1
|
Zhang H, Li A, Liu YF, Sun ZM, Jin BX, Lin JP, Yang Y, Yao YX. Spinal TAOK2 contributes to neuropathic pain via cGAS-STING activation in rats. iScience 2023; 26:107792. [PMID: 37720090 PMCID: PMC10502416 DOI: 10.1016/j.isci.2023.107792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 05/25/2023] [Accepted: 08/29/2023] [Indexed: 09/19/2023] Open
Abstract
Thousand and one amino acid kinase 2 (TAOK2) is a member of the mammalian sterile 20 kinase family and is implicated in neurodevelopmental disorders; however, its role in neuropathic pain remains unknown. Here, we found that TAOK2 was enriched and activated after chronic constriction injury (CCI) in the rat spinal dorsal horn. Meanwhile, cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) signaling was also activated with hyperalgesia. Silencing TAOK2 reversed hyperalgesia and suppressed the activation of cGAS-STING signaling induced by CCI, while pharmacological activation of TAOK2 induced pain hypersensitivity and upregulation of cGAS-STING signaling in naive rats. Furthermore, pharmacological inhibition or gene silencing of cGAS-STING signaling attenuated CCI-induced hyperalgesia. Taken together, these data demonstrate that the activation of spinal TAOK2 contributes to CCI-induced hyperalgesia via cGAS-STING signaling activation, providing new molecular targets for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Anesthesia, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Ang Li
- Department of Anesthesia, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
- Department of Anesthesia, People’s Hospital of Guizhou Province, Guiyang, Guizhou 550025, China
| | - Yu-Fan Liu
- Department of Anesthesia, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Zhong-Ming Sun
- Department of Anesthesia, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Bing-Xin Jin
- Department of Anesthesia, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Jia-Piao Lin
- Department of Anesthesia, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Yan Yang
- Department of Neurobiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310020, China
- Centre for Neuroscience, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yong-Xing Yao
- Department of Anesthesia, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
2
|
Boinon L, Yu J, Madura CL, Chefdeville A, Feinstein DL, Moutal A, Khanna R. Conditional knockout of CRMP2 in neurons, but not astrocytes, disrupts spinal nociceptive neurotransmission to control the initiation and maintenance of chronic neuropathic pain. Pain 2022; 163:e368-e381. [PMID: 35029600 PMCID: PMC8760468 DOI: 10.1097/j.pain.0000000000002344] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/13/2021] [Indexed: 02/03/2023]
Abstract
ABSTRACT Mechanistic studies principally focusing on primary afferent nociceptive neurons uncovered the upregulation of collapsin response mediator protein 2 (CRMP2)-a dual trafficking regulator of N-type voltage-gated calcium (Cav2.2) as well as Nav1.7 voltage-gated sodium channels-as a potential determinant of neuropathic pain. Whether CRMP2 contributes to aberrant excitatory synaptic transmission underlying neuropathic pain processing after peripheral nerve injury is unknown. Here, we interrogated CRMP2's role in synaptic transmission and in the initiation or maintenance of chronic pain. In rats, short-interfering RNA-mediated knockdown of CRMP2 in the spinal cord reduced the frequency and amplitude of spontaneous excitatory postsynaptic currents, but not spontaneous inhibitory postsynaptic currents, recorded from superficial dorsal horn neurons in acute spinal cord slices. No effect was observed on miniature excitatory postsynaptic currents and inhibitory postsynaptic currents. In a complementary targeted approach, conditional knockout of CRMP2 from mouse neurons using a calcium/calmodulin-dependent protein kinase II alpha promoter to drive Cre recombinase expression reduced the frequency and amplitude of spontaneous excitatory postsynaptic currents, but not miniature excitatory SCss. Conditional knockout of CRMP2 from mouse astrocytes using a glial fibrillary acidic protein promoter had no effect on synaptic transmission. Conditional knockout of CRMP2 in neurons reversed established mechanical allodynia induced by a spared nerve injury in both male and female mice. In addition, the development of spared nerve injury-induced allodynia was also prevented in these mice. Our data strongly suggest that CRMP2 is a key regulator of glutamatergic neurotransmission driving pain signaling and that it contributes to the transition of physiological pain into pathological pain.
Collapse
Affiliation(s)
- Lisa Boinon
- Department of Pharmacology, College of Medicine, the University of Arizona, Tucson, Arizona 85724 United States of America
| | - Jie Yu
- Department of Pharmacology, College of Medicine, the University of Arizona, Tucson, Arizona 85724 United States of America
| | - Cynthia L. Madura
- Department of Pharmacology, College of Medicine, the University of Arizona, Tucson, Arizona 85724 United States of America
| | - Aude Chefdeville
- Department of Pharmacology, College of Medicine, the University of Arizona, Tucson, Arizona 85724 United States of America
| | - Douglas L. Feinstein
- Department of Anesthesiology, University of Illinois, Chicago, Chicago, Illinois 60612, United States of America
- Jesse Brown VA Medical Center, Chicago, Illinois, 60612, United States of America
| | - Aubin Moutal
- Department of Pharmacology, College of Medicine, the University of Arizona, Tucson, Arizona 85724 United States of America
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, the University of Arizona, Tucson, Arizona 85724 United States of America
- Comprehensive Pain and Addiction Center, The University of Arizona, Tucson, Arizona, 85724, United States of America
| |
Collapse
|
3
|
Abstract
In this issue of Neuron, Gatto et al. (2021) demonstrate that tactile reflexes are driven by excitatory modules defined by location, while Peirs et al. (2021) show that the circuits implicated in the conversion of touch to pain are defined by the nature of the injury.
Collapse
Affiliation(s)
- Mark A Gradwell
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| | - Victoria E Abraira
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| |
Collapse
|
4
|
An introduction to the Biennial Review of Pain. Pain 2020; 161 Suppl 1:S1-S2. [DOI: 10.1097/j.pain.0000000000001979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|