1
|
Wang F, Tian ZC, Ding H, Yang XJ, Wang FD, Ji RX, Xu L, Cao ZX, Ma SB, Zhang M, Cui YT, Cong XY, Chu WG, Li ZZ, Han WJ, Gao YH, Yu YW, Zhao XH, Wang WT, Xie RG, Wu SX, Luo C. A sensory-motor-sensory circuit underlies antinociception ignited by primary motor cortex in mice. Neuron 2025:S0896-6273(25)00246-6. [PMID: 40239652 DOI: 10.1016/j.neuron.2025.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/05/2025] [Accepted: 03/21/2025] [Indexed: 04/18/2025]
Abstract
Sensory-motor integration is crucial in the processing of chronic pain. The primary motor cortex (M1) is emerging as a promising target for chronic pain treatment. However, it remains elusive how nociceptive sensory inputs influence M1 activity and how rectifying M1 defects, in turn, regulates pain processing at cellular and network levels. We show that injury/inflammation leads to hypoactivity of M1Glu pyramidal neurons by excitation-inhibition imbalance between the primary somatosensory cortex (S1) and the M1. The impaired M1 output further weakens inputs to excitatory parvalbumin neurons of the lateral hypothalamus (LHPV) and impairs the descending inhibitory system, hence exacerbating spinal nociceptive sensitivity. When rectifying M1 defects with repetitive transcranial magnetic stimulation (rTMS), the imbalance of the S1-M1 microcircuitry can be effectively reversed, which aids in restoring the ability of the M1 to trigger the descending inhibitory system, thereby alleviating nociceptive hypersensitivity. Thus, a sensory-motor-sensory loop is identified for pain-related interactions between the sensory and motor systems and can be potentially exploited for treating chronic pain.
Collapse
Affiliation(s)
- Fei Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China; Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Shaanxi Province Key Laboratory of Integrated Traditional Chinese and Western Medicine for the Prevention and Treatment of Cardiovascular Diseases, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Zhi-Cheng Tian
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Hui Ding
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Xin-Jiang Yang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China; Department of Rehabilitation and Physical Therapy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Fu-Dong Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Ruo-Xin Ji
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Lei Xu
- The Sixteenth Squadron of Fourth Regiment, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Zi-Xuan Cao
- The Twenty-Second Squadron of Sixth Regiment, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Sui-Bin Ma
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Ming Zhang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Ya-Ting Cui
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Xiang-Yu Cong
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Wen-Guang Chu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Zhen-Zhen Li
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Wen-Juan Han
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Yong-Heng Gao
- Department of Respiration, Tangdu Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yuan-Wang Yu
- Shaanxi Province Key Laboratory of Integrated Traditional Chinese and Western Medicine for the Prevention and Treatment of Cardiovascular Diseases, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Xiang-Hui Zhao
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Wen-Ting Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Rou-Gang Xie
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Sheng-Xi Wu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Ceng Luo
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China; Innovation Research Institute, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
2
|
Grenouillet S, Balayssac D, Moisset X, Peyron R, Fauchon C. Analgesic efficacy of non-invasive neuromodulation techniques in chronic cancer pain: a systematic review. Support Care Cancer 2025; 33:346. [PMID: 40178728 DOI: 10.1007/s00520-025-09378-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/19/2025] [Indexed: 04/05/2025]
Abstract
PURPOSE Chronic pain remains one of the most frequent and disabling symptoms of cancer, arising from tumors and/or treatments, and is poorly controlled in 40% of patients. Non-invasive brain stimulation (NIBS) is now widely recommended in drug-refractory neuropathic pain, but its effectiveness in chronic cancer-related pain remains unknown. A few observational studies and randomized controlled trials (RCTs) have assessed the effectiveness of NIBS on pain in this population. METHODS A systematic review of neuromodulation studies on patients with chronic cancer-related pain involving transcranial direct currents stimulation (tDCS) or repetitive transcranial magnetic stimulation (rTMS) was conducted to estimate the analgesic efficacy, safety and feasibility in clinical routine. RESULTS Eleven publications (N = 298 patients) were included and analyzed. For tDCS, three RCT had a moderate effect size of 0.7 [0.6; 0.9] on a rating scale (0-10), and two case reports showed a significant decrease of pain intensity on average by -4.25 ± 0.36 points. The rTMS provided similar pain relief, with two RCTs showing a large effect size of 0.9 [0.7; 1.1], two observational study studies reporting a significant pooled effect on pain intensity (-0.9 [-1.6; -0.1] and -2.3 [-3.3; -1.3]), and two case reports where pain was reduced on average by -4.75 ± 0.36 points. None of these studies reported serious adverse events, and discontinuations of treatment were associated with cancer complications. CONCLUSIONS NIBS appears to have an analgesic effect in cancer-related pain. However, due to the high heterogeneity of pain conditions, placebo-controlled trials with larger and homogeneous patient cohorts are required to confirm these promising results.
Collapse
Affiliation(s)
- Solène Grenouillet
- Jean Monnet University, NEUROPAIN Team, CRNL, Inserm CNRS, CHU Hôpital Nord, Saint-Etienne, France
| | - David Balayssac
- University of Clermont Auvergne, NEURO-DOL, Inserm, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Xavier Moisset
- University of Clermont Auvergne, NEURO-DOL, Inserm, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Roland Peyron
- Jean Monnet University, NEUROPAIN Team, CRNL, Inserm CNRS, CHU Hôpital Nord, Saint-Etienne, France
| | - Camille Fauchon
- University of Clermont Auvergne, NEURO-DOL, Inserm, CHU Clermont-Ferrand, Clermont-Ferrand, France.
| |
Collapse
|
3
|
Huang Z, Wang Y, Yan Y, Liu Y, Chen J, Liu H, Li J, Gao Z, Che X. Identifying neural circuitry abnormalities in neuropathic pain with transcranial magnetic stimulation and electroencephalogram co-registration. Neurotherapeutics 2025; 22:e00496. [PMID: 39613525 PMCID: PMC12014317 DOI: 10.1016/j.neurot.2024.e00496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/02/2024] [Accepted: 11/14/2024] [Indexed: 12/01/2024] Open
Abstract
Non-invasive brain stimulation (NIBS) technology such as transcranial magnetic stimulation (TMS) represents a promising treatment for neuropathic pain. However, neural circuitries underlying analgesia remain to be established, which is largely limiting treatment responses. Using TMS and electroencephalogram co-registration (TMS-EEG), this study quantified the circuitry abnormalities in neuropathic pain and their associations with pain symptoms. A group of 21 neuropathic pain individuals and 21 healthy controls were assessed with TMS-EEG delivering to the primary motor cortex (M1). With source modelling, local current density and current propagation were analysed with significant current density (SCD) and scattering (SCS) respectively. The SCS and SCD data converged on higher activities in neuropathic pain individuals than healthy controls, within the emotional affective (perigenual anterior cingulate cortex, pgACC), sensory nociceptive (primary somatosensory cortex, S1), and the attentional cognitive (anterior insula, aINS; supracallosal anterior cingulate cortex, scACC) structures of pain. Moreover, current propagation to the pgACC was associated with lower pain-related negative emotions, while current propagation to the aINS with higher pain-related negative emotions. Using concurrent TMS-EEG, our data identified abnormal pain circuitries that could be utilised to improve treatment efficacy with brain stimulation technologies.
Collapse
Affiliation(s)
- Zhimin Huang
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Ying Wang
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Yongxing Yan
- Department of Neurology, Hangzhou Third People's Hospital, Hangzhou, China
| | - Ying Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jielin Chen
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Huili Liu
- Department of Neurology, Hangzhou Third People's Hospital, Hangzhou, China
| | - Jie Li
- Department of Radiology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Zhongming Gao
- Department of Neurology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Xianwei Che
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.
| |
Collapse
|
4
|
Wang Y, Aaron R, Attal N, Colloca L. An update on non-pharmacological interventions for pain relief. Cell Rep Med 2025; 6:101940. [PMID: 39970872 DOI: 10.1016/j.xcrm.2025.101940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 12/15/2024] [Accepted: 01/13/2025] [Indexed: 02/21/2025]
Abstract
Chronic pain affects a substantial portion of the population, yet current treatments often fail to provide adequate relief. Non-pharmacological interventions, which target behaviors and brain processes underlying the experience of pain, hold promises in offering relief for people with chronic pain. This review consolidates the current knowledge concerning the efficacy of non-pharmacological interventions for chronic pain. We focus on psychological interventions (e.g., cognitive behavioral therapy-based interventions and emotion-based therapies) that use mental techniques and physical practices (e.g., exercise, massage, acupuncture, and yoga) that use body techniques to reduce pain. The efficacy of neuromodulation is also discussed. Given that placebo and expectation effects may enhance benefits for non-pharmacological interventions, we also discuss placebo interventions and expectation management practices. Finally, we describe digital therapeutics as an emerging approach for managing chronic pain. We argue that non-pharmacological interventions are critical adjunctive or stand-alone interventions for chronic pain conditions.
Collapse
Affiliation(s)
- Yang Wang
- Department of Pain and Translation Symptom Science | Placebo Beyond Opinions Center, School of Nursing, University of Maryland, Baltimore, MD, USA
| | - Rachel Aaron
- Johns Hopkins School of Medicine, Department of Physical Medicine and Rehabilitation, Baltimore, MD, USA
| | - Nadine Attal
- INSERM U-987, UVSQ Paris Saclay University, Centre d'Evaluation et de Traitement de la Douleur, Boulogne-Billancourt, France
| | - Luana Colloca
- Department of Pain and Translation Symptom Science | Placebo Beyond Opinions Center, School of Nursing, University of Maryland, Baltimore, MD, USA.
| |
Collapse
|
5
|
Thomas J, Fauchon C, Oriol N, Vassal F, Créac'h C, Quesada C, Peyron R. Effects of multiple transcranial magnetic stimulation sessions on pain relief in patients with chronic neuropathic pain: A French cohort study in real-world clinical practice. Eur J Pain 2025; 29:e4763. [PMID: 39655628 PMCID: PMC11629460 DOI: 10.1002/ejp.4763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/08/2024] [Accepted: 11/19/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND Current clinical trials indicate that repetitive transcranial magnetic stimulation (rTMS) is effective in reducing drug-resistant neuropathic pain (NP). However, there is a lack of studies evaluating the long-term feasibility and clinical efficacy of rTMS in large patient cohorts in real-world conditions. METHODS In this retrospective cohort study, we analysed 12 years of clinical data to assess the long-term analgesic effects of 20 Hz rTMS over the primary motor cortex in patients with NP. Subgroup analyses were conducted to identify predictive factors and assess the potential role of epidural motor cortex stimulation (eMCS) as a sustained solution. RESULTS In total, 193 patients completed test period of 4 rTMS sessions and 42% of them reported a pain relief (PR) greater than 30%, with concurrent improvement in their most disabling symptom. Iterative rTMS sessions maintained analgesic effects over 10 years in certain patients identified as responders (≥10% PR) without adverse effects. Success probability was higher in patients with central NP compared to peripheral NP (OR = 2.03[1.04;4.00]), and among those with central post-stroke pain, this probability was higher in ischemic versus hemorrhagic strokes (OR = 3.36[1.17;10.05]). PR obtained with iterative rTMS sessions was an excellent predictor of eMCS efficacy. CONCLUSIONS While rTMS shows promise as a therapeutic option for some patients with drug-resistant NP, it does not benefit all patients. Efficacy varies by NP aetiology, aiding patient selection. For responders, eMCS may offer a permanent solution. These findings support a tailored approach to rTMS in NP management, while recognizing both its potential and limitations across diverse patient profiles. SIGNIFICANCE STATEMENT Multiple rTMS sessions demonstrate long-term efficacy and safety in treating drug-resistant neuropathic pain. Extending session numbers for the test period can enhance responder identification, especially in patients with initial low pain relief. This identification refines patient selection for neurosurgery, reducing non-responders. Central neuropathic pain shows higher success rates than peripheral. For post-stroke central pain, patients with ischemic stroke are more likely to respond than those with hemorrhagic stroke. These results support integrating rTMS into clinical practice for managing neuropathic pain.
Collapse
Affiliation(s)
- Joy Thomas
- Inserm U1028 NeuropainUniversité Jean‐Monnet, F‐42023, Saint‐Etienne and Centre de Recherche en Neurosciences de Lyon (CRNL) UMR5292Saint‐Etienne et LyonFrance
| | - Camille Fauchon
- Inserm U1028 NeuropainUniversité Jean‐Monnet, F‐42023, Saint‐Etienne and Centre de Recherche en Neurosciences de Lyon (CRNL) UMR5292Saint‐Etienne et LyonFrance
| | - Nicolas Oriol
- Inserm U1028 NeuropainUniversité Jean‐Monnet, F‐42023, Saint‐Etienne and Centre de Recherche en Neurosciences de Lyon (CRNL) UMR5292Saint‐Etienne et LyonFrance
- Centre Stéphanois de la Douleur et Département de NeurologieCentre Hospitalier Régional Universitaire de Saint‐EtienneSaint‐EtienneFrance
| | - François Vassal
- Inserm U1028 NeuropainUniversité Jean‐Monnet, F‐42023, Saint‐Etienne and Centre de Recherche en Neurosciences de Lyon (CRNL) UMR5292Saint‐Etienne et LyonFrance
- Service de NeurochirurgieCentre Hospitalier Régional Universitaire de Saint‐EtienneSaint‐EtienneFrance
| | - Christelle Créac'h
- Inserm U1028 NeuropainUniversité Jean‐Monnet, F‐42023, Saint‐Etienne and Centre de Recherche en Neurosciences de Lyon (CRNL) UMR5292Saint‐Etienne et LyonFrance
- Centre Stéphanois de la Douleur et Département de NeurologieCentre Hospitalier Régional Universitaire de Saint‐EtienneSaint‐EtienneFrance
| | - Charles Quesada
- Inserm U1028 NeuropainUniversité Jean‐Monnet, F‐42023, Saint‐Etienne and Centre de Recherche en Neurosciences de Lyon (CRNL) UMR5292Saint‐Etienne et LyonFrance
| | - Roland Peyron
- Inserm U1028 NeuropainUniversité Jean‐Monnet, F‐42023, Saint‐Etienne and Centre de Recherche en Neurosciences de Lyon (CRNL) UMR5292Saint‐Etienne et LyonFrance
- Centre Stéphanois de la Douleur et Département de NeurologieCentre Hospitalier Régional Universitaire de Saint‐EtienneSaint‐EtienneFrance
| |
Collapse
|
6
|
Attal N, Branders S, Pereira A, Bouhassira D. Prediction of the response to repetitive transcranial magnetic stimulation of the motor cortex in peripheral neuropathic pain and validation of a new algorithm. Pain 2025; 166:34-41. [PMID: 38875120 DOI: 10.1097/j.pain.0000000000003297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/03/2024] [Indexed: 06/16/2024]
Abstract
CLINICAL TRIAL REGISTRATION NCT02010281.
