1
|
Key B, Brown DJ. Making sense of feelings. Neurosci Conscious 2024; 2024:niae034. [PMID: 39301415 PMCID: PMC11412240 DOI: 10.1093/nc/niae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/12/2024] [Accepted: 08/27/2024] [Indexed: 09/22/2024] Open
Abstract
Internal feeling states such as pain, hunger, and thirst are widely assumed to be drivers of behaviours essential for homeostasis and animal survival. Call this the 'causal assumption'. It is becoming increasingly apparent that the causal assumption is incompatible with the standard view of motor action in neuroscience. While there is a well-known explanatory gap between neural activity and feelings, there is also a disjuncture in the reverse direction-what role, if any, do feelings play in animals if not to cause behaviour? To deny that feelings cause behaviours might thus seem to presage epiphenomenalism-the idea that subjective experiences, including feelings, are inert, emergent and, on some views, non-physical properties of brain processes. Since epiphenomenalism is antagonistic to fundamental commitments of evolutionary biology, the view developed here challenges the standard view about the function of feelings without denying that feelings have a function. Instead, we introduce the 'sense making sense' hypothesis-the idea that the function of subjective experience is not to cause behaviour, but to explain, in a restricted but still useful sense of 'explanation'. A plausible framework is derived that integrates commonly accepted neural computations to blend motor control, feelings, and explanatory processes to make sense of the way feelings are integrated into our sense of how and why we do and what we do.
Collapse
Affiliation(s)
- Brian Key
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Deborah J Brown
- School of Historical and Philosophical Inquiry, University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
2
|
Hagiwara K. [Insular lobe epilepsy. Part 1: semiology]. Rinsho Shinkeigaku 2024; 64:527-539. [PMID: 39069491 DOI: 10.5692/clinicalneurol.cn-001930-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The insula is often referred to as "the fifth lobe" of the brain, and its accessibility used to be very limited due to the deep location under the opercula as well as the sylvian vasculature. It was not until the availability of modern stereo-electroencephalography (SEEG) technique that the intracranial electrodes could be safely and chronically implanted within the insula, thereby enabling anatomo-electro-clinical correlations in seizures of this deep origin. Since the first report of SEEG-recorded insular seizures in late 1990s, the knowledge of insular lobe epilepsy (ILE) has rapidly expanded. Being on the frontline for the diagnosis and management of epilepsy, neurologists should have a precise understanding of ILE to differentiate it from epilepsies of other lobes or non-epileptic conditions. Owing to the multimodal nature and rich anatomo-functional connections of the insula, ILE has a wide range of clinical presentations. The following symptoms should heighten the suspicion of ILE: somatosensory symptoms involving a large/bilateral cutaneous territory or taking on thermal/painful character, and cervico-laryngeal discomfort. The latter ranges from slight dyspnea to a strong sensation of strangulation (laryngeal constriction). Other symptoms include epigastric discomfort/nausea, hypersalivation, auditory, vestibular, gustatory, and aphasic symptoms. However, most of these insulo-opercular symptoms can easily be masked by those of extra-insular seizure propagation. Indeed, sleep-related hyperkinetic (hypermotor) epilepsy (SHE) is a common clinical presentation of ILE, which shows predominant hyperkinetic and/or tonic-dystonic features that are often indistinguishable from those of fronto-mesial seizures. Subtle objective signs, such as constrictive throat noise (i.e., laryngeal constriction) or aversive behavior (e.g., facial grimacing suggesting pain), are often the sole clue in diagnosing insular SHE. Insular-origin seizures should also be considered in temporal-like seizures without frank anatomo-electro-clinical correlations. All in all, ILE is not the epilepsy of an isolated island but rather of a crucial hub involved in the multifaceted roles of the brain.
