1
|
Schmidt BL, De Logu F, Nassini R, Geppetti P, Bunnett NW. Pain Signaling by GPCRs and RTKs. Trends Pharmacol Sci 2025; 46:372-385. [PMID: 40057436 PMCID: PMC11972155 DOI: 10.1016/j.tips.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/03/2025] [Accepted: 02/10/2025] [Indexed: 04/06/2025]
Abstract
Chronic pain is common and debilitating, yet is inadequately treated by current therapies, which can have life-threatening side effects. Treatments targeting G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs), key pain mediators, often fail in clinical trials for unknown reasons. Here, we discuss the recent evidence that GPCRs and RTKs generate sustained signals from multiprotein signaling complexes or signalosomes in intracellular compartments to control chronic pain. We evaluate the evidence that selective antagonism of these intracellular signals provides more efficacious and long-lasting pain relief than antagonism of receptors at the surface of cells. We highlight how the identification of coreceptors and molecular scaffolds that underpin pain signaling by multiple receptors has identified new therapeutic targets for chronic pain, surmounting the redundancy of the pain signaling pathway.
Collapse
Affiliation(s)
- Brain L Schmidt
- Translational Research Center, New York University Dentistry, New York, NY 10010, USA; Department of Molecular Pathobiology and Pain Research Center, New York University Dentistry, New York, NY 10010, USA
| | - Francesco De Logu
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, 50139, Italy
| | - Romina Nassini
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, 50139, Italy
| | - Pierangelo Geppetti
- Department of Molecular Pathobiology and Pain Research Center, New York University Dentistry, New York, NY 10010, USA; Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, 50139, Italy
| | - Nigel W Bunnett
- Department of Molecular Pathobiology and Pain Research Center, New York University Dentistry, New York, NY 10010, USA.
| |
Collapse
|
2
|
Zhang ZX, Tian Y, Li S, Jing HB, Cai J, Li M, Xing GG. Involvement of HDAC2-mediated kcnq2/kcnq3 genes transcription repression activated by EREG/EGFR-ERK-Runx1 signaling in bone cancer pain. Cell Commun Signal 2024; 22:416. [PMID: 39192337 PMCID: PMC11350972 DOI: 10.1186/s12964-024-01797-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/18/2024] [Indexed: 08/29/2024] Open
Abstract
Bone cancer pain (BCP) represents a prevalent symptom among cancer patients with bone metastases, yet its underlying mechanisms remain elusive. This study investigated the transcriptional regulation mechanism of Kv7(KCNQ)/M potassium channels in DRG neurons and its involvement in the development of BCP in rats. We show that HDAC2-mediated transcriptional repression of kcnq2/kcnq3 genes, which encode Kv7(KCNQ)/M potassium channels in dorsal root ganglion (DRG), contributes to the sensitization of DRG neurons and the pathogenesis of BCP in rats. Also, HDAC2 requires the formation of a corepressor complex with MeCP2 and Sin3A to execute transcriptional regulation of kcnq2/kcnq3 genes. Moreover, EREG is identified as an upstream signal molecule for HDAC2-mediated kcnq2/kcnq3 genes transcription repression. Activation of EREG/EGFR-ERK-Runx1 signaling, followed by the induction of HDAC2-mediated transcriptional repression of kcnq2/kcnq3 genes in DRG neurons, leads to neuronal hyperexcitability and pain hypersensitivity in tumor-bearing rats. Consequently, the activation of EREG/EGFR-ERK-Runx1 signaling, along with the subsequent transcriptional repression of kcnq2/kcnq3 genes by HDAC2 in DRG neurons, underlies the sensitization of DRG neurons and the pathogenesis of BCP in rats. These findings uncover a potentially targetable mechanism contributing to bone metastasis-associated pain in cancer patients.
Collapse
Affiliation(s)
- Zi-Xian Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center and Neuroscience Research Institute, Peking University, Beijing, China
| | - Yue Tian
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center and Neuroscience Research Institute, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education of China & National Health Commission of China, Beijing, 100191, China
| | - Song Li
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center and Neuroscience Research Institute, Peking University, Beijing, China
| | - Hong-Bo Jing
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center and Neuroscience Research Institute, Peking University, Beijing, China
| | - Jie Cai
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center and Neuroscience Research Institute, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education of China & National Health Commission of China, Beijing, 100191, China
| | - Min Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing, 100191, China.
| | - Guo-Gang Xing
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center and Neuroscience Research Institute, Peking University, Beijing, China.