Collapse
Affiliation(s)
- Nadine Attal
- INSERM U987, APHP, UVSQ Paris SACLAY University, Hôpital Ambroise Paré, Boulogne-Billancourt, France
| | | | | | - Didier Bouhassira
- INSERM U987, APHP, UVSQ Paris SACLAY University, Hôpital Ambroise Paré, Boulogne-Billancourt, France
| |
Collapse
|
7
|
Tamasauskas A, Silva-Passadouro B, Fallon N, Frank B, Laurinaviciute S, Keller S, Marshall A. Management of Central Poststroke Pain: Systematic Review and Meta-analysis. THE JOURNAL OF PAIN 2025; 26:104666. [PMID: 39260808 DOI: 10.1016/j.jpain.2024.104666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/13/2024]
Abstract
Central poststroke pain (CPSP) is a neuropathic pain condition prevalent in 8 to 35% of stroke patients. This systematic review and meta-analysis aimed to provide insight into the effectiveness of available pharmacological, physical, psychological, and neuromodulation interventions in reducing pain in CPSP patients (PROSPERO Registration: CRD42022371835). Secondary outcomes included mood, sleep, global impression of change, and physical responses. Data extraction included participant demographics, stroke etiology, pain characteristics, pain reduction scores, and secondary outcome metrics. Forty-two original studies were included, with a total of 1,451 participants. No studies providing psychological therapy to CPSP patients were identified. Twelve studies met requirements for a random-effects meta-analyses that found pharmacological therapy to have a small effect on mean pain score (SMD = -.36, 96.0% confidence interval [-.68, -.03]), physical interventions did not show a significant effect (SMD = -.55 [-1.28, .18]), and neuromodulation treatments had a moderate effect (SMD = -.64 [-1.08, -.19]). Fourteen studies were included in proportional meta-analysis with pharmacological studies having a moderate effect (58.3% mean pain reduction [-36.51, -80.15]) and neuromodulation studies a small effect (31.1% mean pain reduction [-43.45, -18.76]). Sixteen studies were included in the narrative review, the findings from which largely supported meta-analysis results. Duloxetine, amitriptyline, and repetitive transcranial magnetic stimulation had the most robust evidence for their effectiveness in alleviating CPSP-induced pain. Further multicenter placebo-controlled research is needed to ascertain the effectiveness of physical therapies, such as acupuncture and virtual reality, and invasive and noninvasive neuromodulation treatments. PERSPECTIVE: This article presents a top-down and bottom-up overview of evidence for the effectiveness of different pharmacological, physical, and neuromodulation treatments of CPSP. This review could provide clinicians with a comprehensive understanding of the effectiveness and tolerability of different treatment types.
Collapse
Affiliation(s)
- Arnas Tamasauskas
- Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom.
| | - Barbara Silva-Passadouro
- Leeds Institute of Rheumatology and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
| | - Nicholas Fallon
- Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Bernhard Frank
- Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | | | - Simon Keller
- Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Andrew Marshall
- Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
8
|
Liberati G. Advancements in noninvasive brain stimulation: exploring repetitive transcranial magnetic stimulation of the posterior superior insula for pain relief. Pain 2024:00006396-990000000-00791. [PMID: 39679648 DOI: 10.1097/j.pain.0000000000003489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 12/17/2024]
Affiliation(s)
- Giulia Liberati
- Institute of Neuroscience (IoNS), Université Catholique de Louvain, Brussels, Belgium
- Psychological Sciences Research Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
9
|
Mussigmann T, Bardel B, Casarotto S, Senova S, Rosanova M, Vialatte F, Lefaucheur JP. Classical, spaced, or accelerated transcranial magnetic stimulation of motor cortex for treating neuropathic pain: A 3-arm parallel non-inferiority study. Neurophysiol Clin 2024; 54:103012. [PMID: 39278041 DOI: 10.1016/j.neucli.2024.103012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/21/2024] [Accepted: 08/25/2024] [Indexed: 09/17/2024] Open
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) of the primary motor cortex (M1) at high frequency (HF) is an effective treatment of neuropathic pain. The classical HF-rTMS protocol (CHF-rTMS) includes a daily session for one week as an induction phase of treatment followed by more spaced sessions. Another type of protocol without an induction phase and based solely on spaced sessions of HF-rTMS (SHF-rTMS) has also been shown to produce neuropathic pain relief. However, CHF-rTMS and SHF-rTMS of M1 have never been compared regarding their analgesic potential. Another type of rTMS paradigm, called accelerated intermittent theta burst stimulation (ACC-iTBS), has recently been proposed for the treatment of depression, the other clinical condition for which HF-rTMS is proposed as an effective therapeutic strategy. ACC-iTBS combines a high number of pulses delivered in short sessions grouped into a few days of stimulation. This type of protocol has never been applied to M1 for the treatment of pain. METHODS/DESIGN The objective of this single-centre randomized study is to compare the efficacy of three different rTMS protocols for the treatment of chronic neuropathic pain: CHF-rTMS, SHF-rTMS, and ACC-iTBS. The CHF-rTMS will consists of 10 stimulation sessions, including 5 daily sessions of 10Hz-rTMS (3,000 pulses per session) over one week, then one session per week for 5 weeks, for a total of 30,000 pulses delivered in 10 stimulation days. The SHF-rTMS protocol will only include 4 sessions of 20Hz-rTMS (1,600 pulses per session), one every 15 days, for a total of 6,400 pulses delivered in 4 stimulation days. The ACC-iTBS protocol will comprise 5 sessions of iTBS (600 pulses per session) completed in half a day for 2 consecutive days, repeated 5 weeks later, for a total of 30,000 pulses delivered in 4 stimulation days. Thus, CHF-rTMS and ACC-iTBS protocols will share a higher total number of TMS pulses (30,000 pulses) compared to SHF-rTMS protocol (6,400 pulses), while CHF-rTMS protocol will include a higher number of stimulation days (10 days) compared to ACC-iTBS and SHF-rTMS protocols (4 days). In all protocols, the M1 target will be defined in the same way and stimulated at the same intensity using a navigated rTMS (nTMS) procedure. The evaluation will be based on clinical outcomes with various scales and questionnaires assessed every week, from two weeks before the 7-week period of therapeutic stimulation until 4 weeks after. Additionally, three sets of neurophysiological outcomes (resting-state electroencephalography (EEG), nTMS-EEG recordings, and short intracortical inhibition measurement with threshold tracking method) will be assessed the week before and after the 7-week period of therapeutic stimulation. DISCUSSION This study will make it possible to compare the analgesic efficacy of the CHF-rTMS and SHF-rTMS protocols and to appraise that of the ACC-iTBS protocol for the first time. This study will also make it possible to determine the respective influence of the total number of pulses and days of stimulation delivered to M1 on the extent of pain relief. Thus, if their analgesic efficacy is not inferior to that of CHF-rTMS, SHF-rTMS and especially the new ACC-iTBS protocol could be an optimal compromise of a more easy-to-perform rTMS protocol for the treatment of patients with chronic neuropathic pain.
Collapse
Affiliation(s)
- Thibaut Mussigmann
- UR 4391, Excitabilité Nerveuse et Thérapeutique, Faculté de Santé, Université Paris Est Créteil, Créteil, France
| | - Benjamin Bardel
- UR 4391, Excitabilité Nerveuse et Thérapeutique, Faculté de Santé, Université Paris Est Créteil, Créteil, France; Unité de Neurophysiologie Clinique, Hôpital Henri Mondor, Assistance Publique Hôpitaux de Paris, Créteil, France
| | - Silvia Casarotto
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy; IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Suhan Senova
- Structure Douleur Chronique, Service de Neurochirurgie, Hôpital Henri Mondor, Assistance Publique Hôpitaux de Paris, Créteil, France; Inserm U955, NeuroPsychiatrie Translationnelle, Institut Mondor de Recherche Biomédicale, Créteil, France
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - François Vialatte
- Institut Pour la Pratique et l'Innovation en PSYchologie appliquée (Institut PI-Psy), Draveil, France
| | - Jean-Pascal Lefaucheur
- UR 4391, Excitabilité Nerveuse et Thérapeutique, Faculté de Santé, Université Paris Est Créteil, Créteil, France; Unité de Neurophysiologie Clinique, Hôpital Henri Mondor, Assistance Publique Hôpitaux de Paris, Créteil, France.
| |
Collapse
|
10
|
Masoumbeigi M, Riyahi Alam N, Kordi R, Rostami M, Rahimiforoushani A, Jafari AH, Hashemi H, Ebrahimpour A. Altered Amplitude of Low-Frequency Fluctuations of rs-fMRI Signal followed by rTMS Analgesic Effects in Non-Specific Chronic Low Back Pain (CLBP) Patients. J Biomed Phys Eng 2024; 14:435-446. [PMID: 39391282 PMCID: PMC11462276 DOI: 10.31661/jbpe.v0i0.2204-1481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/03/2022] [Indexed: 10/12/2024]
Abstract
Background Non-specific chronic low back pain (CLBP) is a common painful condition and is responsible for different physical disorders. Despite alternative therapies, patients still suffer from persistent pain. Repetitive transcranial magnetic stimulation (rTMS) has provided much evidence of pain reduction, but results have not been examined deeply in CLBP symptoms. Objective The analgesic effect of rTMS in non-specific CLBP patients was evaluated by the amplitude of low-frequency fluctuation (ALFF) analysis in resting-state fMRI. Material and Methods In this experimental study, fifteen non-specific CLBP participants (46.87±10.89 years) received 20 Hz rTMS over the motor cortex. The pain intensity and brain functional scan were obtained during pre and post-stimulation for all participants. The ALFF maps of the brain in two scan sessions were identified and the percentage of pain reduction (PPR%) was determined using paired t-test. Also, correlation analysis was used to find a relationship between ALFFs and pain intensity. Results Pain intensity was significantly reduced after induced-rTMS in non-specific CLBP (36.22%±13.28, P<0.05). Positive correlation was found between ALFF in the insula (INS) and pain intensity (rpre-rTMS=0.59, rpost-rTMS=0.58) while ALFF in medial prefrontal cortex (mPFC) and pain intensity had negatively correlated (rpre-rTMS=-0.54, rpost-rTMS=-0.56) (P<0.05). ALFF increased in mPFC while INS, thalamus (THA), and supplementary motor area (SMA) showed decremental ALFF followed by rTMS. Conclusion This study demonstrated that ALFF in INS, THA, mPFC, and SMA is associated with CLBP symptoms and analgesic effects of rTMS. ALFF potentially seems to be a proper objective neuroimaging parameter to link spontaneous brain activity with pain intensity in non-specific CLBP patients.
Collapse
Affiliation(s)
- Mahboubeh Masoumbeigi
- Department of Radiology, School of Para-Medicine, Hormozgan University of Medical Sciences (HUMS), Bandar Abbas, Iran
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Nader Riyahi Alam
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- PERFORM Preventive Medicine and Health Care Centre, Concordia University, Montreal, Quebec, Canada
| | - Ramin Kordi
- Department of Sports Medicine, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohsen Rostami
- Spine Center of Excellence, Yas Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Department of Neurosurgery, Shariati hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Rahimiforoushani
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Amir Homayoun Jafari
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Hasan Hashemi
- Department of Radiology, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Anita Ebrahimpour
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
11
|
Zhao Q, Zhao L, Fan P, Zhu Y, Zhu R, Cheng L, Xie N. Non-invasive TMS attenuates neuropathic pain after spinal cord injury associated with enhancing brain functional connectivity and HPA axis activity. Heliyon 2024; 10:e36061. [PMID: 39253232 PMCID: PMC11382048 DOI: 10.1016/j.heliyon.2024.e36061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/23/2024] [Accepted: 08/08/2024] [Indexed: 09/11/2024] Open
Abstract
Patients with spinal cord injury (SCI) often suffer from varying degrees of neuropathic pain. Non-invasive repetitive transcranial magnetic stimulation (TMS) has been shown to improve neuropathic pain, while the appropriate intervention strategies of TMS treatment and how TMS affects brain function after SCI were not entirely clear. To investigate the effects and mechanisms of TMS on neuropathic pain after SCI, high-frequency TMS on primary motor cortex (M1) of mice was performed after SCI and pain response was evaluated through an electronic Von-Frey device and cold/hot plates. Functional magnetic resonance imaging (fMRI), bulk RNA sequencing, immunofluorescence and molecular experiments were used to evaluate brain and spinal cord function changes and mechanisms. TMS significantly improved SCI induced mechanical allodynia, cold and thermal hyperalgesia with a durative effect, and TMS intervention at 1 week after SCI had pain relief advantages than at 2 weeks. TMS intervention not only affected the functional connections between the primary motor cortex and the thalamus, but also increased the close connection of multiple brain regions. Importantly, TMS treatment activated the hypothalamic pituitary adrenal (HPA) axis and increased the transcript levels of genes encode hormone proteins, accompanied with the attenuation of inflammatory microenvironment in spinal cord associated with pain relief. Totally, these results elucidate that early intervention with TMS could improve neuropathic pain after SCI associated with enhancing brain functional connectivity and HPA axis activity which should be harnessed to modulate neuropathic pain after SCI.
Collapse
Affiliation(s)
- Qing Zhao
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai, 200065, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, School of Life Sciences and Technology, Tongji University, Shanghai, 200065, China
- Department of Spine Surgery, Center for Orthopaedic Surgery, Academy of Orthopedics, Orthopaedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510665, China
| | - Lijuan Zhao
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai, 200065, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, School of Life Sciences and Technology, Tongji University, Shanghai, 200065, China
| | - Pianpian Fan
- Department of Pediatrics, West China Second Hospital, Sichuan University, Chengdu, 610044, China
| | - Yanjing Zhu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, School of Life Sciences and Technology, Tongji University, Shanghai, 200065, China
| | - Rongrong Zhu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, School of Life Sciences and Technology, Tongji University, Shanghai, 200065, China
| | - Liming Cheng
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai, 200065, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, School of Life Sciences and Technology, Tongji University, Shanghai, 200065, China
- Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai, 200065, China
| | - Ning Xie
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai, 200065, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, School of Life Sciences and Technology, Tongji University, Shanghai, 200065, China
| |
Collapse
|
12
|
Spagna A, Attal N. Pharmacotherapy and noninvasive neurostimulation for neuropathic pain. Presse Med 2024; 53:104233. [PMID: 38636787 DOI: 10.1016/j.lpm.2024.104233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/04/2024] [Indexed: 04/20/2024] Open
Abstract
Neuropathic pain poses a significant challenge due to its complex mechanisms, necessitating specific treatments. In recent decades, significant progress has been made in the clinical research of neuropathic pain, marking a shift from empirical strategies to evidence-based medicine in its management. This review outlines both pharmacological and non-pharmacological interventions. Antidepressants (tricyclic and serotonin-noradrenaline reuptake inhibitors), antiepileptics (gabapentin, pregabalin), and topical agents constitute the main pharmacological treatments. These approaches target peripheral or central mechanisms associated with neuropathic pain. Noninvasive neurostimulation, including transcutaneous electrical nerve stimulation (TENS) and repetitive transcranial magnetic stimulation (rTMS), provides non-pharmacological alternatives. However, challenges persist in effectively targeting existing medications and developing drugs that act on novel targets, necessitating innovative therapeutic strategies.