Collapse
|
3
|
Hagiwara K. [Insular lobe epilepsy. Part 2: presurgical evaluation & surgical interventions with stereo-electroencephalography]. Rinsho Shinkeigaku 2024; 64:540-549. [PMID: 39069490 DOI: 10.5692/clinicalneurol.cn-001930-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Identification of insular lobe epilepsy (ILE) presents a major clinical challenge in the diagnosis and treatment of drug-resistant focal epilepsies. ILE has diverse clinical presentations due to the multifaceted functions of the insula. Surface EEG findings do not provide straightforward information to predict this deeply-situated origin of seizures; they are even misleading, masquerading as those of other focal epilepsies, such as temporal and frontal ones. Non-invasive imagings may disclose insular abnormalities, but extra-insular abnormalities can coexist or even stand out. Careful reading and a second-look guided by other clinical information are crucial in order not to miss subtle insulo-opercular abnormalities. Furthermore, a possible insular origin of seizures should be considered in MRI-negative frontal/temporal/parietal epilepsies. Therefore, exploration/exclusion of insular-origin seizures is necessary for a great majority of surgical candidates. As for the stereo-electroencephalography, considered as the gold standard method for intra-cranial EEG investigations with suspicion of ILE, planning of electrode positions/trajectories require sufficient knowledge of the functional localization and anatomo-functional connectivity of the insula. Dense sampling within the insula is required in patients with probable ILE, because the seizure-onset zone can be restricted to a single insular gyrus or even a part of it. It is also crucial to explore extra-insular regions on the basis of non-invasive investigation results while considering their anatomo-functional relationships with the insula. From a surgical perspective, differentiating seizures strictly confined to the insula from those extending to the opercula is of particular importance. Pure insular seizures can be treated with less invasive measures, such as radiofrequency thermocoagulation. To conclude, close attention must be paid to the possibility of ILE throughout the diagnostic workup. The precise identification/exclusion of ILE is a prerequisite to provide appropriate and effective surgical treatment in pharmaco-resistant focal epilepsies.
Collapse
|
4
|
Farjoud Kouhanjani M, Hosseini SA, Asadi-Pooya AA, Heydari M, Hosseini SMH, Farjoudi Kouhanjani HK. Historical roots of the stigma of epilepsy: A review of the classic Iranian literature. Epilepsy Behav 2024; 152:109644. [PMID: 38280255 DOI: 10.1016/j.yebeh.2024.109644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/02/2024] [Accepted: 01/10/2024] [Indexed: 01/29/2024]
Abstract
BACKGROUND The stigma toward epilepsy is a daily challenge for people with epilepsy (PWE) and can influence the well-being and prognosis of these individuals. However, the cultural origins of such stigma have sparsely been examined. In this study, we aimed to investigate the classic Persian literature to gain insight into the historical and cultural beliefs and opinions regarding epilepsy as a determinant in developing stigma towards PWE. METHODS In this narrative review of the classic Persian literature, we investigated the opinions and beliefs regarding epilepsy and PWE. In February 2023, we searched https://ganjoor.net (an open-access database of Iranian literature) for the relevant literary materials (poem and prose) using the Persian translation of the terms epilepsy (Sar'e) and epileptic (Masroo'e). Two clinical researchers went through the results and extracted the related materials under the supervision of two experts in Persian literature. A bilingual academic translated the included literary materials from Persian to English. RESULTS Our search yielded 57 literature materials by 31 poets and writers from the 4th to 14th Hijri centuries, roughly coinciding with the past Gregorian millennium (1000-2000 AC). We classified the literary concepts related to epilepsy stigma into five subgroups: (i) a simile for pain and suffering; (ii) an atonement for blasphemous beliefs or a disease caused by supernatural power; (iii) a sign of madness, insanity, and lack of wisdom; (iv) a celestial observation; and (v) a subject for jokes. CONCLUSIONS Classic Persian literature considered epilepsy as a simile for suffering and a sign of insanity that is caused by blasphemous beliefs or celestial objects, with PWE classified as insane and unwise. While such depictions became less prevalent after the 14th century CE, they can give rise to misconceptions and negative stigma toward PWE and should be addressed in modern culture. Each society should critically investigate its socio-cultural origins of stigma and rectify such misbeliefs.
Collapse
Affiliation(s)
| | - Seyed Ali Hosseini
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ali A Asadi-Pooya
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Jefferson Comprehensive Epilepsy Center, Department of Neurology, Thomas Jefferson University, Philadelphia, USA.
| | - Mojtaba Heydari
- Poostchi Ophthalmology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Seyed Mohammad Hadi Hosseini
- Department of Education of Fars, Shiraz, Fars Province, Iran; Farhangian University, Shiraz, Fars Province, Iran; Qatar University, Qatar.