- Key Laboratory for Neuroscience, Ministry of Education of China & National Health Commission of China, Beijing, 100191, China.
| |
Collapse
|
3
|
Santi MD, Zhang M, Liu N, Viet CT, Xie T, Jensen DD, Amit M, Pan H, Ye Y. Repurposing EGFR Inhibitors for Oral Cancer Pain and Opioid Tolerance. Pharmaceuticals (Basel) 2023; 16:1558. [PMID: 38004424 PMCID: PMC10674507 DOI: 10.3390/ph16111558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Oral cancer pain remains a significant public health concern. Despite the development of improved treatments, pain continues to be a debilitating clinical feature of the disease, leading to reduced oral mobility and diminished quality of life. Opioids are the gold standard treatment for moderate-to-severe oral cancer pain; however, chronic opioid administration leads to hyperalgesia, tolerance, and dependence. The aim of this review is to present accumulating evidence that epidermal growth factor receptor (EGFR) signaling, often dysregulated in cancer, is also an emerging signaling pathway critically involved in pain and opioid tolerance. We presented preclinical and clinical data to demonstrate how repurposing EGFR inhibitors typically used for cancer treatment could be an effective pharmacological strategy to treat oral cancer pain and to prevent or delay the development of opioid tolerance. We also propose that EGFR interaction with the µ-opioid receptor and glutamate N-methyl-D-aspartate receptor could be two novel downstream mechanisms contributing to pain and morphine tolerance. Most data presented here support that repurposing EGFR inhibitors as non-opioid analgesics in oral cancer pain is promising and warrants further research.
Collapse
Affiliation(s)
- Maria Daniela Santi
- Translational Research Center, College of Dentistry, New York University, New York, NY 10010, USA; (M.D.S.); (M.Z.); (N.L.); (D.D.J.)
- Pain Research Center, Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY 10010, USA
| | - Morgan Zhang
- Translational Research Center, College of Dentistry, New York University, New York, NY 10010, USA; (M.D.S.); (M.Z.); (N.L.); (D.D.J.)
- Pain Research Center, Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY 10010, USA
| | - Naijiang Liu
- Translational Research Center, College of Dentistry, New York University, New York, NY 10010, USA; (M.D.S.); (M.Z.); (N.L.); (D.D.J.)
- Pain Research Center, Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY 10010, USA
| | - Chi T. Viet
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Loma Linda University, Loma Linda, CA 92350, USA;
| | - Tongxin Xie
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (T.X.); (M.A.)
| | - Dane D. Jensen
- Translational Research Center, College of Dentistry, New York University, New York, NY 10010, USA; (M.D.S.); (M.Z.); (N.L.); (D.D.J.)
- Pain Research Center, Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY 10010, USA
| | - Moran Amit
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (T.X.); (M.A.)
| | - Huilin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Yi Ye
- Translational Research Center, College of Dentistry, New York University, New York, NY 10010, USA; (M.D.S.); (M.Z.); (N.L.); (D.D.J.)
- Pain Research Center, Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY 10010, USA
| |
Collapse
|
4
|
Ibrahim T, Wu P, Wang LJ, Fang-Mei C, Murillo J, Merlo J, Shein SS, Tumanov AV, Lai Z, Weldon K, Chen Y, Ruparel S. Sex-dependent differences in the genomic profile of lingual sensory neurons in naïve and tongue-tumor bearing mice. Sci Rep 2023; 13:13117. [PMID: 37573456 PMCID: PMC10423281 DOI: 10.1038/s41598-023-40380-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023] Open
Abstract
Mechanisms of sex-dependent orofacial pain are widely understudied. A significant gap in knowledge exists about comprehensive regulation of tissue-specific trigeminal sensory neurons in diseased state of both sexes. Using RNA sequencing of FACS sorted retro-labeled sensory neurons innervating tongue tissue, we determined changes in transcriptomic profiles in males and female mice under naïve as well as tongue-tumor bearing conditions Our data revealed the following interesting findings: (1) FACS sorting obtained higher number of neurons from female trigeminal ganglia (TG) compared to males; (2) Naïve female neurons innervating the tongue expressed immune cell markers such as Csf1R, C1qa and others, that weren't expressed in males. This was validated by Immunohistochemistry. (3) Accordingly, immune cell markers such as Csf1 exclusively sensitized TRPV1 responses in female TG neurons. (4) Male neurons were more tightly regulated than female neurons upon tumor growth and very few differentially expressed genes (DEGs) overlapped between the sexes, (5) Male DEGs contained higher number of transcription factors whereas female DEGs contained higher number of enzymes, cytokines and chemokines. Collectively, this is the first study to characterize the effect of sex as well as of tongue-tumor on global gene expression, pathways and molecular function of tongue-innervating sensory neurons.