Collapse
Affiliation(s)
- Annachiara Spagna
- CETD, Ambroise Pare Hospital, APHP, 92100 Boulogne-Billancourt, France
| | - Nadine Attal
- CETD, Ambroise Pare Hospital, APHP, 92100 Boulogne-Billancourt, France; Inserm U987, UVSQ-Paris-Saclay University, Ambroise Pare Hospital, APHP, 92100 Boulogne-Billancourt, France.
| |
Collapse
|
13
|
Moisset X. Neuropathic pain: Evidence based recommendations. Presse Med 2024; 53:104232. [PMID: 38641202 DOI: 10.1016/j.lpm.2024.104232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/04/2024] [Indexed: 04/21/2024] Open
Abstract
Neuropathic pain continues to be a significant problem that lacks effective solutions for every single patient. In 2015, international guidelines (NeuPSIG) were published, while the French recommendations were updated in 2020. The purpose of this minireview is to provide an update on the process of developing evidence-based recommendations and explore potential changes to the current recommendations. Primary treatments for neuropathic pain include selective serotonin-norepinephrine reuptake inhibitors (SNRIs) such as duloxetine and venlafaxine, gabapentin, tricyclic antidepressants, as well as topical lidocaine and transcutaneous electrical nerve stimulation, which are specifically suggested for focal peripheral neuropathic pain. Pregabalin is a first line treatment according to international guidelines but second-line in the more recent French guidelines, due to lower efficacy seen in more recent studies and misuse risk. Additionally, tramadol, combination therapies, and psychotherapy as adjuncts are proposed second line; high-concentration capsaicin patches, and botulinum toxin A are proposed specifically for focal peripheral neuropathic pain. In cases where primary and secondary treatments prove insufficient, third-line options come into play. These include high-frequency repetitive transcranial magnetic stimulation (rTMS) targeting the motor cortex, spinal cord stimulation, and the use of strong opioids when no alternative is available. To ensure optimal management of neuropathic pain in real-life situations, it is imperative to disseminate these recommendations widely and secure the acceptance of practitioners. By doing so, we can bridge the gap between theory and practice, and enhance the overall care and treatment of individuals suffering from neuropathic pain.
Collapse
Affiliation(s)
- Xavier Moisset
- Clermont Auvergne University, University Hospital Center of Clermont-Ferrand, Inserm, Neuro-Dol, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
14
|
Mori N, Hosomi K, Nishi A, Miyake A, Yamada T, Matsugi A, Jono Y, Lim C, Khoo HM, Tani N, Oshino S, Saitoh Y, Kishima H. Repetitive transcranial magnetic stimulation focusing on patients with neuropathic pain in the upper limb: a randomized sham-controlled parallel trial. Sci Rep 2024; 14:11811. [PMID: 38782994 PMCID: PMC11116497 DOI: 10.1038/s41598-024-62018-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
This study aimed to evaluate the efficacy and safety of navigation-guided repetitive transcranial magnetic stimulation (rTMS) over the primary motor cortex in patients with neuropathic pain in the upper limb. This randomized, blinded, sham-controlled, parallel trial included a rTMS protocol (10-Hz, 2000 pulses/session) consisting of five daily sessions, followed by one session per week for the next seven weeks. Pain intensity, as well as pain-related disability, quality of life, and psychological status, were assessed. For the primary outcome, pain intensity was measured daily using a numerical rating scale as a pain diary. Thirty patients were randomly assigned to the active rTMS or sham-stimulation groups. In the primary outcome, the decrease (least square [LS] mean ± standard error) in the weekly average of a pain diary at week 9 compared to the baseline was 0.84 ± 0.31 in the active rTMS group and 0.58 ± 0.29 in the sham group (LS mean difference, 0.26; 95% confidence interval, - 0.60 to 1.13). There was no significant effect on the interaction between the treatment group and time point. Pain-related disability score improved, but other assessments showed no differences. No serious adverse events were observed. This study did not show significant pain relief; however, active rTMS tended to provide better results than sham. rTMS has the potential to improve pain-related disability in addition to pain relief.Clinical Trial Registration number: jRCTs052190110 (20/02/2020).
Collapse
Affiliation(s)
- Nobuhiko Mori
- Department of Neurosurgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Koichi Hosomi
- Department of Neurosurgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Department of Neurosurgery, Toyonaka Municipal Hospital, Toyonaka, Japan.
| | - Asaya Nishi
- Department of Neurosurgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Akimitsu Miyake
- Department of Medical Innovation, Osaka University Hospital, Suita, Japan
- Department of AI and Innovative Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomomi Yamada
- Department of Medical Innovation, Osaka University Hospital, Suita, Japan
| | - Akiyoshi Matsugi
- Faculty of Rehabilitation, Shijonawate Gakuen University, Daitou, Japan
| | - Yasutomo Jono
- Faculty of Health Sciences, Naragakuen University, Nara, Japan
| | - Chanseok Lim
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), Suita, Japan
| | - Hui Ming Khoo
- Department of Neurosurgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Naoki Tani
- Department of Neurosurgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Satoru Oshino
- Department of Neurosurgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Youichi Saitoh
- Department of Mechanical Science and Bioengineering, Osaka University Graduate School of Engineering Science, Toyonaka, Japan
- Tokuyukai Rehabilitation Clinic, Toyonaka, Japan
| | - Haruhiko Kishima
- Department of Neurosurgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
15
|
Quesada C, Fauchon C, Pommier B, Bergandi F, Peyron R, Mertens P, Garcia-Larrea L. Field recordings of transcranial magnetic stimulation in human brain postmortem models. Pain Rep 2024; 9:e1134. [PMID: 38375090 PMCID: PMC10876241 DOI: 10.1097/pr9.0000000000001134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/16/2023] [Accepted: 10/24/2023] [Indexed: 02/21/2024] Open
Abstract
Introduction The ability of repetitive transcranial magnetic stimulation (rTMS) to deliver a magnetic field (MF) in deep brain targets is debated and poorly documented. Objective To quantify the decay of MF in the human brain. Methods Magnetic field was generated by single pulses of TMS delivered at maximum intensity using a flat or angulated coil. Magnetic field was recorded by a 3D-magnetic probe. Decay was measured in the air using both coils and in the head of 10 postmortem human heads with the flat coil being positioned tangential to the scalp. Magnetic field decay was interpreted as a function of distance to the coil for 6 potential brain targets of noninvasive brain stimulation: the primary motor cortex (M1, mean depth: 28.5 mm), dorsolateral prefrontal cortex (DLPFC: 28 mm), secondary somatosensory cortex (S2: 35.5 mm), posterior and anterior insulae (PI: 38.5 mm; AI: 43.5 mm), and midcingulate cortex (MCC: 57.5 mm). Results In air, the maximal MF intensities at coil center were 0.88 and 0.77 T for the flat and angulated coils, respectively. The maximal intracranial MF intensity in the cadaver model was 0.34 T, with a ∼50% decay at 15 mm and a ∼75% MF decay at 30 mm. The decay of the MF in air was similar for the flat coil and significantly less attenuated with the angulated coil (a ∼50% decay at 20 mm and a ∼75% MF decay at 45 mm). Conclusions Transcranial magnetic stimulation coil MFs decay in brain structures similarly as in air, attenuation with distance being significantly lower with angulated coils. Reaching brain targets deeper than 20 mm such as the insula or Antérior Cingulate Cortex seems feasible only when using angulated coils. The abacus of MF attenuation provided here can be used to adjust modalities of deep brain stimulation with rTMS in future research protocols.
Collapse
Affiliation(s)
- Charles Quesada
- NeuroPain Team, Centre de Recherche en Neurosciences de Lyon (CRNL), Inserm U1028, CNRS UMR5292, UJM & UCBL, Lyon, France
- Physiotherapy Department, Sciences of Rehabilitation Institute (ISTR), University Claude Bernard Lyon 1, Lyon, France
| | - Camille Fauchon
- NeuroPain Team, Centre de Recherche en Neurosciences de Lyon (CRNL), Inserm U1028, CNRS UMR5292, UJM & UCBL, Lyon, France
| | - Benjamin Pommier
- NeuroPain Team, Centre de Recherche en Neurosciences de Lyon (CRNL), Inserm U1028, CNRS UMR5292, UJM & UCBL, Lyon, France
| | - Florian Bergandi
- University of Medecine Jacques Lisfranc, Anatomy Laboratory, UJM, Saint-Etienne, France
| | - Roland Peyron
- NeuroPain Team, Centre de Recherche en Neurosciences de Lyon (CRNL), Inserm U1028, CNRS UMR5292, UJM & UCBL, Lyon, France
- Neurological Department & CETD, University Hospital, CHU Saint-Etienne, Saint-Etienne, France
| | - Patrick Mertens
- NeuroPain Team, Centre de Recherche en Neurosciences de Lyon (CRNL), Inserm U1028, CNRS UMR5292, UJM & UCBL, Lyon, France
- Laboratory of Anatomy, Faculté de Médecine Lyon-est, Université Claude Bernard Lyon 1, Saint-Etienne and Lyon, France
- CETD Neurological Hospital Lyon, Hospices Civils de Lyon, Lyon, France
| | - Luis Garcia-Larrea
- NeuroPain Team, Centre de Recherche en Neurosciences de Lyon (CRNL), Inserm U1028, CNRS UMR5292, UJM & UCBL, Lyon, France
- CETD Neurological Hospital Lyon, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
16
|
Naik A, Bah M, Govande M, Palsgaard P, Dharnipragada R, Shaffer A, Air EL, Cramer SW, Croarkin PE, Arnold PM. Optimal Frequency in Repetitive Transcranial Magnetic Stimulation for the Management of Chronic Pain: A Network Meta-Analysis of Randomized Controlled Trials. World Neurosurg 2024; 184:e53-e64. [PMID: 38185460 DOI: 10.1016/j.wneu.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/01/2024] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
OBJECTIVE Repetitive Transcranial Magnetic Stimulation (rTMS) has been shown to be effective for pain modulation in a variety of pathological conditions causing neuropathic pain. The purpose of this study is to conduct a network meta-analysis (NMA) of randomized control trials to identify the most optimal frequency required to achieve chronic pain modulation using rTMS. METHODS A comprehensive search was conducted in electronic databases to identify randomized controlled trials investigating the efficacy of rTMS for chronic pain management. A total of 24 studies met the inclusion criteria, and a NMA was conducted to identify the most effective rTMS frequency for chronic pain management. RESULTS Our analysis revealed that high frequency rTMS (20 Hz) was the most effective frequency for chronic pain modulation. Patients treated with 20 Hz had lower pain levels than those treated at 5 Hz (mean difference [MD] = -3.11 [95% confidence interval {CI}: -5.61 - -0.61], P = 0.032) and control (MD = -1.99 [95% CI: -3.11 - -0.88], P = 0.023). Similarly, treatment with 10 Hz had lower pain levels compared to 5 Hz (MD = -2.56 [95% CI: -5.05 - -0.07], P = 0.045) and control (MD = -1.44 [95% CI: -2.52 - -0.36], P = 0.031). 20 Hz and 10 Hz were not statistically different. CONCLUSIONS This NMA suggests that high frequency rTMS (20 Hz) is the most optimal frequency for chronic pain modulation. These findings have important clinical implications and can guide healthcare professionals in selecting the most effective frequency for rTMS treatment in patients with chronic pain.
Collapse
Affiliation(s)
- Anant Naik
- Carle Illinois College of Medicine, University of Illinois Urbana Champaign, Champaign, Illinois, USA; Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA.
| | - Momodou Bah
- College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Mukul Govande
- Carle Illinois College of Medicine, University of Illinois Urbana Champaign, Champaign, Illinois, USA
| | - Peggy Palsgaard
- Carle Illinois College of Medicine, University of Illinois Urbana Champaign, Champaign, Illinois, USA
| | - Rajiv Dharnipragada
- Department of Neurosurgery, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Annabelle Shaffer
- Carle Illinois College of Medicine, University of Illinois Urbana Champaign, Champaign, Illinois, USA
| | - Ellen L Air
- Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan, USA
| | - Samuel W Cramer
- Department of Neurosurgery, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Paul E Croarkin
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA
| | - Paul M Arnold
- Carle Illinois College of Medicine, University of Illinois Urbana Champaign, Champaign, Illinois, USA; Department of Neurosurgery, Carle Foundation Hospital, Urbana, Illinois, USA
| |
Collapse
|
17
|
Bouhassira D, Jazat-Poindessous F, Farnes N, Franchisseur C, Stubhaug A, Bismuth J, Lefaucheur JP, Hansson P, Attal N. Comparison of the analgesic effects of "superficial" and "deep" repetitive transcranial magnetic stimulation in patients with central neuropathic pain: a randomized sham-controlled multicenter international crossover study. Pain 2024; 165:884-892. [PMID: 37851075 PMCID: PMC10949217 DOI: 10.1097/j.pain.0000000000003082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 10/19/2023]
Abstract
ABSTRACT We directly compared the analgesic effects of "superficial" and 'deep" repetitive transcranial magnetic stimulation (rTMS) of the primary motor cortex in patients with central neuropathic pain. Fifty-nine consecutive patients were randomly assigned to active or sham "superficial" (using a figure-of-8 [F8]-coil) or "deep" (using a Hesed [H]-coil) stimulation according to a double-blind crossover design. Each treatment period consisted of 5 daily stimulation sessions and 2 follow-up visits at 1 and 3 weeks after the last stimulation session. The primary outcome was the comparison of the mean change in average pain intensity over the course of the treatment (group × time interaction). Secondary outcomes included neuropathic symptoms (NPSI), pain interference, patient global impression of change (PGIC), anxiety, depression, and catastrophizing. In total, 51 patients participated in at least one session of both treatments. There was a significant interaction between "treatment" and "time" (F = 2.7; P = 0.0024), indicating that both figure-8 (F8-coil) and H-coil active stimulation induced significantly higher analgesic effects than sham stimulation. The analgesic effects of both types of coils had a similar magnitude but were only moderately correlated ( r = 0.39, P = 0.02). The effects of F8-coil stimulation appeared earlier, whereas the effects of H-coil stimulation were delayed, but tended to last longer (up to 3 weeks) as regards to several secondary outcomes (PGIC and total NPSI score). In conclusion, "deep" and "superficial" rTMS induced analgesic effects of similar magnitude in patients with central pain, which may involve different mechanisms of action.