| | | |
Collapse
|
5
|
Zhu Y, Yao Y, Kuang R, Chen Z, Du Z, Qu S. Global research trends of nanotechnology for pain management. Front Bioeng Biotechnol 2023; 11:1249667. [PMID: 37701493 PMCID: PMC10494532 DOI: 10.3389/fbioe.2023.1249667] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/14/2023] [Indexed: 09/14/2023] Open
Abstract
Background: Nanotechnology has been increasingly used in healthcare during recent years. However, the systematic evaluation of research on nanotechnology for pain management is lacking. In this study, we employed a bibliometric approach to examine the status of the research and global trends of nanotechnology in relation to pain management. Methods: We selected relevant papers published in the Web of Science Core Collection database between 2013 and 2022 using search terms related to nanotechnology and pain management. Subsequently, the following bibliographic information was collected: publication year, originating country/region, affiliated authors and institutions, published journal, references cited, citation frequency, and keywords. The bibliometric software programs VOSViewer and CiteSpace were employed to obtain bibliometric statistics and perform visual analysis. Results: A total of 2680 papers were retrieved. The number of publications in the field of nanotechnology for pain management has been increasing annually since 2013. China had the highest number of published papers, whereas the United States led in total citations. The Chinese Academy of Sciences was the most prolific institution, while the Tehran University of Medical Sciences had the highest overall citations. Furthermore, De Paula was the most prolific author. Papers associated with nanotechnology for pain management were mainly published in the International Journal of Pharmaceutics, Pharmaceutics, and the International Journal of Nanomedicine. Keyword analysis showed that "in-vitro" and "drug-delivery" appeared most frequently, with the top 10 common keywords comprising nanoparticles, pain, in-vitro, drug-delivery, delivery, release, inflammation, neuropathic pain, formulation, and expression. Lastly, the latest emerging keyword was "electrochemical sensor". Conclusion: Research on applying nanotechnology for pain management is growing steadily. China is the top country in terms of number of publications, with institutions under the Chinese Academy of Sciences making significant contributions to this field. "In-vitro" and "drug-delivery" are the current hotspots in this area, with "electrochemical sensor" as the latest topic at the research forefront. However, national and inter-institutional collaborations should be strengthened to enable patients with pain disorders to benefit from nanotechnology implementation in pain management.
Collapse
Affiliation(s)
- Yi Zhu
- Department of Anesthesiology, Hunan Children’s Hospital, Changsha, China
| | | | | | | | | | | |
Collapse
|
6
|
Li Y, Yin K, Diao Y, Fang M, Yang J, Zhang J, Cao H, Liu X, Jiang J. A biopolymer-gated ionotronic junctionless oxide transistor array for spatiotemporal pain-perception emulation in nociceptor network. NANOSCALE 2022; 14:2316-2326. [PMID: 35084010 DOI: 10.1039/d1nr07896h] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Capable of reflecting the location and intensity of external harmful stimuli, a nociceptor network is of great importance for receiving pain-perception information. However, the hardware-based implementation of a nociceptor network through the use of a transistor array remains a great challenge in the area of brain-inspired neuromorphic applications. Herein, a simple ionotronic junctionless oxide transistor array with pain-perception abilities is successfully realized due to a coplanar-gate proton-coupling effect in sodium alginate biopolymer electrolyte. Several important pain-perception characteristics of nociceptors are emulated, such as a pain threshold, the memory of prior injury, and sensitization behavior due to pathway alterations. In particular, a good graded pain-perception network system has been successfully established through coplanar capacitance and resistance. More importantly, clear polarity reversal of Lorentz-type spatiotemporal pain-perception emulation can be finally realized in our projection-dependent nociceptor network. This work may provide new avenues for bionic medical machines and humanoid robots based on these intriguing pain-perception abilities.
Collapse
Affiliation(s)
- Yanran Li
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, P. R. China.
| | - Kai Yin
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, P. R. China.
| | - Yu Diao
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, P. R. China.
| | - Mei Fang
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, P. R. China.
| | - Junliang Yang
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, P. R. China.
| | - Jian Zhang
- School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin, 541004, P. R. China
| | - Hongtao Cao
- Laboratory of Advanced Nano Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Xiaoliang Liu
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, P. R. China.
| | - Jie Jiang
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, P. R. China.
| |
Collapse
|
7
|
De Ridder D, Adhia D, Vanneste S. The anatomy of pain and suffering in the brain and its clinical implications. Neurosci Biobehav Rev 2021; 130:125-146. [PMID: 34411559 DOI: 10.1016/j.neubiorev.2021.08.013] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 02/08/2023]
Abstract
Pain is an unpleasant sensory and emotional experience associated with actual or potential tissue damage. Chronic pain, with a prevalence of 20-30 % is the major cause of human suffering worldwide, because effective, specific and safe therapies have yet to be developed. It is unevenly distributed among sexes, with women experiencing more pain and suffering. Chronic pain can be anatomically and phenomenologically dissected into three separable but interacting pathways, a lateral 'painfulness' pathway, a medial 'suffering' pathway and a descending pain inhibitory pathway. One may have pain(fullness) without suffering and suffering without pain(fullness). Pain sensation leads to suffering via a cognitive, emotional and autonomic processing, and is expressed as anger, fear, frustration, anxiety and depression. The medial pathway overlaps with the salience and stress networks, explaining that behavioural relevance or meaning determines the suffering associated with painfulness. Genetic and epigenetic influences trigger chronic neuroinflammatory changes which are involved in transitioning from acute to chronic pain. Based on the concept of the Bayesian brain, pain (and suffering) can be regarded as the consequence of an imbalance between the two ascending and the descending pain inhibitory pathways under control of the reward system. The therapeutic clinical implications of this simple pain model are obvious. After categorizing the working mechanisms of each of the available treatments (pain killers, psychopharmacology, psychotherapy, neuromodulation, psychosurgery, spinal cord stimulation) to 1 or more of the 3 pathways, a rational combination can be proposed of activating the descending pain inhibitory pathway in combination with inhibition of the medial and lateral pathway, so as to rebalance the pain (and suffering) pathways.
