 14 after surgery or vehicle. During in-life phase, static incapacitance tests were performed and joint diameter was measured. Following necropsy, gross morphological scoring and micro-computed tomography analysis of subchondral bone and cartilage were performed. Results: After surgery, rabbits unloaded operated joints, which was improved with 0.3 and 3 mg/kg anti-NGF compared to vehicle injection during the first half of the study. The diameter of operated knee joints increased over contralateral measures. This increase was bigger in anti-NGF treated rabbits beginning 2 weeks after the first IV injection and became dose-dependent and more pronounced with time. In the 3 mg/kg anti-NGF group, the bone volume fraction and trabecular thickness increased in the medio-femoral region of operated joints compared to contralateral and to vehicle-treated animals, while cartilage volume and to a lesser extent thickness decreased. Enlarged bony areas were found in right medio-femoral cartilage surfaces of animals receiving 1 and 3 mg/kg anti-NGF. Alterations of all structural parameters were particularly distinct in a subgroup of three rabbits, which also exhibited more prominent symptomatic improvement. Conclusion: This study showed that anti-NGF administration exerted negative impact on structure in destabilized joints of rabbits, while pain-induced unloading of joints was improved. Our findings open up the possibility to better understand the effects of systemic anti-NGF, particularly on subchondral bone, and thus the occurrence of rapidly progressive OA in patients.
Collapse
|
29
|
Roemer FW, Hochberg MC, Carrino JA, Kompel AJ, Diaz L, Hayashi D, Crema MD, Guermazi A. Role of imaging for eligibility and safety of a-NGF clinical trials. Ther Adv Musculoskelet Dis 2023; 15:1759720X231171768. [PMID: 37284331 PMCID: PMC10240557 DOI: 10.1177/1759720x231171768] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 04/05/2023] [Indexed: 06/08/2023] Open
Abstract
Nerve growth factor (a-NGF) inhibitors have been developed for pain treatment including symptomatic osteoarthritis (OA) and have proven analgesic efficacy and improvement in functional outcomes in patients with OA. However, despite initial promising data, a-NGF clinical trials focusing on OA treatment had been suspended in 2010. Reasons were based on concerns regarding accelerated OA progression but were resumed in 2015 including detailed safety mitigation based on imaging. In 2021, an FDA advisory committee voted against approving tanezumab (one of the a-NGF compounds being evaluated) and declared that the risk evaluation and mitigation strategy was not sufficient to mitigate potential safety risks. Future clinical trials evaluating the efficacy of a-NGF or comparable molecules will need to define strict eligibility criteria and will have to include strategies to monitor safety closely. While disease-modifying effects are not the focus of a-NGF treatments, imaging plays an important role to evaluate eligibility of potential participants and to monitor safety during the course of these studies. Aim is to identify subjects with on-going safety findings at the time of inclusion, define those potential participants that are at increased risk for accelerated OA progression and to withdraw subjects from on-going studies in a timely fashion that exhibit imaging-confirmed structural safety events such as rapid progressive OA. OA efficacy- and a-NGF studies apply imaging for different purposes. In OA efficacy trials image acquisition and evaluation aims at maximizing sensitivity in order to capture structural effects between treated and non-treated participants in longitudinal fashion. In contrast, the aim of imaging in a-NGF trials is to enable detection of structural tissue alterations that either increase the risk of a negative outcome (eligibility) or may result in termination of treatment (safety).
Collapse
Affiliation(s)
- Frank W. Roemer
- Department of Radiology, Universitätsklinikum Erlangen & Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Maximiliansplatz 3, 91054 Erlangen, Germany
- Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | | | - John A. Carrino
- Department of Radiology & Imaging, Hospital for Special Surgery and Weill Cornell Medicine, New York, NY, USA
| | - Andrew J. Kompel
- Chobanian & Avedisian School of Medicine, Boston University, Boston MA, USA
| | - Luis Diaz
- Chobanian & Avedisian School of Medicine, Boston University, Boston MA, USA
| | - Daichi Hayashi
- Tufts Medical Center, Tufts Medicine, Boston, MA, USA
- Chobanian & Avedisian School of Medicine, Boston University, Boston MA, USA
| | - Michel D. Crema
- Institute of Sports Imaging, French National Institute of Sports (INSEP), Paris, France
- Chobanian & Avedisian School of Medicine, Boston University, Boston MA, USA
| | - Ali Guermazi
- Chobanian & Avedisian School of Medicine, Boston University, Boston MA, USA
- Boston VA Healthcare System, West Roxbury, MA, USA
| |
Collapse
|
30
|
Iwasaki R, Miki T, Miyazaki M, Kanetaka C, Mitsuyama T, Ota K. Neuropathic Pain Was Associated with Central Sensitivity Syndrome in Patients with Preoperative Lumbar Spinal Stenosis Using the painDETECT and Central Sensitization Inventory Questionnaires: A Cross-Sectional Study. Pain Res Manag 2023; 2023:9963627. [PMID: 37207128 PMCID: PMC10191751 DOI: 10.1155/2023/9963627] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/21/2023]
Abstract
Background Lumbar spinal stenosis (LSS) patients have been reported to have neuropathic pain and central sensitivity syndrome (CSS). These associations have been reported in other diseases but are unknown in preoperative LSS patients. We aimed to investigate the association between neuropathic pain and CSS in preoperative LSS patients using the painDETECT and the Central Sensitization Inventory (CSI) questionnaires. Methods This cross-sectional study was conducted from November 2021 to March 2022. The data were collected regarding demographics and pain, including neuropathic pain, numbness, LSS severity, physical function, quality of life, and CSS. Patients were divided into two groups, patients with acute and chronic pain, and further classified into three categories based on the clinical phenotype of patients in each group. Independent variables included age, gender, type of LSS (bilateral or unilateral symptoms), Numerical Rating Scale of leg pain, CSI, and the Zurich Claudication Questionnaire (ZCQ) for symptom severity and physical function. The dependent variable was painDETECT. Multiple regression analysis using the forced entry method examined the association between painDETECT and CSI. Results Of the 119 patients with preoperative LSS, 106 were included. The mean age of the participants was 69.9 years, and 45.3% were female. Neuropathic pain was present in 19.8%, and CSS was present in 10.4%. The CSI (β = 0.468, p < 0.001) and ZCQ for symptom severity (β = 0.304, p < 0.01) were significantly associated with the painDETECT, explaining 47.8% of the variance in the painDETECT score. Conclusions There is an association between neuropathic pain and CSS in patients with preoperative LSS using the painDETECT and CSI questionnaires.