Collapse
Affiliation(s)
- Didier Bouhassira
- Inserm U987, UVSQ, Paris-Saclay University, Ambroise Pare Hospital, Boulogne-Billancourt, France
| | | | - Nadine Farnes
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Pain Management and Research, Norwegian National Advisory Unit on Neuropathic Pain, Division of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway
| | - Claire Franchisseur
- Inserm U987, UVSQ, Paris-Saclay University, Ambroise Pare Hospital, Boulogne-Billancourt, France
| | - Audun Stubhaug
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Pain Management and Research, Norwegian National Advisory Unit on Neuropathic Pain, Division of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway
| | - Julie Bismuth
- University Paris Est Creteil UR 4391 (ENT), Henri Mondor Hospital, Créteil, France
- APHP, Henri Mondor Hospital, Clinical Neurophysiology Unit, Creteil, France
| | - Jean-Pascal Lefaucheur
- University Paris Est Creteil UR 4391 (ENT), Henri Mondor Hospital, Créteil, France
- APHP, Henri Mondor Hospital, Clinical Neurophysiology Unit, Creteil, France
| | - Per Hansson
- Department of Pain Management and Research, Norwegian National Advisory Unit on Neuropathic Pain, Division of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Nadine Attal
- Inserm U987, UVSQ, Paris-Saclay University, Ambroise Pare Hospital, Boulogne-Billancourt, France
| |
Collapse
|
18
|
Carneiro BD, Tavares I. Transcranial Magnetic Stimulation to Treat Neuropathic Pain: A Bibliometric Analysis. Healthcare (Basel) 2024; 12:555. [PMID: 38470666 PMCID: PMC10930707 DOI: 10.3390/healthcare12050555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Neuropathic pain is caused by a lesion or disease of the somatosensory system and is one of the most incapacitating pain types, representing a significant non-met medical need. Due to the increase in research in the field and since innovative therapeutic strategies are required, namely in intractable neuropathic pain, neurostimulation has been used. Within this approach, transcranial magnetic stimulation (TMS) that uses a transient magnetic field to produce electrical currents over the cortex emerges as a popular method in the literature. Since this is an area in expansion and due to the putative role of TMS, we performed a bibliometric analysis in Scopus with the primary objective of identifying the scientific production related to the use of TMS to manage neuropathic pain. The research had no restrictions, and the analysis focused on the characteristics of the literature retrieved, scientific collaboration and main research topics from inception to 6 July 2023. A total of 474 articles were collected. A biggest co-occurrence between the terms "neuropathic pain" and "transcranial magnetic stimulation" was obtained. The journal "Clinical Neurophysiology" leads the Top 5 most productive sources. The United States is the most productive country, with 50% of US documents being "review articles", followed by France, with 56% of French documents being "original articles". Lefaucheur, JP and Saitoh, Y are the two most influential authors. The most frequent type of document was "original article". Most of the studies (34%) that identified the neuropathic pain type focused on traumatic neuropathic pain, although a large proportion (38%) did not report the neuropathic pain type. This study allows us to provide a general overview of the field of TMS application for neuropathic pain and is useful for establishing future directions of research in this field.
Collapse
Affiliation(s)
- Bruno Daniel Carneiro
- Unit of Experimental Biology, Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
| | - Isaura Tavares
- Unit of Experimental Biology, Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
- Institute for Research and Innovation in Health and IBMC, University of Porto, 4200-135 Porto, Portugal
| |
Collapse
|
19
|
Lai MH, Xu HC, Ding YW, Yang K, Xu XP, Jiang LM. Effectiveness and mechanism of action of rTMS combined with quadriceps strength training in individuals with knee osteoarthritis: study protocol for a randomized controlled trial. BMC Musculoskelet Disord 2024; 25:37. [PMID: 38183070 PMCID: PMC10768414 DOI: 10.1186/s12891-023-07146-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 12/21/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND Quadriceps training is necessary in function and activity of daily living for patients with knee osteoarthritis (KOA). However, it did not reduce the rate of surgical treatment for end-stage KOA in the long term. This may be related to brain structure changes and maladaptive plasticity in KOA patients. Transcranial Magnetic Stimulation (TMS) could enhance the functional connectivity of brain regions and improves maladaptive plasticity. However, the synergistic effect of the combination of the two for treat KOA is still unclear. Therefore, the purpose of this study is to investigate whether the High-Frequency rTMS combined with quadriceps strength training can improve the pain and function in KOA more effectively than quadriceps training alone and explore the mechanism of action. METHODS This study is an assessor-blind, sham-controlled, randomized controlled trial involving 12 weeks of intervention and 6 months follow-up. 148 participants with KOA will receive usual care management and be randomized into four subgroups equally, including quadriceps strength training, high-frequency rTMS training, sham rTMS and quadriceps strength training, high-frequency rTMS and quadriceps strength training. The rehabilitation interventions will be carried out 5 days per week for a total of 12 weeks. All outcomes will be measured at baseline, 4 weeks, 8 weeks, and 12 weeks during the intervention and 1 month, 3 months and 6 months during the follow-up period. The effectiveness outcomes will be included visual analog scale, isokinetic knee muscle strength, Knee Injury and Osteoarthritis Outcome score and 36-Item Short-Form Health Survey score; The act mechanism outcomes will be included motor evoked potential, grey matter density, white matter, subcortical nuclei volumes, cortical thickness and functional connectivity by MRI. Two-way of variance with repeated measures will be used to test the group and time effect for outcome measures. DISCUSSION The study will be the first protocol to examine whether there are synergistic effects following high-frequency rTMS combined with quadriceps strength training for treat KOA and clarify the mechanism of action. High-frequency rTMS can be added into the training program for KOA patients if it is proven effective. TRIAL REGISTRATION Chinese Clinical Trial Registry ChiCTR2300067617. Registered on Jan.13,2023.
Collapse
Affiliation(s)
- Ming-Hui Lai
- Department of Rehabilitation, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Datong Rd. 358, Shanghai, 200137, China
| | - Hai-Chen Xu
- Department of Rehabilitation, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Datong Rd. 358, Shanghai, 200137, China
| | - Yu-Wu Ding
- Department of Rehabilitation, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Datong Rd. 358, Shanghai, 200137, China
| | - Kun Yang
- Department of Rehabilitation, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Datong Rd. 358, Shanghai, 200137, China
| | - Xue-Ping Xu
- Department of Rehabilitation, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Datong Rd. 358, Shanghai, 200137, China
| | - Li-Ming Jiang
- Department of Rehabilitation, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Datong Rd. 358, Shanghai, 200137, China.
| |
Collapse
|
20
|
Mayor RS, Ferreira NR, Lanzaro C, Castelo-Branco M, Valentim A, Donato H, Lapa T. Noninvasive transcranial brain stimulation in central post-stroke pain: A systematic review. Scand J Pain 2024; 24:sjpain-2023-0130. [PMID: 38956966 DOI: 10.1515/sjpain-2023-0130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 06/05/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND The aim of this systematic review is to analyze the efficacy of noninvasive brain stimulation (NBS) in the treatment of central post-stroke pain (CPSP). METHODS We included randomized controlled trials testing the efficacy of transcranial magnetic stimulation (TMS) or transcranial direct current stimulation versus placebo or other usual therapy in patients with CPSP. Articles in English, Portuguese, Spanish, Italian, and French were included. A bibliographic search was independently conducted on June 1, 2022, by two authors, using the databases MEDLINE (PubMed), Embase (Elsevier), Cochrane Central Register of Controlled Trials (CENTRAL), Scopus, and Web of Science Core Collection. The risk of bias was assessed using the second version of the Cochrane risk of bias (RoB 2) tool and the certainty of the evidence was evaluated through Grading of Recommendations Assessment, Development and Evaluation. RESULTS A total of 2,674 records were identified after removing duplicates, of which 5 eligible studies were included, involving a total of 119 patients. All five studies evaluated repetitive TMS, four of which stimulated the primary motor cortex (M1) and one stimulated the premotor/dorsolateral prefrontal cortex. Only the former one reported a significant pain reduction in the short term, while the latter one was interrupted due to a consistent lack of analgesic effect. CONCLUSION NBS in the M1 area seems to be effective in reducing short-term pain; however, more high-quality homogeneous studies, with long-term follow-up, are required to determine the efficacy of this treatment in CSPS.
Collapse
Affiliation(s)
- Rita Sotto Mayor
- Anesthesiology Department, Hospitais da Universidade de Coimbra, Praceta Prof. Mota Pinto, 3000-075, Coimbra, Portugal
| | - Natália R Ferreira
- Institute of Occlusion and Orofacial Pain, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Camile Lanzaro
- Anesthesiology Department, Local Unit of Health in Alto Minho, Viana do Castelo, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
| | - Ana Valentim
- Anesthesiology Department, Hospitais da Universidade de Coimbra, Praceta Prof. Mota Pinto, 3000-075, Coimbra, Portugal
| | - Helena Donato
- Hospitais da Universidade de Coimbra, Coimbra, Portugal
| | - Teresa Lapa
- Anesthesiology Department, Hospitais da Universidade de Coimbra, Praceta Prof. Mota Pinto, 3000-075, Coimbra, Portugal
- Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
21
|
Rosner J, de Andrade DC, Davis KD, Gustin SM, Kramer JLK, Seal RP, Finnerup NB. Central neuropathic pain. Nat Rev Dis Primers 2023; 9:73. [PMID: 38129427 PMCID: PMC11329872 DOI: 10.1038/s41572-023-00484-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/21/2023] [Indexed: 12/23/2023]
Abstract
Central neuropathic pain arises from a lesion or disease of the central somatosensory nervous system such as brain injury, spinal cord injury, stroke, multiple sclerosis or related neuroinflammatory conditions. The incidence of central neuropathic pain differs based on its underlying cause. Individuals with spinal cord injury are at the highest risk; however, central post-stroke pain is the most prevalent form of central neuropathic pain worldwide. The mechanisms that underlie central neuropathic pain are not fully understood, but the pathophysiology likely involves intricate interactions and maladaptive plasticity within spinal circuits and brain circuits associated with nociception and antinociception coupled with neuronal hyperexcitability. Modulation of neuronal activity, neuron-glia and neuro-immune interactions and targeting pain-related alterations in brain connectivity, represent potential therapeutic approaches. Current evidence-based pharmacological treatments include antidepressants and gabapentinoids as first-line options. Non-pharmacological pain management options include self-management strategies, exercise and neuromodulation. A comprehensive pain history and clinical examination form the foundation of central neuropathic pain classification, identification of potential risk factors and stratification of patients for clinical trials. Advanced neurophysiological and neuroimaging techniques hold promise to improve the understanding of mechanisms that underlie central neuropathic pain and as predictive biomarkers of treatment outcome.
Collapse
Affiliation(s)
- Jan Rosner
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- Department of Neurology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - Daniel C de Andrade
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Karen D Davis
- Division of Brain, Imaging and Behaviour, Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Department of Surgery and Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Sylvia M Gustin
- Centre for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
- NeuroRecovery Research Hub, School of Psychology, University of New South Wales, Sydney, New South Wales, Australia
| | - John L K Kramer
- International Collaboration on Repair Discoveries, ICORD, University of British Columbia, Vancouver, Canada
- Department of Anaesthesiology, Pharmacology & Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Rebecca P Seal
- Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Departments of Neurobiology and Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nanna B Finnerup
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
22
|
Gong C, Zhong W, Zhu C, Chen B, Guo J. Research Trends and Hotspots of Neuromodulation in Neuropathic Pain: A Bibliometric Analysis. World Neurosurg 2023; 180:155-162.e2. [PMID: 37380050 DOI: 10.1016/j.wneu.2023.06.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023]
Abstract
BACKGROUND Neuropathic pain (NeuP), the result of a lesion or disease of the somatosensory nervous system, is tricky to cure clinically. Mounting researches reveal that neuromodulation can safely and effectively ameliorate NeuP. The number of publications associated with neuromodulation and NeuP increases with time. However, bibliometric analysis on the field is rare. The present study aims to analyze trends and topics in neuromodulation and NeuP research by using a bibliometric method. METHODS This study systematically collected the relevant publications on the Science Citation Index Expanded of Web of Science from January 1994 to January 17, 2023. CiteSpace software was used to draw and analyze corresponding visualization maps. RESULTS A total of 1404 publications were ultimately obtained under our specified inclusion criteria. The analysis showed that the focus of research on neuromodulation and NeuP had been developing steadily in recent years, with papers published in 58 countries/regions and 411 academic journals. The Journal of Neuromodulation and the author J.P. Lefaucheur published the most papers. The papers published in Harvard University and the United States contributed significantly. The cited keywords show that motor cortex stimulation, spinal cord stimulation, electrical stimulation, transcranial magnetic stimulation, and mechanism are the research hotspots in the field. CONCLUSIONS The bibliometric analysis showed that the number of publications on neuromodulation and NeuP are increasing rapidly, especially in the past 5 years. "Motor cortex stimulation," "electrical stimulation," "spinal cord stimulation," "transcranial magnetic stimulation" and "mechanism" catch the most attention among researchers in this field.
Collapse
Affiliation(s)
- Chan Gong
- The Second School of Clinical Medical, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Weiquan Zhong
- The Second School of Clinical Medical, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chenchen Zhu
- The Second School of Clinical Medical, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Binglin Chen
- The Second School of Clinical Medical, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiabao Guo
- The Second School of Clinical Medical, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
23
|
de Andrade DC, García-Larrea L. Beyond trial-and-error: Individualizing therapeutic transcranial neuromodulation for chronic pain. Eur J Pain 2023; 27:1065-1083. [PMID: 37596980 PMCID: PMC7616049 DOI: 10.1002/ejp.2164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/21/2023]
Abstract
BACKGROUND AND OBJECTIVE Repetitive transcranial magnetic stimulation (rTMS) applied to the motor cortex provides supplementary relief for some individuals with chronic pain who are refractory to pharmacological treatment. As rTMS slowly enters treatment guidelines for pain relief, its starts to be confronted with challenges long known to pharmacological approaches: efficacy at the group-level does not grant pain relief for a particular patient. In this review, we present and discuss a series of ongoing attempts to overcome this therapeutic challenge in a personalized medicine framework. DATABASES AND DATA TREATMENT Relevant scientific publications published in main databases such as PubMed and EMBASE from inception until March 2023 were systematically assessed, as well as a wide number of studies dedicated to the exploration of the mechanistic grounds of rTMS analgesic effects in humans, primates and rodents. RESULTS The main strategies reported to personalize cortical neuromodulation are: (i) the use of rTMS to predict individual response to implanted motor cortex stimulation; (ii) modifications of motor cortex stimulation patterns; (iii) stimulation of extra-motor targets; (iv) assessment of individual cortical networks and rhythms to personalize treatment; (v) deep sensory phenotyping; (vi) personalization of location, precision and intensity of motor rTMS. All approaches except (i) have so far low or moderate levels of evidence. CONCLUSIONS Although current evidence for most strategies under study remains at best moderate, the multiple mechanisms set up by cortical stimulation are an advantage over single-target 'clean' drugs, as they can influence multiple pathophysiologic paths and offer multiple possibilities of individualization. SIGNIFICANCE Non-invasive neuromodulation is on the verge of personalised medicine. Strategies ranging from integration of detailed clinical phenotyping into treatment design to advanced patient neurophysiological characterisation are being actively explored and creating a framework for actual individualisation of care.