Collapse
Affiliation(s)
- Tarek Ibrahim
- Department of Endodontics, School of Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Ping Wu
- Department of Endodontics, School of Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Li-Ju Wang
- Greehey Children's Cancer Institute, University of Texas Health San Antonio, San Antonio, USA
- Department of Population Health Sciences, University of Texas Health at San Antonio, San Antonio, USA
| | - Chang Fang-Mei
- Department of Endodontics, School of Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Josue Murillo
- Department of Endodontics, School of Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Jaclyn Merlo
- Department of Endodontics, School of Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Sergey S Shein
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, USA
| | - Alexei V Tumanov
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, USA
| | - Zhao Lai
- Greehey Children's Cancer Institute, University of Texas Health San Antonio, San Antonio, USA
- Department of Molecular Medicine, University of Texas Health at San Antonio, San Antonio, TX, USA
| | - Korri Weldon
- Greehey Children's Cancer Institute, University of Texas Health San Antonio, San Antonio, USA
- Department of Molecular Medicine, University of Texas Health at San Antonio, San Antonio, TX, USA
| | - Yidong Chen
- Greehey Children's Cancer Institute, University of Texas Health San Antonio, San Antonio, USA
- Department of Population Health Sciences, University of Texas Health at San Antonio, San Antonio, USA
| | - Shivani Ruparel
- Department of Endodontics, School of Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA.
| |
Collapse
|
5
|
Ibrahim T, Wu P, Wang LJ, Fang-Mei C, Murillo J, Merlo J, Tumanov A, Lai Z, Weldon K, Chen Y, Ruparel S. Sex-dependent Differences in the Genomic Profile of Lingual Sensory Neurons in Naïve and Tongue-Tumor Bearing Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.14.524011. [PMID: 36711730 PMCID: PMC9882171 DOI: 10.1101/2023.01.14.524011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Mechanisms of sex-dependent orofacial pain are widely understudied. A significant gap in knowledge exists about comprehensive regulation of tissue-specific trigeminal sensory neurons in diseased state of both sexes. Using RNA sequencing of FACS sorted retro-labeled sensory neurons innervating tongue tissue, we determined changes in transcriptomic profiles in males and female mice under naïve as well as tongue-tumor bearing conditions Our data revealed the following interesting findings: 1) Tongue tissue of female mice was innervated with higher number of trigeminal neurons compared to males; 2) Naïve female neurons innervating the tongue exclusively expressed immune cell markers such as Csf1R, C1qa and others, that weren't expressed in males. This was validated by Immunohistochemistry. 4) Accordingly, immune cell markers such as Csf1 exclusively sensitized TRPV1 responses in female TG neurons. 3) Male neurons were more tightly regulated than female neurons upon tumor growth and very few differentially expressed genes (DEGs) overlapped between the sexes, 5) Male DEGs contained higher number of transcription factors whereas female DEGs contained higher number of enzymes, cytokines and chemokines. Collectively, this is the first study to characterize the effect of sex as well as of tongue-tumor on global gene expression, pathways and molecular function of tongue-innervating sensory neurons.