Collapse
Affiliation(s)
- Rintaro Iwasaki
- Department of Rehabilitation, Shisyokai Hakusan Clinic, Tokyo, Japan
| | - Takahiro Miki
- Department of Rehabilitation, Sapporo Maruyama Orthopedic Hospital, Sapporo, Hokkaido, Japan
- Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Mizuki Miyazaki
- Department of Rehabilitation, Shinagawa Shisyokai Hospital, Tokyo, Japan
| | - Chifumi Kanetaka
- Department of Rehabilitation, Shinagawa Shisyokai Hospital, Tokyo, Japan
| | | | - Kaiji Ota
- Department of Orthopedic Surgery, Shinagawa Shisyokai Hospital, Tokyo, Japan
| |
Collapse
|
31
|
Palasz E, Wilkaniec A, Stanaszek L, Andrzejewska A, Adamczyk A. Glia-Neurotrophic Factor Relationships: Possible Role in Pathobiology of Neuroinflammation-Related Brain Disorders. Int J Mol Sci 2023; 24:ijms24076321. [PMID: 37047292 PMCID: PMC10094105 DOI: 10.3390/ijms24076321] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
Neurotrophic factors (NTFs) play an important role in maintaining homeostasis of the central nervous system (CNS) by regulating the survival, differentiation, maturation, and development of neurons and by participating in the regeneration of damaged tissues. Disturbances in the level and functioning of NTFs can lead to many diseases of the nervous system, including degenerative diseases, mental diseases, and neurodevelopmental disorders. Each CNS disease is characterized by a unique pathomechanism, however, the involvement of certain processes in its etiology is common, such as neuroinflammation, dysregulation of NTFs levels, or mitochondrial dysfunction. It has been shown that NTFs can control the activation of glial cells by directing them toward a neuroprotective and anti-inflammatory phenotype and activating signaling pathways responsible for neuronal survival. In this review, our goal is to outline the current state of knowledge about the processes affected by NTFs, the crosstalk between NTFs, mitochondria, and the nervous and immune systems, leading to the inhibition of neuroinflammation and oxidative stress, and thus the inhibition of the development and progression of CNS disorders.
Collapse
Affiliation(s)
- Ewelina Palasz
- Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Correspondence: (E.P.); (A.A.)
| | - Anna Wilkaniec
- Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Luiza Stanaszek
- Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Anna Andrzejewska
- Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Center for Advanced Imaging Research, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Agata Adamczyk
- Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Correspondence: (E.P.); (A.A.)
| |
Collapse
|
32
|
Wogonin, a Bioactive Ingredient from Huangqi Guizhi Formula, Alleviates Discogenic Low Back Pain via Suppressing the Overexpressed NGF in Intervertebral Discs. Mediators Inflamm 2023; 2023:4436587. [PMID: 36860203 PMCID: PMC9970730 DOI: 10.1155/2023/4436587] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/11/2022] [Accepted: 10/15/2022] [Indexed: 02/22/2023] Open
Abstract
Purpose To investigate whether wogonin, a key bioactive ingredient of Huangqi Guizhi formula (HQGZ formula; a Traditional Chinese Medicine herbal formula) according to network pharmacology analysis, has analgesic effects on discogenic low back pain (LBP) via regulating the nerve growth factor (NGF) in intervertebral discs (IVDs). Methods The lumbar IVDs of rats were punctured to discogenic LBP, and the therapeutic effect of orally administrated HQGZ for discogenic LBP was investigated by measuring mechanical and cold allodynia and histological analysis. A network pharmacology analysis was conducted to search for bioactive ingredients from the HQGZ formula, and wogonin was suggested to be the most possible bioactive ingredient for LBP treatment. Subsequently, the analgesic effect of wogonin was investigated in the LBP model, and the gene expression of propain peptides in the bilateral dorsal root ganglia was analyzed using RT-PCR. Finally, immunohistochemical staining was performed for NGF expression of NGF in the IVDs to determine whether wogonin treatment would ameliorate NGF-induced LBP. Results Oral administration of HQGZ for two weeks significantly ameliorated puncture-induced IVD degeneration (IDD) and LBP. In addition, the network pharmacology analysis revealed that wogonin, quercetin, and kaempferol were the potential candidate components of HQGZ for LBP treatment. Furthermore, we proved that wogonin had significant analgesic effects in the LBP model. Finally, wogonin was demonstrated to suppress the upregulated NGF in the IVD and ameliorate NGF-induced LBP in rats. Conclusions The HQGZ formula has significant analgesic effects for LBP. In addition, the bioactive ingredient of wogonin was extracted from HQGZ and ameliorated LBP by suppressing the overexpressed NGF in degenerated IVDs. Therefore, wogonin has potential to be alternative treatment for LBP in clinical.