Collapse
Affiliation(s)
- Daniel Ciampi de Andrade
- Department of Health Science and Technology, Faculty of Medicine, Center for Neuroplasticity and Pain (CNAP), Aalborg University, Aalborg, Denmark
| | - Luís García-Larrea
- University Hospital Pain Center (CETD), Neurological Hospital P. Wertheimer, Hospices Civils de Lyon, Lyon, France
- NeuroPain Lab, INSERM U1028, UMR5292, Lyon Neuroscience Research Center, CNRS, University Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
24
|
Garcia-Larrea L. Non-invasive cortical stimulation for drug-resistant pain. Curr Opin Support Palliat Care 2023; 17:142-149. [PMID: 37339516 DOI: 10.1097/spc.0000000000000654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
PURPOSE OF REVIEW Neuromodulation techniques are being increasingly used to alleviate pain and enhance quality of life. Non-invasive cortical stimulation was originally intended to predict the efficacy of invasive (neurosurgical) techniques, but has now gained a place as an analgesic procedure in its own right. RECENT FINDINGS Repetitive transcranial magnetic stimulation (rTMS): Evidence from 14 randomised, placebo-controlled trials (~750 patients) supports a significant analgesic effect of high-frequency motor cortex rTMS in neuropathic pain. Dorsolateral frontal stimulation has not proven efficacious so far. The posterior operculo-insular cortex is an attractive target but evidence remains insufficient. Short-term efficacy can be achieved with NNT (numbers needed to treat) ~2-3, but long-lasting efficacy remains a challenge.Like rTMS, transcranial direct-current stimulation (tDCS) induces activity changes in distributed brain networks and can influence various aspects of pain. Lower cost relative to rTMS, few safety issues and availability of home-based protocols are practical advantages. The limited quality of many published reports lowers the level of evidence, which will remain uncertain until more prospective controlled studies are available. SUMMARY Both rTMS and tDCS act preferentially upon abnormal hyperexcitable states of pain, rather than acute or experimental pain. For both techniques, M1 appears to be the best target for chronic pain relief, and repeated sessions over relatively long periods of time may be required to obtain clinically significant benefits. Patients responsive to tDCS may differ from those improved by rTMS.
Collapse
Affiliation(s)
- Luis Garcia-Larrea
- Central Integration of Pain (NeuroPain) Lab, Lyon Centre for Neuroscience (CRNL), INSERM U1028, University Claude Bernard Lyon 1, Villeurbanne
- University Hospital Pain Centre (CETD), Neurological Hospital, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
25
|
Attal N, Bouhassira D, Colvin L. Advances and challenges in neuropathic pain: a narrative review and future directions. Br J Anaesth 2023; 131:79-92. [PMID: 37210279 DOI: 10.1016/j.bja.2023.04.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/20/2023] [Accepted: 04/05/2023] [Indexed: 05/22/2023] Open
Abstract
Over the past few decades, substantial advances have been made in neuropathic pain clinical research. An updated definition and classification have been agreed. Validated questionnaires have improved the detection and assessment of acute and chronic neuropathic pain; and newer neuropathic pain syndromes associated with COVID-19 have been described. The management of neuropathic pain has moved from empirical to evidence-based medicine. However, appropriately targeting current medications and the successful clinical development of drugs acting on new targets remain challenging. Innovative approaches to improving therapeutic strategies are required. These mainly encompass rational combination therapy, drug repurposing, non-pharmacological approaches (such as neurostimulation techniques), and personalised therapeutic management. This narrative review reports historical and current perspectives regarding the definitions, classification, assessment, and management of neuropathic pain and explores potential avenues for future research.
Collapse
Affiliation(s)
- Nadine Attal
- Inserm U987, UVSQ-Paris-Saclay University, Ambroise Pare Hospital, Boulogne-Billancourt, France.
| | - Didier Bouhassira
- Inserm U987, UVSQ-Paris-Saclay University, Ambroise Pare Hospital, Boulogne-Billancourt, France
| | - Lesley Colvin
- University of Dundee, Ninewells Medical School, Ninewells Hospital, Dundee, UK
| |
Collapse
|
26
|
Hodaj H, Payen JF, Hodaj E, Sorel M, Dumolard A, Vercueil L, Delon-Martin C, Lefaucheur JP. Long-term analgesic effect of trans-spinal direct current stimulation compared to non-invasive motor cortex stimulation in complex regional pain syndrome. Brain Commun 2023; 5:fcad191. [PMID: 37545548 PMCID: PMC10400160 DOI: 10.1093/braincomms/fcad191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/26/2023] [Accepted: 06/30/2023] [Indexed: 08/08/2023] Open
Abstract
The aim of the present study was to compare the analgesic effect of motor cortex stimulation using high-frequency repetitive transcranial magnetic stimulation or transcranial direct current stimulation and transcutaneous spinal direct current stimulation in patients with complex regional pain syndrome. Thirty-three patients with complex regional pain syndrome were randomized to one of the three treatment groups (repetitive transcranial magnetic stimulation, n = 11; transcranial direct current stimulation, n = 10; transcutaneous spinal direct current stimulation, n = 12) and received a series of 12 sessions of stimulation for 3 weeks (induction phase) and 11 sessions for 4 months (maintenance therapy). The primary end-point was the mean pain intensity assessed weekly with a visual numerical scale during the month prior to treatment (baseline), the 5-month stimulation period and 1 month after the treatment. The weekly visual numerical scale pain score was significantly reduced at all time points compared to baseline in the transcutaneous spinal direct current stimulation group, at the last two time points in the repetitive transcranial magnetic stimulation group (end of the 5-month stimulation period and 1 month later), but at no time point in the transcranial direct current stimulation group. A significant pain relief was observed at the end of induction phase using transcutaneous spinal direct current stimulation compared to repetitive transcranial magnetic stimulation (P = 0.008) and to transcranial direct current stimulation (P = 0.003). In this trial, transcutaneous spinal direct current stimulation was more efficient to relieve pain in patients with complex regional pain syndrome compared to motor cortex stimulation techniques (repetitive transcranial magnetic stimulation, transcranial direct current stimulation). This efficacy was found during the induction phase and was maintained thereafter. This study warrants further investigation to confirm the potentiality of transcutaneous spinal direct current stimulation as a therapeutic option in complex regional pain syndrome.
Collapse
Affiliation(s)
- Hasan Hodaj
- Correspondence to: Hasan Hodaj Pôle Anesthésie Réanimation CHU Grenoble Alpes, BP217, 38043 Grenoble, FranceE-mail:
| | - Jean-Francois Payen
- Centre de la Douleur, Pôle Anesthésie Réanimation, CHU Grenoble Alpes, 38000 Grenoble, France
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Enkelejda Hodaj
- Centre d'Investigation Clinique, CHU Grenoble Alpes, 38000, Grenoble, France
| | - Marc Sorel
- Centre d'Evaluation et de Traitement de la Douleur, Hôpital Sud-Seine-et-Marne, site Nemours, Nemours, France
- EA 4391, Excitabilité Nerveuse et Thérapeutique, Faculté de Santé, Univ. Paris Est Créteil, Créteil, France
| | - Anne Dumolard
- Centre de la Douleur, Pôle Anesthésie Réanimation, CHU Grenoble Alpes, 38000 Grenoble, France
| | - Laurent Vercueil
- Service de Neurologie, CHU Grenoble Alpes, 38000, Grenoble, France
| | - Chantal Delon-Martin
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Jean-Pascal Lefaucheur
- EA 4391, Excitabilité Nerveuse et Thérapeutique, Faculté de Santé, Univ. Paris Est Créteil, Créteil, France
- Unité de Neurophysiologie Clinique, Service de Physiologie—Explorations Fonctionnelles, Hôpital Henri Mondor, Assistance Publique—Hôpitaux de Paris, Créteil, France
| |
Collapse
|
27
|
Szymoniuk M, Chin JH, Domagalski Ł, Biszewski M, Jóźwik K, Kamieniak P. Brain stimulation for chronic pain management: a narrative review of analgesic mechanisms and clinical evidence. Neurosurg Rev 2023; 46:127. [PMID: 37247036 PMCID: PMC10227133 DOI: 10.1007/s10143-023-02032-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/01/2023] [Accepted: 05/10/2023] [Indexed: 05/30/2023]
Abstract
Chronic pain constitutes one of the most common chronic complaints that people experience. According to the International Association for the Study of Pain, chronic pain is defined as pain that persists or recurs longer than 3 months. Chronic pain has a significant impact on individuals' well-being and psychosocial health and the economy of healthcare systems as well. Despite the availability of numerous therapeutic modalities, treatment of chronic pain can be challenging. Only about 30% of individuals with non-cancer chronic pain achieve improvement from standard pharmacological treatment. Therefore, numerous therapeutic approaches were proposed as a potential treatment for chronic pain including non-opioid pharmacological agents, nerve blocks, acupuncture, cannabidiol, stem cells, exosomes, and neurostimulation techniques. Although some neurostimulation methods such as spinal cord stimulation were successfully introduced into clinical practice as a therapy for chronic pain, the current evidence for brain stimulation efficacy in the treatment of chronic pain remains unclear. Hence, this narrative literature review aimed to give an up-to-date overview of brain stimulation methods, including deep brain stimulation, motor cortex stimulation, transcranial direct current stimulation, repetitive transcranial magnetic stimulation, cranial electrotherapy stimulation, and reduced impedance non-invasive cortical electrostimulation as a potential treatment for chronic pain.
Collapse
Affiliation(s)
- Michał Szymoniuk
- Student Scientific Association at the Department of Neurosurgery, Medical University of Lublin, Lublin, Poland
| | - Jia-Hsuan Chin
- Student Scientific Association at the Department of Neurosurgery, Medical University of Lublin, Lublin, Poland
| | - Łukasz Domagalski
- Student Scientific Association at the Department of Neurosurgery, Medical University of Lublin, Lublin, Poland.
| | - Mateusz Biszewski
- Student Scientific Association at the Department of Neurosurgery, Medical University of Lublin, Lublin, Poland
| | - Katarzyna Jóźwik
- Student Scientific Association at the Department of Neurosurgery, Medical University of Lublin, Lublin, Poland
| | - Piotr Kamieniak
- Department of Neurosurgery, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
28
|
Bai YW, Yang QH, Chen PJ, Wang XQ. Repetitive transcranial magnetic stimulation regulates neuroinflammation in neuropathic pain. Front Immunol 2023; 14:1172293. [PMID: 37180127 PMCID: PMC10167032 DOI: 10.3389/fimmu.2023.1172293] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023] Open
Abstract
Neuropathic pain (NP) is a frequent condition caused by a lesion in, or disease of, the central or peripheral somatosensory nervous system and is associated with excessive inflammation in the central and peripheral nervous systems. Repetitive transcranial magnetic stimulation (rTMS) is a supplementary treatment for NP. In clinical research, rTMS of 5-10 Hz is widely placed in the primary motor cortex (M1) area, mostly at 80%-90% RMT, and 5-10 treatment sessions could produce an optimal analgesic effect. The degree of pain relief increases greatly when stimulation duration is greater than 10 days. Analgesia induced by rTMS appears to be related to reestablishing the neuroinflammation system. This article discussed the influences of rTMS on the nervous system inflammatory responses, including the brain, spinal cord, dorsal root ganglia (DRG), and peripheral nerve involved in the maintenance and exacerbation of NP. rTMS has shown an anti-inflammation effect by decreasing pro-inflammatory cytokines, including IL-1β, IL-6, and TNF-α, and increasing anti-inflammatory cytokines, including IL-10 and BDNF, in cortical and subcortical tissues. In addition, rTMS reduces the expression of glutamate receptors (mGluR5 and NMDAR2B) and microglia and astrocyte markers (Iba1 and GFAP). Furthermore, rTMS decreases nNOS expression in ipsilateral DRGs and peripheral nerve metabolism and regulates neuroinflammation.
Collapse
Affiliation(s)
- Yi-Wen Bai
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qi-Hao Yang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Pei-Jie Chen
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
| |
Collapse
|
29
|
André-Obadia N, Hodaj H, Hodaj E, Simon E, Delon-Martin C, Garcia-Larrea L. Better Fields or Currents? A Head-to-Head Comparison of Transcranial Magnetic (rTMS) Versus Direct Current Stimulation (tDCS) for Neuropathic Pain. Neurotherapeutics 2023; 20:207-219. [PMID: 36266501 PMCID: PMC10119368 DOI: 10.1007/s13311-022-01303-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2022] [Indexed: 10/24/2022] Open
Abstract
While high-frequency transcranial magnetic stimulation (HF-rTMS) is now included in the armamentarium to treat chronic neuropathic pain (NP), direct-current anodal stimulation (a-tDCS) to the same cortical targets may represent a valuable alternative in terms of feasibility and cost. Here we performed a head-to-head, randomized, single-blinded, cross-over comparison of HF-rTMS versus a-tDCS over the motor cortex in 56 patients with drug-resistant NP, who received 5 daily sessions of each procedure, with a washout of at least 4 weeks. Daily scores of pain, sleep, and fatigue were obtained during 5 consecutive weeks, and functional magnetic resonance imaging (fMRI) to a motor task was performed in a subgroup of 31 patients. The percentage of responders, defined by a reduction in pain scores of > 2 SDs from pre-stimulus levels, was similar to both techniques (42.0% vs. 42.3%), while the magnitude of "best pain relief" was significantly skewed towards rTMS. Mean pain ratings in responders decreased by 32.6% (rTMS) and 29.6% (tDCS), with half of them being sensitive to only one technique. Movement-related fMRI showed significant activations in motor and premotor areas, which did not change after 5 days of stimulation, and did not discriminate responders from non-responders. Both HF-rTMS and a-tDCS showed efficacy at 1 month in drug-resistant NP, with magnitude of relief slightly favoring rTMS. Since a significant proportion of patients responded to one procedure only, both modalities should be tested before declaring a patient as unresponsive.
Collapse
Affiliation(s)
- Nathalie André-Obadia
- Neurophysiology & Epilepsy Unit, Neurological Hospital P. Wertheimer, Hospices Civils de Lyon, 59 Boulevard Pinel, 69677, Bron Cedex, France.
- University Hospital Pain Center (CETD), Neurological Hospital P. Wertheimer, Hospices Civils de Lyon, Lyon, France.