Collapse
Affiliation(s)
- Tarek Ibrahim
- Department of Endodontics, School of Dentistry, University of Texas Health San Antonio, USA
| | - Ping Wu
- Department of Endodontics, School of Dentistry, University of Texas Health San Antonio, USA
| | - Li-Ju Wang
- Greehey Children’s Cancer Institute, University of Texas Health San Antonio, USA
- Department of Population Health Sciences, University of Texas Health at San Antonio, USA
| | - Chang Fang-Mei
- Department of Endodontics, School of Dentistry, University of Texas Health San Antonio, USA
| | - Josue Murillo
- Department of Endodontics, School of Dentistry, University of Texas Health San Antonio, USA
| | - Jaclyn Merlo
- Department of Endodontics, School of Dentistry, University of Texas Health San Antonio, USA
| | - Alexei Tumanov
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, USA
| | - Zhao Lai
- Greehey Children’s Cancer Institute, University of Texas Health San Antonio, USA
- Department of Molecular Medicine, University of Texas Health at San Antonio, San Antonio, TX, USA
| | - Korri Weldon
- Greehey Children’s Cancer Institute, University of Texas Health San Antonio, USA
- Department of Molecular Medicine, University of Texas Health at San Antonio, San Antonio, TX, USA
| | - Yidong Chen
- Greehey Children’s Cancer Institute, University of Texas Health San Antonio, USA
- Department of Population Health Sciences, University of Texas Health at San Antonio, USA
| | - Shivani Ruparel
- Department of Endodontics, School of Dentistry, University of Texas Health San Antonio, USA
| |
Collapse
|
6
|
Sawicki CM, Janal MN, Nicholson SJ, Wu AK, Schmidt BL, Albertson DG. Oral cancer patients experience mechanical and chemical sensitivity at the site of the cancer. BMC Cancer 2022; 22:1165. [PMID: 36368973 PMCID: PMC9650819 DOI: 10.1186/s12885-022-10282-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Oral cancer patients suffer severe chronic and mechanically-induced pain at the site of the cancer. Our clinical experience is that oral cancer patients report new sensitivity to spicy foods. We hypothesized that in cancer patients, mechanical and chemical sensitivity would be greater when measured at the cancer site compared to a contralateral matched normal site. METHODS We determined mechanical pain thresholds (MPT) on the right and left sides of the tongue of 11 healthy subjects, and at the cancer and contralateral matched normal site in 11 oral cancer patients in response to von Frey filaments in the range of 0.008 to 300 g (normally not reported as painful). We evaluated chemical sensitivity in 13 healthy subjects and seven cancer patients, who rated spiciness/pain on a visual analog scale in response to exposure to six paper strips impregnated with capsaicin (0-10 mM). RESULTS Mechanical detection thresholds (MDT) were recorded for healthy subjects, but not MPTs. By contrast, MPTs were measured at the site of the cancer in oral cancer patients (7/11 patients). No MPTs were measured at the cancer patients' contralateral matched normal sites. Measured MPTs were correlated with patients' responses to the University of California Oral Cancer Pain Questionnaire. Capsaicin sensitivity at the site of the cancer was evident in cancer patients by a leftward shift of the cancer site capsaicin dose-response curve compared to that of the patient's contralateral matched normal site. We detected no difference in capsaicin sensitivity on the right and left sides of tongues of healthy subjects. CONCLUSIONS Mechanical and chemical sensitivity testing was well tolerated by the majority of oral cancer patients. Sensitivity is greater at the site of the cancer than at a contralateral matched normal site.
Collapse
Affiliation(s)
- Caroline M. Sawicki
- grid.137628.90000 0004 1936 8753Department of Pediatric Dentistry, New York University College of Dentistry, 421 First Avenue, Room 233W, New York, NY 10010 USA
| | - Malvin N. Janal
- grid.137628.90000 0004 1936 8753Department of Epidemiology & Health Promotion, New York University College of Dentistry, Room 301, 433 First Avenue, New York, NY 10010 USA
| | - Samuel J. Nicholson
- grid.137628.90000 0004 1936 8753Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, 421 First Avenue, Room 233W, New York, NY 10010 USA
| | - Angie K. Wu
- grid.137628.90000 0004 1936 8753Bluestone Center for Clinical Research, New York University College of Dentistry, 421 First Avenue, Room 233W, New York, NY 10010 USA
| | - Brian L. Schmidt
- grid.137628.90000 0004 1936 8753Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, 421 First Avenue, Room 233W, New York, NY 10010 USA ,grid.137628.90000 0004 1936 8753Bluestone Center for Clinical Research, New York University College of Dentistry, 421 First Avenue, Room 233W, New York, NY 10010 USA ,grid.137628.90000 0004 1936 8753NYU Oral Cancer Center, New York University College of Dentistry, 421 First Avenue, Room 233W, New York, NY 10010 USA
| | - Donna G. Albertson
- grid.137628.90000 0004 1936 8753Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, 421 First Avenue, Room 233W, New York, NY 10010 USA ,grid.137628.90000 0004 1936 8753Bluestone Center for Clinical Research, New York University College of Dentistry, 421 First Avenue, Room 233W, New York, NY 10010 USA ,grid.137628.90000 0004 1936 8753NYU Oral Cancer Center, New York University College of Dentistry, 421 First Avenue, Room 233W, New York, NY 10010 USA