Collapse
|
33
|
Ohashi Y, Uchida K, Fukushima K, Inoue G, Takaso M. Mechanisms of Peripheral and Central Sensitization in Osteoarthritis Pain. Cureus 2023; 15:e35331. [PMID: 36846635 PMCID: PMC9949992 DOI: 10.7759/cureus.35331] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2023] [Indexed: 02/24/2023] Open
Abstract
Pain, the primary symptom of osteoarthritis (OA), reduces both the quality and quantity of life for patients. The pathophysiology of OA pain is complex and often difficult to explain solely by radiological structural changes. One reason for this discrepancy is pain sensitization (peripheral sensitization [PS] and central sensitization [CS]) in OA. Thus, an understanding of pain sensitization is important when considering treatment strategies and development for OA pain. In recent years, pro-inflammatory cytokines, nerve growth factors (NGFs), and serotonin have been identified as causative agents that induce peripheral and central sensitization and are becoming therapeutic targets for OA pain. However, the characteristics of the clinical manifestations of pain sensitization elicited by these molecules remain unclear, and it is not well understood who among OA patients should receive the therapeutic intervention. Thus, this review summarizes evidence on the pathophysiology of peripheral and central sensitization in OA pain and the clinical features and treatment options for this condition. While the majority of the literature supports the existence of pain sensitization in chronic OA pain, clinical identification and treatment of pain sensitization in OA are still in their infancy, and future studies with good methodological quality are needed.
Collapse
Affiliation(s)
- Yoshihisa Ohashi
- Department of Orthopaedic Surgery, Kitasato University School of Medicine, Sagamihara, JPN
| | - Kentaro Uchida
- Department of Orthopaedic Surgery, Kitasato University School of Medicine, Sagamihara, JPN
| | - Kensuke Fukushima
- Department of Orthopaedic Surgery, Kitasato University School of Medicine, Sagamihara, JPN
| | - Gen Inoue
- Department of Orthopaedic Surgery, Kitasato University School of Medicine, Sagamihara, JPN
| | - Masashi Takaso
- Department of Orthopaedic Surgery, Kitasato University School of Medicine, Sagamihara, JPN
| |
Collapse
|
34
|
Affiliation(s)
- Nicole Schäfer
- Experimental Orthopaedics, Centre for Medical Biotechnology (ZMB), University of Regensburg, Regensburg, Germany
| | - Susanne Grässel
- Experimental Orthopaedics, Centre for Medical Biotechnology (ZMB), University of Regensburg, Regensburg, Germany. .,Department of Orthopaedic Surgery, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
35
|
Ohashi Y, Fukushima K, Uchida K, Koyama T, Tsuchiya M, Saito H, Uchiyama K, Takahira N, Inoue G, Takaso M. Differences in outcomes after total hip arthroplasty for osteoarthritis between patients with and without central sensitivity syndromes other than fibromyalgia. Sci Rep 2022; 12:15327. [PMID: 36096936 PMCID: PMC9468138 DOI: 10.1038/s41598-022-19369-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 08/29/2022] [Indexed: 11/22/2022] Open
Abstract
We investigated the differences in outcomes after total hip arthroplasty (THA) for hip osteoarthritis (HOA) between patients with and without central sensitivity syndromes (CSSs) other than fibromyalgia (FM). After excluding two patients with FM, we compared the clinical data of 41 patients with CSSs and 132 patients without CSSs. Clinical data included scores on the central sensitization inventory, visual analog scale for pain (VAS pain), and Japanese Orthopedic Association Hip Disease Evaluation Questionnaire (JHEQ). VAS pain was significantly higher at 3 and 6 months after THA in patients with CSSs than in those without CSSs (3 and 6 months, P < 0.001). Satisfaction, pain, and mental JHEQ scores were lower in patients with CSSs than in those without CSSs (satisfaction, P < 0.001; pain, P = 0.011; mental, P = 0.032). Multiple regression analyses indicated that one and ≥ 2 CSS diagnoses significantly impacted the satisfaction score (one CSS, β = − 0.181, P = 0.019; ≥ 2 CSSs, β = − 0.175, P = 0.023). Two or more CSSs were the only factor influencing the pain score (β = − 0.175, P = 0.027). Pain in patients with CSSs reflects central sensitization, which may adversely affect post-operative outcomes. Surgeons should pay attention to patients with a history of CSSs diagnoses who undergo THA for HOA.
Collapse
Affiliation(s)
- Yoshihisa Ohashi
- Department of Orthopaedic Surgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Kensuke Fukushima
- Department of Orthopaedic Surgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan.
| | - Kentaro Uchida
- Department of Orthopaedic Surgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Tomohisa Koyama
- Department of Orthopaedic Surgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Maho Tsuchiya
- Department of Orthopaedic Surgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Hiroki Saito
- Department of Orthopaedic Surgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Katsufumi Uchiyama
- Department of Patient Safety and Healthcare Administration, Kitasato University School of Medicine, 1-15-1 Minami-ku, Kitasato, Sagamihara, Kanagawa, 252-0374, Japan
| | - Naonobu Takahira
- Department of Rehabilitation, Kitasato University School of Allied Health Sciences, 1-15-1 Minami-ku, Kitasato, Sagamihara, Kanagawa, 252-0374, Japan
| | - Gen Inoue
- Department of Orthopaedic Surgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Masashi Takaso
- Department of Orthopaedic Surgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| |
Collapse
|
36
|
Peng B, Li Y. Concerns about cell therapy for intervertebral disc degeneration. NPJ Regen Med 2022; 7:46. [PMID: 36068218 PMCID: PMC9448766 DOI: 10.1038/s41536-022-00245-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 08/10/2022] [Indexed: 01/17/2023] Open
Affiliation(s)
- Baogan Peng
- Department of Orthopaedics, The Third Medical Center, General Hospital of the Chinese People's Liberation Army, Beijing, China.