- NeuroPain Lab, INSERM U1028, UMR5292, Lyon Neuroscience Research Center, CNRS, University Claude Bernard Lyon 1, Lyon, France.
| | - Hasan Hodaj
- Pain Center, Department of Anaesthesia and Intensive Care, Grenoble Alpes University Hospital, Grenoble, France
- University Grenoble Alpes, Inserm U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Enkelejda Hodaj
- Clinical Pharmacology Department, Inserm CIC1406, Grenoble Alpes University Hospital, Grenoble, France
| | - Emile Simon
- University Hospital Pain Center (CETD), Neurological Hospital P. Wertheimer, Hospices Civils de Lyon, Lyon, France
- NeuroPain Lab, INSERM U1028, UMR5292, Lyon Neuroscience Research Center, CNRS, University Claude Bernard Lyon 1, Lyon, France
- Functional and Stereotactic Neurosurgical Unit, Neurological Hospital P. Wertheimer, Hospices Civils de Lyon, Lyon, France
| | - Chantal Delon-Martin
- University Grenoble Alpes, Inserm U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Luis Garcia-Larrea
- University Hospital Pain Center (CETD), Neurological Hospital P. Wertheimer, Hospices Civils de Lyon, Lyon, France
- NeuroPain Lab, INSERM U1028, UMR5292, Lyon Neuroscience Research Center, CNRS, University Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
30
|
Kim NY, Taylor JJ, Kim YW, Borsook D, Joutsa J, Li J, Quesada C, Peyron R, Fox MD. Network Effects of Brain Lesions Causing Central Poststroke Pain. Ann Neurol 2022; 92:834-845. [PMID: 36271755 DOI: 10.1002/ana.26468] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 01/07/2023]
Abstract
OBJECTIVE This study was undertaken to test whether lesions causing central poststroke pain (CPSP) are associated with a specific connectivity profile, whether these connections are associated with metabolic changes, and whether this network aligns with neuromodulation targets for pain. METHODS Two independent lesion datasets were utilized: (1) subcortical lesions from published case reports and (2) thalamic lesions with metabolic imaging using 18F- fluorodeoxyglucose positron emission tomography-computed tomography. Functional connectivity between each lesion location and the rest of the brain was assessed using a normative connectome (n = 1,000), and connections specific to CPSP were identified. Metabolic changes specific to CPSP were also identified and related to differences in lesion connectivity. Therapeutic relevance of the network was explored by testing for alignment with existing brain stimulation data and by prospectively targeting the network with repetitive transcranial magnetic stimulation (rTMS) in 7 patients with CPSP. RESULTS Lesion locations causing CPSP showed a specific pattern of brain connectivity that was consistent across two independent lesion datasets (spatial r = 0.82, p < 0.0001). Connectivity differences were correlated with postlesion metabolism (r = -0.48, p < 0.001). The topography of this lesion-based pain network aligned with variability in pain improvement across 12 prior neuromodulation targets and across 32 patients who received rTMS to primary motor cortex (p < 0.05). Prospectively targeting this network with rTMS improved CPSP in 6 of 7 patients. INTERPRETATION Lesions causing pain are connected to a specific brain network that shows metabolic abnormalities and promise as a neuromodulation target. ANN NEUROL 2022;92:834-845.
Collapse
Affiliation(s)
- Na Young Kim
- Department and Research, Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.,Department of Rehabilitation Medicine, Yongin Severance Hospital, Yongin, Republic of Korea.,Center for Digital Heath, Yongin Severance Hospital, Yongin, Republic of Korea
| | - Joseph J Taylor
- Center for Brain Circuit Therapeutics, Departments of Neurology, Psychiatry, Radiology, and Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA.,Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Yong Wook Kim
- Department and Research, Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - David Borsook
- Harvard Medical School, Boston, MA, USA.,Departments of Psychiatry and Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Juho Joutsa
- Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, Turku, Finland.,Turku PET Center, Neurocenter, Turku University Hospital, Turku, Finland
| | - Jing Li
- Harvard Medical School, Boston, MA, USA.,Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Charles Quesada
- Central Integration of Pain (NeuroPain) Laboratory-Lyon Neurosciences Research Center, National Institute of Health and Medical Research U1028, Lyon, France.,Stephanois Pain Center, Saint-Etienne Regional University Hospital Center, Saint-Etienne, France.,Department of Physical Therapy, Claude Bernard Lyon-1 University, Lyon, France
| | - Roland Peyron
- Central Integration of Pain (NeuroPain) Laboratory-Lyon Neurosciences Research Center, National Institute of Health and Medical Research U1028, Lyon, France.,Department of Physical Therapy, Claude Bernard Lyon-1 University, Lyon, France.,Neurology Department, Saint-Etienne Regional University Hospital Center, Saint-Etienne, France
| | - Michael D Fox
- Center for Brain Circuit Therapeutics, Departments of Neurology, Psychiatry, Radiology, and Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA.,Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
31
|
Fauchon C, Kim JA, El-Sayed R, Osborne NR, Rogachov A, Cheng JC, Hemington KS, Bosma RL, Dunkley BT, Oh J, Bhatia A, Inman RD, Davis KD. A Hidden Markov Model reveals magnetoencephalography spectral frequency-specific abnormalities of brain state power and phase-coupling in neuropathic pain. Commun Biol 2022; 5:1000. [PMID: 36131088 PMCID: PMC9492713 DOI: 10.1038/s42003-022-03967-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/08/2022] [Indexed: 11/09/2022] Open
Abstract
Neuronal populations in the brain are engaged in a temporally coordinated manner at rest. Here we show that spontaneous transitions between large-scale resting-state networks are altered in chronic neuropathic pain. We applied an approach based on the Hidden Markov Model to magnetoencephalography data to describe how the brain moves from one activity state to another. This identified 12 fast transient (~80 ms) brain states including the sensorimotor, ascending nociceptive pathway, salience, visual, and default mode networks. Compared to healthy controls, we found that people with neuropathic pain exhibited abnormal alpha power in the right ascending nociceptive pathway state, but higher power and coherence in the sensorimotor network state in the beta band, and shorter time intervals between visits of the sensorimotor network, indicating more active time in this state. Conversely, the neuropathic pain group showed lower coherence and spent less time in the frontal attentional state. Therefore, this study reveals a temporal imbalance and dysregulation of spectral frequency-specific brain microstates in patients with neuropathic pain. These findings can potentially impact the development of a mechanism-based therapeutic approach by identifying brain targets to stimulate using neuromodulation to modify abnormal activity and to restore effective neuronal synchrony between brain states.
Collapse
Affiliation(s)
- Camille Fauchon
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, M5T 2S8, Canada
| | - Junseok A Kim
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, M5T 2S8, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Rima El-Sayed
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, M5T 2S8, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Natalie R Osborne
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, M5T 2S8, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Anton Rogachov
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, M5T 2S8, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Joshua C Cheng
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, M5T 2S8, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Kasey S Hemington
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, M5T 2S8, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Rachael L Bosma
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, M5T 2S8, Canada
| | - Benjamin T Dunkley
- Neurosciences & Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, ON, M5G 0A4, Canada.,Diagnostic Imaging, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.,Department of Medical Imaging, University of Toronto, Toronto, ON, M5T 1W7, Canada
| | - Jiwon Oh
- Div of Neurology, Dept of Medicine, St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada
| | - Anuj Bhatia
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, M5T 2S8, Canada.,Department of Anesthesia and Pain Medicine, Toronto Western Hospital, and University of Toronto, Toronto, ON, M5T 2S8, Canada
| | - Robert D Inman
- Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Division of Immunology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Karen Deborah Davis
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, M5T 2S8, Canada. .,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada. .,Department of Surgery, University of Toronto, Toronto, ON, M5T 1P5, Canada.
| |
Collapse
|
32
|
The Effectiveness of High-Frequency Repetitive Transcranial Magnetic Stimulation on Patients with Neuropathic Orofacial Pain: A Systematic Review of Randomized Controlled Trials. Neural Plast 2022; 2022:6131696. [PMID: 36061584 PMCID: PMC9433245 DOI: 10.1155/2022/6131696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/23/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
Background Repetitive transcranial magnetic stimulation (rTMS) has been widely used in the treatment of neuropathic orofacial pain (NOP). The consistency of its therapeutic efficacy with the optimal protocol is highly debatable. Objective To assess the effectiveness of rTMS on pain intensity, psychological conditions, and quality of life (QOL) in individuals with NOP based on randomized controlled trials (RCTs). Methods We carefully screened and browsed 5 medical databases from inception to January 1, 2022. The study will be included that use of rTMS as the intervention for patients with NOP. Two researchers independently completed record retrieval, data processing, and evaluation of methodological quality. Quality and evidence were assessed using the PEDro scores and the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) system. Results Six RCTs with 214 participants were included in this systematic review: 2 studies were considered level 1 evidence, and 4 were considered level 2 evidence. Six studies found that high-frequency rTMS had a pain-relieving effect, while 4 studies found no improvement in psychological conditions and QOL. Quality of evidence (GRADE system) ranged from moderate to high. No significant side effects were found. Conclusions There is moderate-to-high evidence to prove that high-frequency rTMS is effective in reducing pain in individuals with NOP, but it has no significant positive effect on psychological conditions and QOL. High-frequency rTMS can be used as an alternative treatment for pain in individuals with NOP, but further studies will be conducted to unify treatment parameters, and the sample size will be expanded to explore its influence on psychological conditions and QOL.
Collapse
|
33
|
Masoumbeigi M, Alam NR, Kordi R, Rostami M, Afzali M, Yadollahi M, Rahimiforoushani A, Jafari AH, Hashemi H, Kavousi M. rTMS Pain Reduction Effectiveness in Non-specific Chronic Low Back Pain Patients using rs-fMRI Functional Connectivity. J Med Biol Eng 2022. [DOI: 10.1007/s40846-022-00721-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
34
|
Foglia SD, Rehsi RS, Turco CV, Shanthanna H, Nelson AJ. Case report: The feasibility of rTMS with intrathecal baclofen pump for the treatment of unresolved neuropathic pain following spinal cord injury. FRONTIERS IN REHABILITATION SCIENCES 2022; 3:893014. [PMID: 36188893 PMCID: PMC9397973 DOI: 10.3389/fresc.2022.893014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/01/2022] [Indexed: 11/21/2022]
Abstract
The main objective of this study was to assess the efficacy and safety of 10 Hz repetitive transcranial magnetic stimulation (rTMS) for the treatment of unresolved neuropathic pain in an individual with spinal cord injury and an intrathecal baclofen pump. A 62-year-old male presented with drug resistant neuropathic pain as a result of a complete spinal cord lesion at T8 level. Pain was classified into four types: pressure pain in the left foot, burning pain in buttocks, burning pain in sternum, and electrical attacks in the trunk. The treatment period involved 6 weeks of rTMS stimulation performed 5 days per week, a 6-week follow up period with no stimulation, and an 8-week top up session period which began 5-weeks after the end of the follow up period. 2004 pulses were delivered at 10Hz over the right-hand representation of the left primary motor cortex at 80% resting motor threshold during each session. Assessments were based on the numerical rating scale (NRS), neuropathic pain scale (NPS), Hamilton Depression and Anxiety rating scales. Following the treatment period there was a 30, 13, and 29% reduction in sternum, buttocks, and left foot pain respectively, as reported by the NRS. During this time, electrical attacks were abolished following the third week of treatment. These changes corresponded to a 38% decrease in NPS scores and a 65 and 25% reduction in anxiety and depressions scores respectively. The changes in sternum, buttocks, and left foot pain reported on the NRS persisted for 1 week following treatment. Top up sessions delivered 11 weeks after the end of the treatment period were unsuccessful in reducing pain to the level achieved during the treatment period. A 13% reduction in NPS was seen during these 8-weeks. Anxiety and depression scores decreased 78 and 67% respectively. The frequency of electrical attacks was zero during this time. rTMS stimulation delivered throughout this study did not cause any interference with the functioning of the intrathecal baclofen pump. This case study illustrates that rTMS may be effective at reducing drug resistant neuropathic pain with certain pain types exhibiting greater propensity for change.
Collapse
Affiliation(s)
- Stevie D. Foglia
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
| | - Ravjot S. Rehsi
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Claudia V. Turco
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Harsha Shanthanna
- Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Aimee J. Nelson
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
- *Correspondence: Aimee J. Nelson
| |
Collapse
|
35
|
Pirvulescu I, Biskis A, Candido KD, Knezevic NN. Overcoming clinical challenges of refractory neuropathic pain. Expert Rev Neurother 2022; 22:595-622. [PMID: 35866187 DOI: 10.1080/14737175.2022.2105206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION : Refractory neuropathic pain (ReNP), and its definition, is widely disputed amongst clinicians due in part to unclear categorical diagnosing guidelines, overall time duration of neuropathic pain, and the exhaustiveness of treatment options. Usually ReNP is defined as chronic, intractable, and unresponsive neuropathic pain that have otherwise been untreatable. AREAS COVERED : In this narrative review, we discuss and summarize the effectiveness of prospective ReNP research conducted over the past 10 years. This research looks at pharmacological and interventional therapies in clinical trial settings. The pharmacological therapies discussed include the use of adjuvant treatments to improve the safety and efficacy of conventional approaches. Different modalities of administration, such as injection therapy and intrathecal drug delivery systems, provide targeted drug delivery. Interventional therapies such as neuromodulation, pulse radiofrequency, and nerve lesioning are more invasive, however, they are increasingly utilized in the field, as reflected in ongoing clinical trials. EXPERT OPINION : Based on the current data from RCTs and systematic reviews, it is clear that single drug therapy cannot be effective and has significant limitations. Transitioning to interventional modalities that showed more promising results sooner rather than later may be even more cost-efficient than attempting different conservative treatments with a high failure rate.
Collapse
Affiliation(s)
- Iulia Pirvulescu
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, USA
| | - Alexandras Biskis
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, USA.,Advocate Aurora Research Institute, Chicago, IL, USA.,College of Aviation, Science and Technology, Lewis University, Romeoville, IL, USA
| | - Kenneth D Candido
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, USA.,Department of Anesthesiology, University of Illinois, Chicago, IL, USA.,Department of Surgery, University of Illinois, Chicago, IL, USA
| | - Nebojsa Nick Knezevic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, USA.,Department of Anesthesiology, University of Illinois, Chicago, IL, USA.,Department of Surgery, University of Illinois, Chicago, IL, USA
| |
Collapse
|
36
|
Exploring sex differences in alpha brain activity as a potential neuromarker associated with neuropathic pain. Pain 2022; 163:1291-1302. [PMID: 34711764 DOI: 10.1097/j.pain.0000000000002491] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/09/2021] [Indexed: 12/31/2022]
Abstract
ABSTRACT Alpha oscillatory activity (8-13 Hz) is the dominant rhythm in the awake brain and is known to play an important role in pain states. Previous studies have identified alpha band slowing and increased power in the dynamic pain connectome (DPC) of people with chronic neuropathic pain. However, a link between alpha-band abnormalities and sex differences in brain organization in healthy individuals and those with chronic pain is not known. Here, we used resting-state magnetoencephalography to test the hypothesis that peak alpha frequency (PAF) abnormalities are general features across chronic central and peripheral conditions causing neuropathic pain but exhibit sex-specific differences in networks of the DPC (ascending nociceptive pathway [ANP], default mode network, salience network [SN], and subgenual anterior cingulate cortex). We found that neuropathic pain (N = 25 men and 25 women) was associated with increased PAF power in the DPC compared with 50 age- and sex-matched healthy controls, whereas slower PAF in nodes of the SN (temporoparietal junction) and the ANP (posterior insula) was associated with higher trait pain intensity. In the neuropathic pain group, women exhibited lower PAF power in the subgenual anterior cingulate cortex and faster PAF in the ANP and SN than men. The within-sex analyses indicated that women had neuropathic pain-related increased PAF power in the ANP, SN, and default mode network, whereas men with neuropathic pain had increased PAF power restricted to the ANP. These findings highlight neuropathic pain-related and sex-specific abnormalities in alpha oscillations across the DPC that could underlie aberrant neuronal communication in nociceptive processing and modulation.