| |
Collapse
|
7
|
Ye Y, Jensen DD, Viet CT, Pan HL, Campana WM, Amit M, Boada MD. Advances in Head and Neck Cancer Pain. J Dent Res 2022; 101:1025-1033. [PMID: 35416080 PMCID: PMC9305840 DOI: 10.1177/00220345221088527] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Head and neck cancer (HNC) affects over 890,000 people annually worldwide and has a mortality rate of 50%. Aside from poor survival, HNC pain impairs eating, drinking, and talking in patients, severely reducing quality of life. Different pain phenotype in patients (allodynia, hyperalgesia, and spontaneous pain) results from a combination of anatomical, histopathological, and molecular differences between cancers. Poor pathologic features (e.g., perineural invasion, lymph node metastasis) are associated with increased pain. The use of syngeneic/immunocompetent animal models, as well as a new mouse model of perineural invasion, provides novel insights into the pathobiology of HNC pain. Glial and immune modulation of the tumor microenvironment affect not only cancer progression but also pain signaling. For example, Schwann cells promote cancer cell proliferation, migration, and secretion of nociceptive mediators, whereas neutrophils are implicated in sex differences in pain in animal models of HNC. Emerging evidence supports the existence of a functional loop of cross-activation between the tumor microenvironment and peripheral nerves, mediated by a molecular exchange of bioactive contents (pronociceptive and protumorigenic) via paracrine and autocrine signaling. Brain-derived neurotrophic factor, tumor necrosis factor α, legumain, cathepsin S, and A disintegrin and metalloprotease 17 expressed in the HNC microenvironment have recently been shown to promote HNC pain, further highlighting the importance of proinflammatory cytokines, neurotrophic factors, and proteases in mediating HNC-associated pain. Pronociceptive mediators, together with nerve injury, cause nociceptor hypersensitivity. Oncogenic, pronociceptive mediators packaged in cancer cell-derived exosomes also induce nociception in mice. In addition to increased production of pronociceptive mediators, HNC is accompanied by a dampened endogenous antinociception system (e.g., downregulation of resolvins and µ-opioid receptor expression). Resolvin treatment or gene delivery of µ-opioid receptors provides pain relief in preclinical HNC models. Collectively, recent studies suggest that pain and HNC progression share converging mechanisms that can be targeted for cancer treatment and pain management.
Collapse
Affiliation(s)
- Y Ye
- Bluestone Center for Clinical Research, New York University College of Dentistry, New York, NY, USA.,Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, USA
| | - D D Jensen
- Bluestone Center for Clinical Research, New York University College of Dentistry, New York, NY, USA.,Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, USA
| | - C T Viet
- Department of Oral and Maxillofacial Surgery, Loma Linda University School of Dentistry, Loma Linda, CA, USA
| | - H L Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - W M Campana
- Department of Anesthesiology, School of Medicine, University of California, San Diego, CA, USA.,San Diego Veterans Health System, San Diego, CA, USA
| | - M Amit
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - M D Boada
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
8
|
Borges JP, Mekhail K, Fairn GD, Antonescu CN, Steinberg BE. Modulation of Pathological Pain by Epidermal Growth Factor Receptor. Front Pharmacol 2021; 12:642820. [PMID: 34054523 PMCID: PMC8149758 DOI: 10.3389/fphar.2021.642820] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/26/2021] [Indexed: 12/18/2022] Open
Abstract
Chronic pain has been widely recognized as a major public health problem that impacts multiple aspects of patient quality of life. Unfortunately, chronic pain is often resistant to conventional analgesics, which are further limited by their various side effects. New therapeutic strategies and targets are needed to better serve the millions of people suffering from this devastating disease. To this end, recent clinical and preclinical studies have implicated the epidermal growth factor receptor signaling pathway in chronic pain states. EGFR is one of four members of the ErbB family of receptor tyrosine kinases that have key roles in development and the progression of many cancers. EGFR functions by activating many intracellular signaling pathways following binding of various ligands to the receptor. Several of these signaling pathways, such as phosphatidylinositol 3-kinase, are known mediators of pain. EGFR inhibitors are known for their use as cancer therapeutics but given recent evidence in pilot clinical and preclinical investigations, may have clinical use for treating chronic pain. Here, we review the clinical and preclinical evidence implicating EGFR in pathological pain states and provide an overview of EGFR signaling highlighting how EGFR and its ligands drive pain hypersensitivity and interact with important pain pathways such as the opioid system.