| | - Yongchao Li
- Department of Orthopaedics, The Third Medical Center, General Hospital of the Chinese People's Liberation Army, Beijing, China
| |
Collapse
|
37
|
Intradiscal Therapies for Lumbar Degenerative Disk Disease. J Am Acad Orthop Surg 2022; 30:e1084-e1094. [PMID: 35984081 DOI: 10.5435/jaaos-d-21-01155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/23/2022] [Indexed: 02/01/2023] Open
Abstract
Discogenic low back pain is a common musculoskeletal complaint in patients presenting to orthopaedic surgeons. In addition to surgical options, there are several nonsurgical intradiscal treatments that have gained interest, ranging from biologic, nonbiologic, cell-based, and molecular therapies. However, there is limited evidence for many of these techniques, and some are still in the clinical trial stage. We describe a broad overview of these intradiscal therapies, the mechanism of action, and the evidence behind them.
Collapse
|
38
|
Markman JD, Schnitzer TJ, Perrot S, Beydoun SR, Ohtori S, Viktrup L, Yang R, Bramson C, West CR, Verburg KM. Clinical Meaningfulness of Response to Tanezumab in Patients with Chronic Low Back Pain: Analysis From a 56-Week, Randomized, Placebo- and Tramadol-Controlled, Phase 3 Trial. Pain Ther 2022; 11:1267-1285. [PMID: 35962939 PMCID: PMC9633876 DOI: 10.1007/s40122-022-00424-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/28/2022] [Indexed: 11/29/2022] Open
Abstract
INTRODUCTION A recent phase 3, randomized, placebo- and tramadol-controlled trial (56-week treatment/24-week safety follow-up) demonstrated efficacy of tanezumab 10 mg in patients with chronic low back pain (CLBP) and a history of inadequate response to standard-of-care analgesics. Here, we report on the clinical meaningfulness of treatment response in this study, focused on secondary measures of pain, interference with daily functions, overall disease status, and satisfaction with treatment. METHODS Patients received placebo (up to week 16; n = 406), subcutaneously administered (SC) tanezumab 5 mg (every 8 weeks; n = 407), SC tanezumab 10 mg (every 8 weeks; n = 407), or orally administered tramadol prolonged-release (100-300 mg/day; n = 605) for 56 weeks. Patient's global assessment of low back pain (PGA-LBP), Brief Pain Inventory-short form (BPI-sf), Treatment Satisfaction Questionnaire for Medication (TSQM), and modified Patient-Reported Treatment Impact (mPRTI) were assessed at weeks 16 and 56. RESULTS At week 16, significant (p < 0.05) improvements over placebo were evident with tanezumab for the PGA-LBP (10 mg) and most BPI-sf (both doses), TSQM (both doses), and mPRTI (both doses) items assessed. Improvements over baseline persisted for the PGA-LBP and BPI-sf at week 56. However, the magnitude of improvements was modestly lower at week 56 relative to week 16. Tramadol did not improve PGA-LBP or BPI-sf scores versus placebo at week 16. Most differences between tanezumab and tramadol at week 56 did not reach the level of statistical significance for all endpoints. CONCLUSIONS The totality of the evidence as captured by measures of pain, interference with daily function, patient overall assessment of disease status, and satisfaction with treatment demonstrates the clinically meaningful benefit of tanezumab for some patients with CLBP compared with placebo. CLINICALTRIALS gov: NCT02528253.
Collapse
Affiliation(s)
- John D Markman
- University of Rochester School of Medicine and Dentistry, 2180 S. Clinton Ave, Rochester, NY, 14618, USA.
| | - Thomas J Schnitzer
- Northwestern University Feinberg School of Medicine, 710 N Lake Shore Drive, Room 1020, Chicago, IL, 60611, USA
| | - Serge Perrot
- Pain Center, Cochin Hospital, INSERM U 987, Paris University, Paris, France
| | - Said R Beydoun
- University of Southern California, 1520 San Pablo Street, Suite 3000, Los Angeles, CA, 90033, USA
| | - Seiji Ohtori
- Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Lars Viktrup
- Eli Lilly & Company, 893 Delaware St, Indianapolis, IN, 46225, USA
| | - Ruoyong Yang
- Pfizer Inc, 235 E 42nd St, New York, NY, 10017, USA
| | | | | | | |
Collapse
|
39
|
Changes in Elements and Relationships among Elements in Intervertebral Disc Degeneration. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19159042. [PMID: 35897416 PMCID: PMC9332279 DOI: 10.3390/ijerph19159042] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/20/2022] [Accepted: 07/23/2022] [Indexed: 11/17/2022]
Abstract
Intervertebral disc degeneration (IVDD) is a complex and progressive process of disc aging. One of the most important causes of changes in the internal environment, leading to IVDD, can be changes in the concentration of individual metal elements. This study aimed to analyze the concentrations of copper, iron, manganese, lead, zinc, sodium, potassium, phosphorus, and calcium in the degenerated intervertebral discs of the lumbosacral spine, compared to healthy intervertebral discs. The study group (S) consisted of 113 Caucasian patients, qualified by a specialist surgeon for IVDD of the lumbosacral spine. The control group (C) consisted of 81 individuals. The biological material was obtained from Caucasian human cadavers during post-mortem examination. The concentrations of individual elements were assessed using inductively coupled plasma−optical emission spectroscopy (ICP-OES). Statistically significant differences in the concentrations of microelements, depending on the degree of pain intensity, were noted for only potassium (p < 0.05). Statistically significant differences in the concentrations of the assessed microelements, depending on the degree of radiological advancement of the lesions, were noted for copper and iron (p < 0.05). In the degenerated intervertebral discs, the strongest relationships were noted between the concentrations of zinc and lead (r = 0.67; p < 0.05), zinc and phosphorus (r = 0.74; p < 0.05), and zinc and calcium (r = 0.77; p < 0.05). It has been indicated that, above all, the concentrations of copper and iron depend on the advancement of radiological changes, according to the Pfirrmann scale; however, no influence on the pain intensity, depending on the concentration of the assessed elements, was found.