Collapse
|
37
|
Mori N, Hosomi K, Nishi A, Oshino S, Kishima H, Saitoh Y. Analgesic Effects of Repetitive Transcranial Magnetic Stimulation at Different Stimulus Parameters for Neuropathic Pain: A Randomized Study. Neuromodulation 2022; 25:520-527. [PMID: 35670062 DOI: 10.1111/ner.13328] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/21/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVES The aim of the present study was to investigate the analgesic effects of repetitive transcranial magnetic stimulation over the primary motor cortex (M1-rTMS) using different stimulation parameters to explore the optimal stimulus condition for treating neuropathic pain. MATERIALS AND METHODS We conducted a randomized, blinded, crossover exploratory study. Four single sessions of M1-rTMS at different parameters were administered in random order. The tested stimulation conditions were as follows: 5-Hz with 500 pulses per session, 10-Hz with 500 pulses per session, 10-Hz with 2000 pulses per session, and sham stimulation. Analgesic effects were assessed by determining the visual analog scale (VAS) pain intensity score and Short-Form McGill Pain Questionnaire 2 (SF-MPQ2) score immediately before and immediately after intervention. RESULTS We enrolled 22 adults (age: 59.8 ± 12.1 years) with intractable neuropathic pain. Linear-effects models showed significant effects of the stimulation condition on changes in VAS pain intensity (p = 0.03) and SF-MPQ2 (p = 0.01). Tukey multiple comparison tests revealed that 10-Hz rTMS with 2000 pulses provided better pain relief than sham stimulation, with greater decreases in VAS pain intensity (p = 0.03) and SF-MPQ2 (p = 0.02). CONCLUSIONS The results of this study suggest that high-dose stimulation (specifically, 10-Hz rTMS at 2000 pulses) is more effective than lower-dose stimulation for treating neuropathic pain.
Collapse
Affiliation(s)
- Nobuhiko Mori
- Department of Neuromodulation and Neurosurgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan; Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Koichi Hosomi
- Department of Neuromodulation and Neurosurgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan; Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan.
| | - Asaya Nishi
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Satoru Oshino
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Haruhiko Kishima
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Youichi Saitoh
- Department of Neuromodulation and Neurosurgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan; Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| |
Collapse
|
38
|
Shinu P, Morsy MA, Nair AB, Mouslem AKA, Venugopala KN, Goyal M, Bansal M, Jacob S, Deb PK. Novel Therapies for the Treatment of Neuropathic Pain: Potential and Pitfalls. J Clin Med 2022; 11:3002. [PMID: 35683390 PMCID: PMC9181614 DOI: 10.3390/jcm11113002] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 12/15/2022] Open
Abstract
Neuropathic pain affects more than one million people across the globe. The quality of life of people suffering from neuropathic pain has been considerably declining due to the unavailability of appropriate therapeutics. Currently, available treatment options can only treat patients symptomatically, but they are associated with severe adverse side effects and the development of tolerance over prolonged use. In the past decade, researchers were able to gain a better understanding of the mechanisms involved in neuropathic pain; thus, continuous efforts are evident, aiming to develop novel interventions with better efficacy instead of symptomatic treatment. The current review discusses the latest interventional strategies used in the treatment and management of neuropathic pain. This review also provides insights into the present scenario of pain research, particularly various interventional techniques such as spinal cord stimulation, steroid injection, neural blockade, transcranial/epidural stimulation, deep brain stimulation, percutaneous electrical nerve stimulation, neuroablative procedures, opto/chemogenetics, gene therapy, etc. In a nutshell, most of the above techniques are at preclinical stage and facing difficulty in translation to clinical studies due to the non-availability of appropriate methodologies. Therefore, continuing research on these interventional strategies may help in the development of promising novel therapies that can improve the quality of life of patients suffering from neuropathic pain.
Collapse
Affiliation(s)
- Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mohamed A. Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.M.); (A.B.N.); (A.K.A.M.); (K.N.V.)
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.M.); (A.B.N.); (A.K.A.M.); (K.N.V.)
| | - Abdulaziz K. Al Mouslem
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.M.); (A.B.N.); (A.K.A.M.); (K.N.V.)
| | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.M.); (A.B.N.); (A.K.A.M.); (K.N.V.)
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4000, South Africa
| | - Manoj Goyal
- Department of Anesthesia Technology, College of Applied Medical Sciences in Jubail, Imam Abdul Rahman Bin Faisal University, Jubail 35816, Saudi Arabia;
| | - Monika Bansal
- Department of Neuroscience Technology, College of Applied Medical Sciences in Jubail, Imam Abdul Rahman Bin Faisal University, Jubail 35816, Saudi Arabia;
| | - Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates;
| | - Pran Kishore Deb
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, Amman 19392, Jordan;
| |
Collapse
|
39
|
Garcia-Larrea L, Quesada C. Cortical stimulation for chronic pain: from anecdote to evidence. Eur J Phys Rehabil Med 2022; 58:290-305. [PMID: 35343176 PMCID: PMC9980528 DOI: 10.23736/s1973-9087.22.07411-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Epidural stimulation of the motor cortex (eMCS) was devised in the 1990's, and has now largely supplanted thalamic stimulation for neuropathic pain relief. Its mechanisms of action involve activation of multiple cortico-subcortical areas initiated in the thalamus, with involvement of endogenous opioids and descending inhibition toward the spinal cord. Evidence for clinical efficacy is now supported by at least seven RCTs; benefits may persist up to 10 years, and can be reasonably predicted by preoperative use of non-invasive repetitive magnetic stimulation (rTMS). rTMS first developed as a means of predicting the efficacy of epidural procedures, then as an analgesic method on its own right. Reasonable evidence from at least six well-conducted RCTs favors a significant analgesic effect of high-frequency rTMS of the motor cortex in neuropathic pain (NP), and less consistently in widespread/fibromyalgic pain. Stimulation of the dorsolateral frontal cortex (DLPFC) has not proven efficacious for pain, so far. The posterior operculo-insular cortex is a new and attractive target but evidence remains inconsistent. Transcranial direct current stimulation (tDCS) is applied upon similar targets as rTMS and eMCS; it does not elicit action potentials but modulates the neuronal resting membrane state. tDCS presents practical advantages including low cost, few safety issues, and possibility of home-based protocols; however, the limited quality of most published reports entails a low level of evidence. Patients responsive to tDCS may differ from those improved by rTMS, and in both cases repeated sessions over a long time may be required to achieve clinically significant relief. Both invasive and non-invasive procedures exert their effects through multiple distributed brain networks influencing the sensory, affective and cognitive aspects of chronic pain. Their effects are mainly exerted upon abnormally sensitized pathways, rather than on acute physiological pain. Extending the duration of long-term benefits remains a challenge, for which different strategies are discussed in this review.
Collapse
Affiliation(s)
- Luis Garcia-Larrea
- Central Integration of Pain (NeuroPain) Lab, Lyon Center for Neuroscience (CRNL), INSERM U1028, University Claude Bernard Lyon 1, Villeurbanne, France - .,University Hospital Pain Center (CETD), Neurological Hospital, Hospices Civils de Lyon, Lyon, France -
| | - Charles Quesada
- Central Integration of Pain (NeuroPain) Lab, Lyon Center for Neuroscience (CRNL), INSERM U1028, University Claude Bernard Lyon 1, Villeurbanne, France.,Department of Physiotherapy, Sciences of Rehabilitation Institute (ISTR), University Claude Bernard Lyon 1, Villeurbanne, France
| |
Collapse
|
40
|
Xu Z, Zhu Y, Hu Y, Huang M, Xu F, Wang J. Bibliometric and visualized analysis of Neuropathic pain based on Web of Science and CiteSpace over the last 20 years. World Neurosurg 2021; 162:e21-e34. [PMID: 34906754 DOI: 10.1016/j.wneu.2021.12.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/07/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVE The purpose of this bibliometric analysis was to explore disciplinary hotspots and collaborative networks in research on neuropathic pain (NPP) research in the past 20 years. METHODS The articles related to NPP were obtained from Web of Science database. Global publications on neuropathic pain were analyzed in terms of different aspects such as number of papers, citation rates, authors, institutions, countries/regions, journals, and funding, as well as relevant partnerships and topic hotspots RESULTS: From 2001 to 2020, 6905 articles related to NPP research were published worldwide. The number of publications had increased over the last 20 years continually. Pain was the most productive and the most frequently co-cited journal. Baron R was the most productive and influential author. The most productive country and institution were USA and Harvard University respectively. Researchers and institutions from the USA, Japan and China were the core research forces. There was a broad and close cooperation in the field worldwide. The top authors and top institutions had collaborated relatively closely with others. CONCLUSIONS The research of NPP is a well-developed and prospective field of medical study. Pain, European Journal of Pain, and Molecular Pain show more interested in this field. The USA, Harvard University, and Ralf Baron were the top country, institution, and author, respectively. Global research collaboration is extensive. Top institutions and authors had cooperation.
Collapse
Affiliation(s)
- Zhangyu Xu
- Department of Rehabilitation Medicine, The Affiliated Hospital of Southwest Medical University, 646000, Luzhou, Sichuan, People's Republic of China
| | - Yuanliang Zhu
- Department of Rehabilitation Medicine, The Affiliated Hospital of Southwest Medical University, 646000, Luzhou, Sichuan, People's Republic of China
| | - Yue Hu
- Department of Rehabilitation Medicine, The Affiliated Hospital of Southwest Medical University, 646000, Luzhou, Sichuan, People's Republic of China
| | - Maomaom Huang
- Department of Rehabilitation Medicine, The Affiliated Hospital of Southwest Medical University, 646000, Luzhou, Sichuan, People's Republic of China
| | - Fangyuan Xu
- Department of Rehabilitation Medicine, the Affiliated Hospital of Southwest Medical University, 646000, Luzhou, Sichuan, People's Republic of China
| | - Jianxiong Wang
- Department of Rehabilitation Medicine, the Affiliated Hospital of Southwest Medical University, 646000, Luzhou, Sichuan, People's Republic of China, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, 646000, Luzhou, Sichuan, People's Republic of China, Laboratory of Neurological Diseases and Brain Function, 646000, Luzhou, Sichuan, People's Republic of China.
| |
Collapse
|
41
|
Sorkpor SK, Ahn H. Transcranial direct current and transcranial magnetic stimulations for chronic pain. Curr Opin Anaesthesiol 2021; 34:781-785. [PMID: 34419991 DOI: 10.1097/aco.0000000000001056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Chronic pain is debilitating and difficult to treat with pharmacotherapeutics alone. Consequently, exploring alternative treatment methods for chronic pain is essential. Noninvasive brain stimulation techniques, such as transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS) are increasingly being investigated for their neuropharmacological effects in the treatment of chronic pain. This review aims to examine and evaluate the present state of evidence regarding the use of tDCS and TMS in the treatment of chronic pain. RECENT FINDINGS Despite conflicting evidence in the early literature, evidence from recent rigorous research supports the use of tDCS and TMS in treating chronic pain conditions. For both tDCS and TMS, standardized stimulation parameters have been identified with the recommendation for repeated maintenance stimulation to ensure that the analgesic effect is sustained beyond discontinuation of therapy. SUMMARY Due to a lack of defined stimulation protocols, early findings on the efficacy of tDCS and TMS are mixed. Although the application of tDCS and TMS as pain relief approaches is still in its early stages, the introduction of standardized stimulation protocols is paving the way for more robust and informed research.
Collapse
Affiliation(s)
- Setor K Sorkpor
- Cizik School of Nursing, University of Texas Health Science Center, Houston, Texas
| | - Hyochol Ahn
- College of Nursing, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
42
|
Mori N, Hosomi K, Nishi A, Dong D, Yanagisawa T, Khoo HM, Tani N, Oshino S, Saitoh Y, Kishima H. Difference in Analgesic Effects of Repetitive Transcranial Magnetic Stimulation According to the Site of Pain. Front Hum Neurosci 2021; 15:786225. [PMID: 34899224 PMCID: PMC8662379 DOI: 10.3389/fnhum.2021.786225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/29/2021] [Indexed: 01/09/2023] Open
Abstract
High-frequency repetitive transcranial magnetic stimulation (rTMS) of the primary motor cortex for neuropathic pain has been shown to be effective, according to systematic reviews and therapeutic guidelines. However, our large, rigorous, investigator-initiated, registration-directed clinical trial failed to show a positive primary outcome, and its subgroup analysis suggested that the analgesic effect varied according to the site of pain. The aim of this study was to investigate the differences in analgesic effects of rTMS for neuropathic pain between different pain sites by reviewing our previous clinical trials. We included three clinical trials in this mini meta-analysis: a multicenter randomized controlled trial at seven hospitals (N = 64), an investigator-initiated registration-directed clinical trial at three hospitals (N = 142), and an exploratory clinical trial examining different stimulation parameters (N = 22). The primary efficacy endpoint (change in pain scale) was extracted for each patient group with pain in the face, upper limb, or lower limb, and a meta-analysis of the efficacy of active rTMS against sham stimulation was performed. Standardized mean difference (SMD) with 95% confidence interval (CI) was calculated for pain change using a random-effects model. The analgesic effect of rTMS for upper limb pain was favorable (SMD = -0.45, 95% CI: -0.77 to -0.13). In contrast, rTMS did not produce significant pain relief on lower limb pain (SMD = 0.04, 95% CI: -0.33 to 0.41) or face (SMD = -0.24, 95% CI: -1.59 to 1.12). In conclusion, these findings suggest that rTMS provides analgesic effects in patients with neuropathic pain in the upper limb, but not in the lower limb or face, under the conditions of previous clinical trials. Owing to the main limitation of small number of studies included, many aspects should be clarified by further research and high-quality studies in these patients.
Collapse
Affiliation(s)
- Nobuhiko Mori
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Koichi Hosomi
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan,*Correspondence: Koichi Hosomi,
| | - Asaya Nishi
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Dong Dong
- Department of Mechanical Science and Bioengineering, Osaka University Graduate School of Engineering Science, Toyonaka, Japan
| | - Takufumi Yanagisawa
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan,Osaka University Institute for Advanced Co-Creation Studies, Suita, Japan
| | - Hui Ming Khoo
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Naoki Tani
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Satoru Oshino
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Youichi Saitoh
- Department of Mechanical Science and Bioengineering, Osaka University Graduate School of Engineering Science, Toyonaka, Japan,Tokuyukai Rehabilitation Clinic, Toyonaka, Japan
| | - Haruhiko Kishima
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
43
|
Jiang X, Yan W, Wan R, Lin Y, Zhu X, Song G, Zheng K, Wang Y, Wang X. Effects of repetitive transcranial magnetic stimulation on neuropathic pain: A systematic review and meta-analysis. Neurosci Biobehav Rev 2021; 132:130-141. [PMID: 34826512 DOI: 10.1016/j.neubiorev.2021.11.037] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/13/2021] [Accepted: 11/22/2021] [Indexed: 12/27/2022]
Abstract
Neuropathic pain (NP) is a chronic pain condition caused by lesion or disease of the somatosensory nervous system. Repetitive transcranial magnetic stimulation (rTMS) is a neuroregulatory tool that uses pulsed magnetic fields to modulate the cerebral cortex. This review aimed to ascertain the therapeutic effect of rTMS on NP and potential factors regulating the therapeutic effect of rTMS. Database search included Web of Science, Embase, Pubmed, and Cochrane Library from inception to July 2021. Eligible studies included randomized controlled studies of the analgesic effects of rTMS in patients with NP. Thirty-eight studies were included. Random effect analysis showed effect sizes of -0.66 (95 % CI, -0.87 to -0.46), indicating that real rTMS was better than sham condition in reducing pain (P < 0.001). This comprehensive review indicated that stimulation frequency, intervention site, and location of lesion were important factors affecting the therapeutic effect. The findings of this study may guide clinical decisions and future research.