Collapse
Affiliation(s)
- Jazlyn P Borges
- Neurosciences and Mental Health Program, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Katrina Mekhail
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Gregory D Fairn
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada.,Department of Surgery, University of Toronto, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| | - Costin N Antonescu
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada.,Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| | - Benjamin E Steinberg
- Neurosciences and Mental Health Program, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Anesthesia and Pain Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
9
|
Pineda-Farias JB, Saloman JL, Scheff NN. Animal Models of Cancer-Related Pain: Current Perspectives in Translation. Front Pharmacol 2021; 11:610894. [PMID: 33381048 PMCID: PMC7768910 DOI: 10.3389/fphar.2020.610894] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 10/30/2020] [Indexed: 01/15/2023] Open
Abstract
The incidence of pain in cancer patients during diagnosis and treatment is exceedingly high. Although advances in cancer detection and therapy have improved patient prognosis, cancer and its treatment-associated pain have gained clinical prominence. The biological mechanisms involved in cancer-related pain are multifactorial; different processes for pain may be responsible depending on the type and anatomic location of cancer. Animal models of cancer-related pain have provided mechanistic insights into the development and process of pain under a dynamic molecular environment. However, while cancer-evoked nociceptive responses in animals reflect some of the patients’ symptoms, the current models have failed to address the complexity of interactions within the natural disease state. Although there has been a recent convergence of the investigation of carcinogenesis and pain neurobiology, identification of new targets for novel therapies to treat cancer-related pain requires standardization of methodologies within the cancer pain field as well as across disciplines. Limited success of translation from preclinical studies to the clinic may be due to our poor understanding of the crosstalk between cancer cells and their microenvironment (e.g., sensory neurons, infiltrating immune cells, stromal cells etc.). This relatively new line of inquiry also highlights the broader limitations in translatability and interpretation of basic cancer pain research. The goal of this review is to summarize recent findings in cancer pain based on preclinical animal models, discuss the translational benefit of these discoveries, and propose considerations for future translational models of cancer pain.
Collapse
Affiliation(s)
- Jorge B Pineda-Farias
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Jami L Saloman
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Nicole N Scheff
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Hillman Cancer Center, University of Pittsburgh Medicine Center, Pittsburgh, PA, United States
| |
Collapse
|
10
|
An Investigation of the Molecular Mechanisms Underlying the Analgesic Effect of Jakyak-Gamcho Decoction: A Network Pharmacology Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:6628641. [PMID: 33343676 PMCID: PMC7732394 DOI: 10.1155/2020/6628641] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/05/2020] [Accepted: 11/24/2020] [Indexed: 12/20/2022]
Abstract
Herbal drugs have drawn substantial interest as effective analgesic agents; however, their therapeutic mechanisms remain to be fully understood. To address this question, we performed a network pharmacology study to explore the system-level mechanisms that underlie the analgesic activity of Jakyak-Gamcho decoction (JGd; Shaoyao-Gancao-Tang in Chinese and Shakuyaku-Kanzo-To in Japanese), an herbal prescription consisting of Paeonia lactiflora Pallas and Glycyrrhiza uralensis Fischer. Based on comprehensive information regarding the pharmacological and chemical properties of the herbal constituents of JGd, we identified 57 active chemical compounds and their 70 pain-associated targets. The JGd targets were determined to be involved in the regulation of diverse biological activities as follows: calcium- and cytokine-mediated signalings, calcium ion concentration and homeostasis, cellular behaviors of muscle and neuronal cells, inflammatory response, and response to chemical, cytokine, drug, and oxidative stress. The targets were further enriched in various pain-associated signalings, including the PI3K-Akt, estrogen, ErbB, neurotrophin, neuroactive ligand-receptor interaction, HIF-1, serotonergic synapse, JAK-STAT, and cAMP pathways. Thus, these data provide a systematic basis to understand the molecular mechanisms underlying the analgesic activity of herbal drugs.
Collapse
|