Collapse
|
40
|
Weng HJ, Pham QTT, Chang CW, Tsai TF. Druggable Targets and Compounds with Both Antinociceptive and Antipruritic Effects. Pharmaceuticals (Basel) 2022; 15:892. [PMID: 35890193 PMCID: PMC9318852 DOI: 10.3390/ph15070892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/07/2022] [Accepted: 07/15/2022] [Indexed: 12/10/2022] Open
Abstract
Pain and itch are both important manifestations of various disorders, such as herpes zoster, atopic dermatitis, and psoriasis. Growing evidence suggests that both sensations have shared mediators, overlapping neural circuitry, and similarities in sensitization processes. In fact, pain and itch coexist in some disorders. Determining pharmaceutical agents and targets for treating pain and itch concurrently is of scientific and clinical relevance. Here we review the neurobiology of pain and itch and discuss the pharmaceutical targets as well as novel compounds effective for the concurrent treatment of these sensations.
Collapse
Affiliation(s)
- Hao-Jui Weng
- Department of Dermatology, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan;
- Department of Dermatology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
| | - Quoc Thao Trang Pham
- International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Dermatology, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 70000, Vietnam
| | - Chia-Wei Chang
- Department of Dermatology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
| | - Tsen-Fang Tsai
- Department of Dermatology, National Taiwan University Hospital, Taipei 100225, Taiwan
| |
Collapse
|
41
|
Sun Q, Li G, Liu D, Xie W, Xiao W, Li Y, Cai M. Peripheral nerves in the tibial subchondral bone : the role of pain and homeostasis in osteoarthritis. Bone Joint Res 2022; 11:439-452. [PMID: 35775136 PMCID: PMC9350689 DOI: 10.1302/2046-3758.117.bjr-2021-0355.r1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Osteoarthritis (OA) is a highly prevalent degenerative joint disorder characterized by joint pain and physical disability. Aberrant subchondral bone induces pathological changes and is a major source of pain in OA. In the subchondral bone, which is highly innervated, nerves have dual roles in pain sensation and bone homeostasis regulation. The interaction between peripheral nerves and target cells in the subchondral bone, and the interplay between the sensory and sympathetic nervous systems, allow peripheral nerves to regulate subchondral bone homeostasis. Alterations in peripheral innervation and local transmitters are closely related to changes in nociception and subchondral bone homeostasis, and affect the progression of OA. Recent literature has substantially expanded our understanding of the physiological and pathological distribution and function of specific subtypes of neurones in bone. This review summarizes the types and distribution of nerves detected in the tibial subchondral bone, their cellular and molecular interactions with bone cells that regulate subchondral bone homeostasis, and their role in OA pain. A comprehensive understanding and further investigation of the functions of peripheral innervation in the subchondral bone will help to develop novel therapeutic approaches to effectively prevent OA, and alleviate OA pain. Cite this article: Bone Joint Res 2022;11(7):439–452.
Collapse
Affiliation(s)
- Qi Sun
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Gen Li
- Department of Orthopedics, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Di Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Wenqing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Wenfeng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ming Cai
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China
| |
Collapse
|
42
|
Berenbaum F, Schnitzer TJ, Kivitz AJ, Viktrup L, Hickman A, Pixton G, Brown MT, Davignon I, West CR. General Safety and Tolerability of Subcutaneous Tanezumab for Osteoarthritis: A Pooled Analysis of Three Randomized, Placebo-Controlled Trials. Arthritis Care Res (Hoboken) 2022; 74:918-928. [PMID: 33973384 PMCID: PMC9310640 DOI: 10.1002/acr.24637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/07/2021] [Accepted: 04/27/2021] [Indexed: 11/08/2022]
Abstract
OBJECTIVE This pooled analysis of 3 randomized, placebo-controlled trials (16-24 week treatment and 8-24 week follow-up) assessed safety of subcutaneous tanezumab (2.5-10 mg every 8 weeks) in 1,840 patients with hip or knee osteoarthritis. METHODS Overall treatment-emergent adverse events (TEAEs) and TEAEs of abnormal peripheral sensation (APS) were prospectively assessed in 3 trials. Joint safety events (primary osteonecrosis, rapidly progressive osteoarthritis [RPOA], subchondral insufficiency fracture, and pathologic fracture; adjudicated by an independent expert committee) and TEAEs potentially associated with sympathetic neuropathy were prospectively assessed in 2 trials. RESULTS During the treatment period, overall TEAE rates were 51.7% for placebo and 39.5-54.8% for tanezumab 2.5-10 mg; treatment discontinuation rates were 2.0% for placebo and 0-1.3% for tanezumab. Rates of composite joint safety events (predominantly RPOA type 1) over the treatment plus follow-up period were 0% for placebo and 0.5-3.2% for tanezumab 2.5-5 mg (5 mg was statistically greater than placebo); total joint replacement rates with tanezumab (5.9-7.0%) were not significantly different from placebo (4.5%). Rates of TEAEs of APS (predominantly paresthesia and hypoesthesia) were 2.2% for placebo and 3.2-12.8% for tanezumab 2.5-10 mg. Rates of TEAEs potentially associated with sympathetic neuropathy (predominantly bradycardia and orthostatic hypotension) were 0.8% for placebo and 0.5-2.8% for tanezumab 2.5-5 mg (exposure-adjusted rates were not significantly different from placebo). CONCLUSION Tanezumab was generally well tolerated. TEAEs of APS (mostly mild and transient) and joint safety events were infrequent but more common with tanezumab than placebo. A tanezumab dose of 2.5 mg demonstrated a more favorable safety profile than higher doses.