Collapse
Affiliation(s)
- Dirk De Ridder
- Section of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.
| | - Divya Adhia
- Section of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Sven Vanneste
- Global Brain Health Institute, Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
8
|
Kolodny O, Moyal R, Edelman S. A possible evolutionary function of phenomenal conscious experience of pain. Neurosci Conscious 2021; 2021:niab012. [PMID: 34141452 PMCID: PMC8206511 DOI: 10.1093/nc/niab012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 12/11/2022] Open
Abstract
Evolutionary accounts of feelings, and in particular of negative affect and of pain, assume that creatures that feel and care about the outcomes of their behavior outperform those that do not in terms of their evolutionary fitness. Such accounts, however, can only work if feelings can be shown to contribute to fitness-influencing outcomes. Simply assuming that a learner that feels and cares about outcomes is more strongly motivated than one that does is not enough, if only because motivation can be tied directly to outcomes by incorporating an appropriate reward function, without leaving any apparent role to feelings (as it is done in state-of-the-art engineered systems based on reinforcement learning). Here, we propose a possible mechanism whereby pain contributes to fitness: an actor-critic functional architecture for reinforcement learning, in which pain reflects the costs imposed on actors in their bidding for control, so as to promote honest signaling and ultimately help the system optimize learning and future behavior.
Collapse
Affiliation(s)
- Oren Kolodny
- Department of Ecology, Evolution, and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem 9190401, Israel
| | - Roy Moyal
- Department of Psychology, Uris Hall, Ithaca, NY 14853, USA
| | - Shimon Edelman
- Department of Psychology, Uris Hall, Ithaca, NY 14853, USA
| |
Collapse
|
9
|
Bergeron D, Obaid S, Fournier-Gosselin MP, Bouthillier A, Nguyen DK. Deep Brain Stimulation of the Posterior Insula in Chronic Pain: A Theoretical Framework. Brain Sci 2021; 11:brainsci11050639. [PMID: 34063367 PMCID: PMC8156413 DOI: 10.3390/brainsci11050639] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/09/2021] [Accepted: 05/12/2021] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION To date, clinical trials of deep brain stimulation (DBS) for refractory chronic pain have yielded unsatisfying results. Recent evidence suggests that the posterior insula may represent a promising DBS target for this indication. METHODS We present a narrative review highlighting the theoretical basis of posterior insula DBS in patients with chronic pain. RESULTS Neuroanatomical studies identified the posterior insula as an important cortical relay center for pain and interoception. Intracranial neuronal recordings showed that the earliest response to painful laser stimulation occurs in the posterior insula. The posterior insula is one of the only regions in the brain whose low-frequency electrical stimulation can elicit painful sensations. Most chronic pain syndromes, such as fibromyalgia, had abnormal functional connectivity of the posterior insula on functional imaging. Finally, preliminary results indicated that high-frequency electrical stimulation of the posterior insula can acutely increase pain thresholds. CONCLUSION In light of the converging evidence from neuroanatomical, brain lesion, neuroimaging, and intracranial recording and stimulation as well as non-invasive stimulation studies, it appears that the insula is a critical hub for central integration and processing of painful stimuli, whose high-frequency electrical stimulation has the potential to relieve patients from the sensory and affective burden of chronic pain.
Collapse
Affiliation(s)
- David Bergeron
- Service de Neurochirurgie, Université de Montréal, Montréal, QC H3T 1L5, Canada; (S.O.); (M.-P.F.-G.); (A.B.)
- Correspondence:
| | - Sami Obaid
- Service de Neurochirurgie, Université de Montréal, Montréal, QC H3T 1L5, Canada; (S.O.); (M.-P.F.-G.); (A.B.)
| | | | - Alain Bouthillier
- Service de Neurochirurgie, Université de Montréal, Montréal, QC H3T 1L5, Canada; (S.O.); (M.-P.F.-G.); (A.B.)
| | - Dang Khoa Nguyen
- Service de Neurologie, Université de Montréal, Montréal, QC H3T 1L5, Canada;
| |
Collapse
|