Collapse
Affiliation(s)
- Xue Jiang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China; Department of Rehabilitation Medicine, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wangwang Yan
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China; Department of Rehabilitation Medicine, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ruihan Wan
- Department of Sport Rehabilitation, Shenyang Sport University, Shenyang, China; Department of Rehabilitation Medicine, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yangyang Lin
- Department of Rehabilitation Medicine, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoxia Zhu
- Department of Rehabilitation Medicine, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ge Song
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Kangyong Zheng
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Yuling Wang
- Department of Rehabilitation Medicine, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Xueqiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China; Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China.
| |
Collapse
|
44
|
Mori N, Hosomi K, Nishi A, Matsugi A, Dong D, Oshino S, Kishima H, Saitoh Y. Exploratory study of optimal parameters of repetitive transcranial magnetic stimulation for neuropathic pain in the lower extremities. Pain Rep 2021; 6:e964. [PMID: 34667918 PMCID: PMC8517292 DOI: 10.1097/pr9.0000000000000964] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/11/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022] Open
Abstract
Introduction Pain relief from repetitive transcranial magnetic stimulation (rTMS) over the primary motor cortex (M1) is particularly poor in patients with leg pain. The optimal parameters for relieving leg pain remain poorly understood. The purpose of this study was to explore the optimal stimulation parameters of M1-rTMS for patients with leg pain. Methods Eleven patients with neuropathic pain in the leg randomly underwent 6 conditions of M1-rTMS with different stimulation intensities, sites, and coil directions, including sham stimulation. The 5 active conditions were as follows: 90% or 110% of the resting motor threshold (RMT) on the M1 hand with an anteroposterior coil direction, 90% or 110% RMT on the M1 foot in the anteroposterior direction, and 90% RMT on the M1 foot in the mediolateral direction. Each condition was administered for 3 days. Pain intensity was evaluated using the Visual Analogue Scale and Short-Form McGill Pain Questionnaire 2 at baseline and up to 7 days after each intervention. Results Visual Analogue Scale scores were significantly reduced after the following active rTMS conditions: 90% RMT on the M1 hand, 90% RMT on the M1 foot with any coil direction, and 110% RMT on the M1 foot. The Short-Form McGill Pain Questionnaire 2 results were similar to those obtained using the Visual Analogue Scale. The analgesic effect of rTMS with stimulus intensity above the RMT was not superior to that below the RMT. Conclusion We suggest that the optimal stimulation parameters of rTMS for patients with neuropathic pain in the leg may target the M1 foot or M1 hand with an intensity below the RMT.
Collapse
Affiliation(s)
- Nobuhiko Mori
- Department of Neuromodulation and Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Koichi Hosomi
- Department of Neuromodulation and Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Asaya Nishi
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Akiyoshi Matsugi
- Faculty of Rehabilitation, Shijonawate Gakuen University, Osaka, Japan
| | - Dong Dong
- Department of Neuromodulation and Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Satoru Oshino
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Haruhiko Kishima
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Youichi Saitoh
- Department of Neuromodulation and Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
45
|
Moisset X, Bouhassira D, Attal N. French guidelines for neuropathic pain: An update and commentary. Rev Neurol (Paris) 2021; 177:834-837. [PMID: 34332778 DOI: 10.1016/j.neurol.2021.07.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 07/08/2021] [Indexed: 12/01/2022]
Abstract
Neuropathic pain remains a significant unmet need. French recommendations were updated in 2020. The goal of this minireview is to provide an update on these published guidelines. Despite newer relevant studies, our proposed algorithm remains relevant. First-line treatments include serotonin-noradrenaline reuptake inhibitors (duloxetine and venlafaxine), gabapentin and tricyclic antidepressants, topical lidocaine and transcutaneous electrical nerve stimulation being specifically proposed for focal peripheral neuropathic pain. Second-line treatments include pregabalin (such position being confirmed by newer studies), tramadol, combinations and psychotherapy as add on, high-concentration capsaicin patches and botulinum toxin A being proposed specifically for focal peripheral neuropathic pain. Third-line treatments include high-frequency repetitive transcranial magnetic stimulation of the motor cortex, spinal cord stimulation and strong opioids (in the lack of alternative). Disseminating these recommendations and ensuring that they are well accepted by French practitioners will be necessary to optimize neuropathic pain management in real life.
Collapse
Affiliation(s)
- X Moisset
- Université Clermont Auvergne, CHU de Clermont-Ferrand, Inserm, Neuro-Dol, 63000 Clermont-Ferrand, France.
| | - D Bouhassira
- Inserm U987, AP-HP, CHU Ambroise Paré hospital, UVSQ, Paris-Saclay University, 92100 Boulogne-Billancourt, France
| | - N Attal
- Inserm U987, AP-HP, CHU Ambroise Paré hospital, UVSQ, Paris-Saclay University, 92100 Boulogne-Billancourt, France
| |
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW Neuropathic pain remains difficult to treat. This review provides an update regarding recent advances in therapeutic management, particularly with regards to newer drugs, neurostimulation techniques and original study designs. RECENT FINDINGS Although the mainstay of neuropathic pain management is still represented by drug therapy, particularly antidepressants and antiepileptics, the place of nonpharmacological therapy including in particular brain neuromodulation techniques has substantially increased in recent years. Newer study designs are also increasingly implemented, based on in depth phenotypic profiling to achieve more individualized therapy, or on screening strategies to decrease placebo effect and contribute to increase assay sensitivity. These approaches are now considered the most promising to decrease therapeutic failures in neuropathic pain. SUMMARY Neuropathic pain management should not be restricted to pharmacotherapy but now encompasses multiple approaches including particularly neuromodulation techniques. Multimodal assessment can also help identify predictors of the response in clinical trials in order to ensure appropriate management.
Collapse
|
47
|
Attal N, Poindessous-Jazat F, De Chauvigny E, Quesada C, Mhalla A, Ayache SS, Fermanian C, Nizard J, Peyron R, Lefaucheur JP, Bouhassira D. Repetitive transcranial magnetic stimulation for neuropathic pain: a randomized multicentre sham-controlled trial. Brain 2021; 144:3328-3339. [PMID: 34196698 DOI: 10.1093/brain/awab208] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 11/12/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) has been proposed to treat neuropathic pain but the quality of evidence remains low. We aimed to assess the efficacy and safety of neuronavigated rTMS to the motor cortex (M1) or dorsolateral prefrontal cortex (DLPFC) in neuropathic pain over 25 weeks. We did a randomised double-blind, placebo-controlled trial at four outpatient clinics in France. Patients aged 18-75 years with peripheral neuropathic pain were randomly assigned in a 1:1 ratio to M1 or DLPFC-rTMS and re-randomised in a 2:1 ratio to active or sham rTMS (10 Hz, 3000 pulses/session, 15 sessions over 22 weeks). Patients and investigators were blind to treatment allocation. The primary endpoint was the comparison between active M1-rTMS, active DLPCF-rTMS and sham-rTMS for the change over the course of 25 weeks (group by time interaction) in average pain intensity (from 0 no pain to 10 maximal pain) on the Brief Pain Inventory (BPI), using a mixed model repeated measures analysis in patients who received at least one rTMS session (modified ITT population). Secondary outcomes included other measures of pain intensity and relief, sensory and affective dimensions of pain, quality of pain, self reported pain intensity and fatigue (patients diary), patient and clinician global impression of change (PGIC, CGIC), quality of life, sleep, mood and catastrophizing. This study is registered with ClinicalTrials.gov NCT02010281. A total of 152 patients were randomised and 149 received treatment (49 for M1; 52 for DLPFC; 48 for sham). M1-rTMS reduced pain intensity versus sham-rTMS (estimate for group x session interaction: -0.048 ± 0.02; 95% CI: -0.09 to -0.01; p = 0.01). DLPFC-rTMS was not better than sham (estimate: -0.003 ± 0.01; 95% CI:-0.04 to 0.03, p = 0.9). M1-rRMS, but not DLPFC-rTMS, was also superior to sham-rTMS on pain relief, sensory dimenson of pain, self reported pain intensity and fatigue, PGIC and CGIC. There were no effect on quality of pain, mood, sleep and quality of life as all groups improved similarly over time. Headache was the most common side effect and occurred in 17 (34.7%), 23 (44.2%) and 13 (27.1%) patients from M1, DLPFC and sham groups respectively (p = 0.2). Our results support the clinical relevance of M1-rTMS, but not of DLPFC-rTMS, for peripheral neuropathic pain with an excellent safety profile.
Collapse
Affiliation(s)
- Nadine Attal
- INSERM U 987, CETD, Hôpital Ambroise Paré, APHP, 92100 Boulogne-Billancourt, France.,UVSQ, Paris Saclay University, 78000 Versailles, France
| | | | - Edwige De Chauvigny
- Pain, Palliative and Supportive Care Department, UIC22 and EA3826, University Hospital Nantes, 44000 Nantes, France
| | - Charles Quesada
- INSERM U1028 & CETD, CHU Bellevue, 42100 Saint Etienne, France
| | - Alaa Mhalla
- Clinical Neurophysiology Unit, Hôpital Henri Mondor, APHP, 94000 Creteil, France
| | - Samar S Ayache
- Clinical Neurophysiology Unit, Hôpital Henri Mondor, APHP, 94000 Creteil, France.,EA 4391, Paris Est Creteil University, 94000 Creteil, France
| | | | - Julien Nizard
- Pain, Palliative and Supportive Care Department, UIC22 and EA3826, University Hospital Nantes, 44000 Nantes, France
| | - Roland Peyron
- INSERM U1028 & CETD, CHU Bellevue, 42100 Saint Etienne, France
| | - Jean-Pascal Lefaucheur
- Clinical Neurophysiology Unit, Hôpital Henri Mondor, APHP, 94000 Creteil, France.,EA 4391, Paris Est Creteil University, 94000 Creteil, France
| | - Didier Bouhassira
- INSERM U 987, CETD, Hôpital Ambroise Paré, APHP, 92100 Boulogne-Billancourt, France.,UVSQ, Paris Saclay University, 78000 Versailles, France
| |
Collapse
|
48
|
Theta-burst versus 20 Hz repetitive transcranial magnetic stimulation in neuropathic pain: A head-to-head comparison. Clin Neurophysiol 2021; 132:2702-2710. [PMID: 34217600 DOI: 10.1016/j.clinph.2021.05.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 03/24/2021] [Accepted: 05/12/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVE High-frequency repetitive transcranial magnetic stimulation (rTMS) has been shown to reduce neuropathic pain, but intermittent "theta-burst" stimulation (iTBS) could be a better alternative because of shorter duration and greater ability to induce cortical plasticity. Here we compared head-to-head the pain-relieving efficacy of the two modalities when applied daily for 5 days to patients with neuropathic pain. METHODS Forty-six patients received 20 Hz-rTMS and/or iTBS protocols and 39 of them underwent the full two procedures in a random cross-over design. They rated pain intensity, sleep quality, fatigue and general health status daily during 5 consecutive weeks. RESULTS Pain relief during the month following stimulation was superior after 20 Hz-rTMS relative to iTBS (F(1,38) = 4.645; p = 0.037). Correlation between respective levels of maximal relief showed a significant deviation toward the 20 Hz-rTMS effect. A greater proportion of individuals responded to 20 Hz-rTMS (52% vs 32%, 95 %CI[0.095-3.27]; p = 0.06), and reports of fatigue significantly improved after 20 Hz-rTMS relative to iTBS (p = 0.01). General health and sleep quality scores did not differentiate both techniques. CONCLUSIONS High-frequency rTMS appeared superior to iTBS for neuropathic pain relief. SIGNIFICANCE Adequate matching between the oscillatory activity of motor cortex and that of rTMS may increase synaptic efficacy, thus enhancing functional connectivity of motor cortex with distant structures involved in pain regulation.
Collapse
|
49
|
Sex differences in brain modular organization in chronic pain. Pain 2021; 162:1188-1200. [PMID: 33044396 DOI: 10.1097/j.pain.0000000000002104] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/01/2020] [Indexed: 11/26/2022]
Abstract
ABSTRACT Men and women can exhibit different pain sensitivities, and many chronic pain conditions are more prevalent in one sex. Although there is evidence of sex differences in the brain, it is not known whether there are sex differences in the organization of large-scale functional brain networks in chronic pain. Here, we used graph theory with modular analysis and machine-learning of resting-state-functional magnetic resonance imaging data from 220 participants: 155 healthy controls and 65 individuals with chronic low back pain due to ankylosing spondylitis, a form of arthritis. We found an extensive overlap in the graph partitions with the major brain intrinsic systems (ie, default mode, central, visual, and sensorimotor modules), but also sex-specific network topological characteristics in healthy people and those with chronic pain. People with chronic pain exhibited higher cross-network connectivity, and sex-specific nodal graph properties changes (ie, hub disruption), some of which were associated with the severity of the chronic pain condition. Females exhibited atypically higher functional segregation in the mid cingulate cortex and subgenual anterior cingulate cortex and lower connectivity in the network with the default mode and frontoparietal modules, whereas males exhibited stronger connectivity with the sensorimotor module. Classification models on nodal graph metrics could classify an individual's sex and whether they have chronic pain with high accuracies (77%-92%). These findings highlight the organizational abnormalities of resting-state-brain networks in people with chronic pain and provide a framework to consider sex-specific pain therapeutics.
Collapse
|
50
|
Abd-Elsayed A, Tang T, Karri J, Hughes M, Urits I, Gupta M, Pasqualucci A, Myrcik D, Varrassi G, Viswanath O. Neuromodulation for Pain Management in the Inpatient Setting: A Narrative Review. Cureus 2021; 13:e13892. [PMID: 33880248 PMCID: PMC8046682 DOI: 10.7759/cureus.13892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 03/15/2021] [Indexed: 12/14/2022] Open
Abstract
Pain is highly prevalent and pharmacological therapy is not always efficacious. There are a few pathophysiological reasons to believe that neuromodulation would increase the rate of success of pain management. This review article is focused on that aspect, discussing non-invasive or minimally invasive neuromodulation techniques in both the inpatient and outpatient setting. This article provides an in-depth discussion of the multiple neuromodulation techniques available over time to be suitable and effective when used as analgesic therapies for chronic pain. We reviewed the literature and discussed all available neuromodulation options that were tested in the inpatient and outpatient setting. Neuromodulation plays a very important role in treating chronic pain in both inpatient and outpatient setting.
Collapse
Affiliation(s)
- Alaa Abd-Elsayed
- Anesthesiology and Pain Management, University of Wisconsin, Madison, USA
| | - Tuan Tang
- Anesthesiology and Critical Care, University of Texas at Houston, Houston, USA
| | - Jay Karri
- Anesthesiology, Baylor College of Medicine, Houston, USA
| | - Meghan Hughes
- Anesthesia, University of Wisconsin School of Medicine and Public Health, Madison, USA
| | - Ivan Urits
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Mayank Gupta
- Pain Management, Kansas City University of Medicine and Biosciences, Kansas City, USA
| | | | | | | | - Omar Viswanath
- Pain Management, Creighton University School of Medicine, Phoenix, USA
| |
Collapse
|