Collapse
Affiliation(s)
- Francis Berenbaum
- Sorbonne Université, INSERM, AP‐HP Hospital Saint AntoineParisFrance
| | | | - Alan J. Kivitz
- Altoona Center for Clinical ResearchDuncansvillePennsylvania
| | | | | | | | | | | | | |
Collapse
|
43
|
Yang L, Pan YL, Liu CZ, Guo DX, Zhao X. A retrospective comparative study of local anesthesia only and local anesthesia with sedation for percutaneous endoscopic lumbar discectomy. Sci Rep 2022; 12:7427. [PMID: 35523922 PMCID: PMC9076919 DOI: 10.1038/s41598-022-11393-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 04/20/2022] [Indexed: 12/28/2022] Open
Abstract
It is still an unsolved problem to achieve both immediate intraoperative feedback and satisfactory surgical experience in percutaneous endoscopic lumbar discectomy under local anesthesia for lumbar disk herniation (LDH) patients. Herein, we compared the analgesic and sedative effects of local anesthesia alone and local anesthesia with conscious sedation in LDH patients during percutaneous endoscopic lumbar discectomy. Ninety-two LDH patients were enrolled and divided into the following groups: control group (Con Group), dexmedetomidine group (Dex Group), oxycodone group (Oxy Group), and dexmedetomidine + oxycodone group (Dex + Oxy Group). Various signs, including mean arterial pressure (MAP), heart rate (HR), pulse oximeter oxygen saturation (SpO2) and Ramsay score, were compared before anesthesia (T1), working cannula establishment (T2), nucleus pulposus removal (T3), and immediately postoperation (T4). Clinical outcomes, including VAS score, operation time, hospitalization period, Macnab criteria, and SF-36 score, were also evaluated. The Dex + Oxy Group showed the most stable MAP and HR at T2 and T3 in all groups. The clinical outcomes, such as VAS, hospitalization period, Macnab criteria, and SF-36 score, have no significant differences among groups (p > 0.05). Local anesthesia combined with conscious sedation is a safe and effective method to improve the surgical experience and achieve satisfying clinical outcomes for LDH patients during percutaneous endoscopic lumbar discectomy.
Collapse
Affiliation(s)
- Liu Yang
- Department of Spinal Surgery, Zhengzhou Orthopaedic Hospital, Zhengzhou, Henan Province, China
| | - Yu-Lin Pan
- Department of Spinal Surgery, Zhengzhou Orthopaedic Hospital, Zhengzhou, Henan Province, China
| | - Chun-Zhi Liu
- Department of Spinal Surgery, Zhengzhou Orthopaedic Hospital, Zhengzhou, Henan Province, China
| | - De-Xin Guo
- Department of Spinal Surgery, Zhengzhou Orthopaedic Hospital, Zhengzhou, Henan Province, China
| | - Xin Zhao
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin Province, China.
| |
Collapse
|
44
|
Chronic Pain in Musculoskeletal Diseases: Do You Know Your Enemy? J Clin Med 2022; 11:jcm11092609. [PMID: 35566735 PMCID: PMC9101840 DOI: 10.3390/jcm11092609] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 02/06/2023] Open
Abstract
Musculoskeletal pain is a condition that characterises several diseases and represents a constantly growing issue with enormous socio-economic burdens, highlighting the importance of developing treatment algorithms appropriate to the patient’s needs and effective management strategies. Indeed, the algic condition must be assessed and treated independently of the underlying pathological process since it has an extremely negative impact on the emotional and psychic aspects of the individual, leading to isolation and depression. A full understanding of the pathophysiological mechanisms involved in nociceptive stimulation and central sensitization is an important step in improving approaches to musculoskeletal pain. In this context, the bidirectional relationship between immune cells and neurons involved in nociception could represent a key point in the understanding of these mechanisms. Therefore, we provide an updated overview of the magnitude of the musculoskeletal pain problem, in terms of prevalence and costs, and summarise the role of the most important molecular players involved in the development and maintenance of pain. Finally, based on the pathophysiological mechanisms, we propose a model, called the “musculoskeletal pain cycle”, which could be a useful tool to counteract resignation to the algic condition and provide a starting point for developing a treatment algorithm for the patient with musculoskeletal pain.
Collapse
|
45
|
TRPM3-mediated dynamic mitochondrial activity in NGF-induced latent sensitization of chronic low back pain. Pain 2022; 163:e1115-e1128. [PMID: 35384915 DOI: 10.1097/j.pain.0000000000002642] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/23/2022] [Indexed: 11/26/2022]
Abstract
ABSTRACT The transient receptor potential ion channel TRPM3 is highly prevalent on nociceptive dorsal root ganglion (DRG) neurons, but its functions in neuronal plasticity of chronic pain remain obscure. In an animal model of nonspecific low back pain (LBP), latent spinal sensitization known as nociceptive priming is induced by nerve growth factor (NGF) injection. Here we address the TRPM3-associated molecular basis of NGF-induced latent spinal sensitization at presynaptic level by studying TRPM3-mediated calcium transients in DRG neurons. By investigating TRPM3-expressing HEK cells, we further show the dynamic mitochondrial activity downstream of TRPM3 activation. NGF enhances TRPM3 function, attenuates TRPM3 tachyphylaxis, and slows intracellular calcium clearance; TRPM3 activation triggers more mitochondrial calcium loading than depolarization does, causing a steady-state mitochondrial calcium elevation and a delayed recovery of cytosolic calcium; mitochondrial calcium buffering accounts for approximately 40% of calcium influx subsequent to TRPM3 activation. TRPM3 activation provokes an outbreak of pulsatile superoxide production (mitoflash) that comes in the form of a surge in frequency being tunable. We suggest that mitoflash pulsations downstream of TRPM3 activation might be an early signaling event initiating pain sensitization. Tuning of mitoflash activity would be a novel bottom-up therapeutic strategy for chronic pain conditions such as LBP and beyond.
Collapse
|
46
|
Lange U, Dischereit G, Klemm PM. Schmerzreduktion durch physikalische Medizin. Z Rheumatol 2022; 81:376-385. [DOI: 10.1007/s00393-022-01182-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2021] [Indexed: 11/30/2022]
|
47
|
Neogi T, Hunter DJ, Churchill M, Shirinsky I, White A, Guermazi A, Omata M, Fountaine RJ, Pixton G, Viktrup L, Brown MT, West CR, Verburg KM. Observed efficacy and clinically important improvements in participants with osteoarthritis treated with subcutaneous tanezumab: results from a 56-week randomized NSAID-controlled study. Arthritis Res Ther 2022; 24:78. [PMID: 35351194 PMCID: PMC8966257 DOI: 10.1186/s13075-022-02759-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 03/07/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A recent phase 3 study demonstrated that treatment with tanezumab, a nerve growth factor inhibitor, or nonsteroidal anti-inflammatory drugs (NSAIDs) improves pain and physical function in participants with moderate-to-severe osteoarthritis (OA) of the hip or knee. Here, we evaluated the time course and clinical importance of these initial efficacy findings using a mixture of primary, secondary, and post hoc endpoints. METHODS Participants on stable NSAID therapy and with a history of inadequate response to other standard OA analgesics were enrolled in an 80-week (56-week treatment/24-week safety follow-up), randomized, NSAID-controlled, phase 3 study primarily designed to assess the safety of tanezumab for moderate-to-severe OA of the knee or hip. Participants received oral NSAID (twice daily naproxen, celecoxib, or diclofenac) or subcutaneous tanezumab (2.5mg or 5mg every 8 weeks). Non-responders were discontinued at week 16. Changes from baseline in WOMAC Pain and Physical Function, Patient's Global Assessment of Osteoarthritis (PGA-OA), and average pain in the index joint were compared between tanezumab and NSAID groups over the 56-week treatment period. Clinically meaningful response (e.g., ≥30% and ≥50% improvement in WOMAC Pain and Physical Function), rescue medication use, and safety were also assessed. RESULTS All groups improved WOMAC Pain, WOMAC Physical Function, PGA-OA, and average pain in the index joint over the 56-week treatment period relative to baseline. Across all groups, improvements generally occurred from the time of first assessment (week 1 or 2) to week 16 and then slightly decreased from week 16 to 24 before stabilizing from weeks 24 to 56. The magnitude of improvement and the proportion of participants achieving ≥30% and ≥50% improvement in these measures was greater (unadjusted p≤0.05) with tanezumab than with NSAID at some timepoints on or before week 16. Adverse events of abnormal peripheral sensation, prespecified joint safety events, and total joint replacement surgery occurred more frequently with tanezumab than with NSAID. CONCLUSIONS Tanezumab and NSAID both provided early and sustained (up to 56 weeks) efficacy relative to baseline. Improvements in pain and function were clinically meaningful in a substantial proportion of participants. Adverse events of abnormal peripheral sensation and joint safety events occurred more frequently with tanezumab than with NSAID. TRIAL REGISTRATION ClinicalTrials.gov NCT02528188 . Registered on 19 July 2015.
Collapse
Affiliation(s)
- Tuhina Neogi
- Boston University School of Medicine, Boston, MA, USA.
| | | | | | - Ivan Shirinsky
- Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | | | - Ali Guermazi
- Boston University School of Medicine, Boston, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Shoji S, Suzuki A, Gaitonde P, Cai CH, Marshall S. Population Pharmacokinetics of Tanezumab Following Intravenous or Subcutaneous Administration to Patients with Osteoarthritis or Chronic Low Back Pain. Br J Clin Pharmacol 2022; 88:3321-3334. [PMID: 35112378 DOI: 10.1111/bcp.15259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 10/04/2021] [Accepted: 11/07/2021] [Indexed: 11/27/2022] Open
Abstract
AIMS Describe population pharmacokinetics of intravenous (IV) and subcutaneous (SC) tanezumab across Phase 2b/3 studies of osteoarthritis (OA) and chronic low back pain (CLBP). Methods Data from 10 studies of IV or SC tanezumab (2.5-20 mg every 8 weeks for up to 56 weeks) were included in a multi-step analysis. In Step 1, a two-compartment model with linear and non-linear elimination (based on prior analysis of pre-2015 IV osteoarthritis studies) was expanded to include other pre-2015 studies. In Step 2, post-2015 SC studies were combined into the model. Steps 3 and 4 evaluated impact of baseline nerve growth factor (NGF) and treatment-emergent anti-drug antibodies (TE ADA). RESULTS SC bioavailability was estimated at 62-76%. The key disposition parameters CL, Vc , Vp , and KM were estimated to be 0.133 L·day-1 , 2.6 L, 1.77 L and 31.2 μg·L-1 . Plasma tanezumab concentration was predicted to reach Cmax at 8.9- 11.2 days following single and multiple SC administration in typical patients within the dose range of SC Phase 3 studies (2.5-10 mg every 8 weeks). Exposure of a typical patient was similar between IV and SC for the second part of the dosing interval (weeks 4-8). Covariates selected on the absorption parameters were WT, age, sex, and injection site. Baseline NGF had minimal effect on maximum elimination capacity and TE ADA status was associated with slightly higher tanezumab clearance (6-7%). CONCLUSION Our model adequately described plasma tanezumab concentration versus time following IV or SC administration. WT was the most influential covariate with respect to absorption of tanezumab in comparison to patient population (OA and CLBP) or other demographics. There was no clinically relevant effect of baseline NGF or TE ADA on tanezumab PK.
Collapse
Affiliation(s)
| | | | - Puneet Gaitonde
- Clinical Pharmacology, Global Product Development, Pfizer, Groton, CT, USA
| | - Chun-Hua Cai
- Clinical Pharmacology, Global Product Development, Pfizer, Groton, CT, USA
| | | |
Collapse
|
49
|
Neurological safety of subcutaneous tanezumab versus NSAID in patients with osteoarthritis. J Neurol Sci 2022; 434:120184. [DOI: 10.1016/j.jns.2022.120184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/27/2021] [Accepted: 02/10/2022] [Indexed: 11/15/2022]
|
50
|
Zhao D, Luo MH, Pan JK, Zeng LF, Liang GH, Han YH, Liu J, Yang WY. Based on minimal clinically important difference values, a moderate dose of tanezumab may be a better option for treating hip or knee osteoarthritis: a meta-analysis of randomized controlled trials. Ther Adv Musculoskelet Dis 2022; 14:1759720X211067639. [PMID: 35069811 PMCID: PMC8777347 DOI: 10.1177/1759720x211067639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/01/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Tanezumab is a nerve growth factor monoclonal antibody that may regulate pain in hip or knee osteoarthritis (OA). This meta-analysis was performed to evaluate the efficacy and safety of low and moderate doses of tanezumab in treating hip or knee OA. METHODS PubMed, EMBASE, the Cochrane Library, and Web of Science were comprehensively searched for clinical trials published before 1 May 2021. Patients were assessed via efficacy and safety outcomes. RESULTS Twelve randomized controlled trials including 6022 patients were identified. Both low and moderate doses of tanezumab significantly improved efficacy outcomes. However, only the point estimates (mean difference, MD) of moderate-dose tanezumab significantly exceeded the minimal clinically important differences (MCIDs). There were no significant differences in the incidence of treatment-related adverse events (AEs), withdrawals due to AEs, serious AEs, and total joint replacement between the tanezumab and placebo groups, whereas the incidence of AEs was higher in the tanezumab group (relative risk, RR = 1.10; 95% confidence interval, 95% CI = 1.04-1.17). The incidence of rapidly progressive OA was significantly higher in the combined low- and moderate-dose tanezumab groups than in the placebo group (RR = 5.01; 95% CI = 1.17-21.33). Furthermore, both low and moderate doses of tanezumab significantly increased the incidence of abnormal peripheral sensation (RR = 1.99, 95% CI = 1.21-3.28; RR = 2.64, 95% CI = 1.91-3.67, respectively). Compared with nonsteroidal anti-inflammatory drugs (NSAIDs) and opioids, tanezumab showed significantly improved efficacy outcomes (p < 0.05). However, the point estimates (MD) of tanezumab were not greater than the MCID. Pooled analysis showed no significant differences between tanezumab and NSAIDs and opioids in safety outcomes (p > 0.05). CONCLUSION Tanezumab is efficacious in patients with hip or knee OA. Tanezumab is relatively well tolerated and safe but increases the incidence of AEs and reversible abnormal peripheral sensation. Additional studies on the occurrence of rapidly progressive OA are needed. A moderate dose of tanezumab may maximize the benefits for hip or knee OA.
Collapse
Affiliation(s)
- Di Zhao
- The Second Clinical School of Guangzhou
University of Chinese Medicine, Guangzhou, China
- Bone and Joint Research Team of Degeneration
and Injury, Guangdong Provincial Academy of Chinese Medical Sciences,
Guangzhou, China
| | - Ming-hui Luo
- Bone and Joint Research Team of Degeneration
and Injury, Guangdong Provincial Academy of Chinese Medical Sciences,
Guangzhou, China
- Department of Orthopedics, The Second
Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou,
China
| | - Jian-ke Pan
- Bone and Joint Research Team of Degeneration
and Injury, Guangdong Provincial Academy of Chinese Medical Sciences,
Guangzhou, China
- Department of Orthopedics, The Second
Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou,
China
| | - Ling-feng Zeng
- Bone and Joint Research Team of Degeneration
and Injury, Guangdong Provincial Academy of Chinese Medical Sciences,
Guangzhou, China
- Department of Orthopedics, The Second
Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou,
China
| | - Gui-hong Liang
- Bone and Joint Research Team of Degeneration
and Injury, Guangdong Provincial Academy of Chinese Medical Sciences,
Guangzhou, China
- Department of Orthopedics, The Second
Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou,
China
| | - Yan-hong Han
- Bone and Joint Research Team of Degeneration
and Injury, Guangdong Provincial Academy of Chinese Medical Sciences,
Guangzhou, China
- Department of Orthopedics, The Second
Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou,
China
| | - Jun Liu
- Bone and Joint Research Team of Degeneration
and Injury, Guangdong Provincial Academy of Chinese Medical Sciences,
Guangzhou 510120, China
- Guangdong Second Traditional Chinese Medicine
Hospital (Guangdong Province Engineering Technology Research Institute of
Traditional Chinese Medicine), Guangzhou, China
- The Fifth Clinical Medical College of
Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei-yi Yang
- Bone and Joint Research Team of Degeneration
and Injury, Guangdong Provincial Academy of Chinese Medical Sciences,
Guangzhou 510120, China
- Department of Orthopedics, The Second
Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou,
China
| |
Collapse
|