1
|
Christensen SL, Levy D. Meningeal brain borders and migraine headache genesis. Trends Neurosci 2024; 47:918-932. [PMID: 39304416 PMCID: PMC11563857 DOI: 10.1016/j.tins.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/05/2024] [Accepted: 08/23/2024] [Indexed: 09/22/2024]
Abstract
Migraine is a highly prevalent and disabling pain disorder that affects >1 billion people worldwide. One central hypothesis points to the cranial meninges as a key site underlying migraine headache genesis through complex interplay between meningeal sensory nerves, blood vessels, and adjacent immune cells. How these interactions might generate migraine headaches remains incompletely understood and a subject of much debate. In this review we discuss clinical and preclinical evidence supporting the concept that meningeal sterile inflammation, involving neurovascular and neuroimmune interactions, underlies migraine headache genesis. We examine downstream signaling pathways implicated in the development of migraine pain in response to exogenous events such as infusing migraine-triggering chemical substances. We further discuss cortex-to-meninges signaling pathways that could underlie migraine pain in response to endogenous events, such as cortical spreading depolarization (CSD), and explore future directions for the field.
Collapse
Affiliation(s)
- Sarah Louise Christensen
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Neurology, Danish Headache Center, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark; Translational Research Centre, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Dan Levy
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Raffaelli B, Do TP, Ashina H, Snellman J, Maio-Twofoot T, Ashina M. Induction of cGMP-mediated migraine attacks is independent of CGRP receptor activation. Cephalalgia 2024; 44:3331024241259489. [PMID: 38850034 DOI: 10.1177/03331024241259489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
BACKGROUND The cAMP and cGMP pathways are implicated in the initiation of migraine attacks, but their interactions remain unclear. Calcitonin gene-related peptide (CGRP) triggers migraine attacks via cAMP, whereas the phosphodiesterase-5 inhibitor sildenafil induces migraine attacks via cGMP. Our objective was to investigate whether sildenafil could induce migraine attacks in individuals with migraine pre-treated with the CGRP-receptor antibody erenumab. METHODS In this randomized, double-blind, placebo-controlled, cross-over study, adults with migraine without aura received a single subcutaneous injection of 140 mg erenumab on day 1. They were then randomized to receive sildenafil 100 mg or placebo on two experimental days, each separated by at least one week, between days 8 and 21. The primary endpoint was the difference in the incidence of migraine attacks between sildenafil and placebo during the 12-h observation period after administration. RESULTS In total, 16 participants completed the study. Ten participants (63%) experienced a migraine attack within 12 h after sildenafil administration compared to three (19%) after placebo (p = 0.016). The median headache intensity was higher after sildenafil than after placebo (area under the curve (AUC) for the 12-h observation period, p = 0.026). Furthermore, sildenafil induced a significant decrease in mean arterial blood pressure (AUC, p = 0.026) and a simultaneous increase in heart rate (AUC, p < 0.001) during the first hour after administration compared to placebo. CONCLUSION These findings provide evidence that migraine induction via the cGMP pathway can occur even under CGRP receptor blockade. TRIAL REGISTRATION ClinicalTrials.gov: Identifier NCT05889455.
Collapse
Affiliation(s)
- Bianca Raffaelli
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
- Clinician Scientist Program, Berlin Institute of Health at Charité (BIH), Berlin, Germany
| | - Thien Phu Do
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Håkan Ashina
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Translational Research Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | | | | | - Messoud Ashina
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Christophersen P, Dyhring T. The shortcoming of using glibenclamide in exploratory clinical headache provocation studies. Cephalalgia 2023; 43:3331024231219475. [PMID: 38064318 DOI: 10.1177/03331024231219475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
OBJECTIVE Preclinical and clinical studies implicate the vascular ATP-sensitive potassium (KATP) channel in the signaling cascades underlying headache and migraine. However, attempts to demonstrate that the KATP channel inhibitor glibenclamide would attenuate triggered headache in healthy volunteers have proven unsuccessful. It is questionable, however, whether target engagement was achieved in these clinical studies. METHODS Literature data for human glibenclamide pharmacokinetics, plasma protein binding and functional IC50 values were used to predict the KATP receptor occupancy (RO) levels obtained after glibenclamide dosing in the published exploratory clinical headache provocation studies. RO vs. time profiles of glibenclamide were simulated for the pancreatic KATP channel subtype Kir6.2/SUR1 and the vascular subtype Kir6.1/SUR2B. RESULTS At the clinical dose of 10 mg of glibenclamide used in the headache provocation studies, predicted maximal occupancy levels of up to 90% and up to 26% were found for Kir6.2/SUR1 and Kir6.1/SUR2B, respectively. CONCLUSIONS The findings of the present study indicate that effective Kir6.1/SUR2B target engagement was not achieved in the clinical headache provocation studies using glibenclamide. Therefore, development of novel selective Kir6.1/SUR2B inhibitors, with good bioavailability and low plasma protein binding, is required to reveal the potential of KATP channel inhibition in the treatment of migraine.
Collapse
|
4
|
Macionis V. Neurovascular Compression-Induced Intracranial Allodynia May Be the True Nature of Migraine Headache: an Interpretative Review. Curr Pain Headache Rep 2023; 27:775-791. [PMID: 37837483 DOI: 10.1007/s11916-023-01174-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2023] [Indexed: 10/16/2023]
Abstract
PURPOSE OF REVIEW Surgical deactivation of migraine trigger sites by extracranial neurovascular decompression has produced encouraging results and challenged previous understanding of primary headaches. However, there is a lack of in-depth discussions on the pathophysiological basis of migraine surgery. This narrative review provides interpretation of relevant literature from the perspective of compressive neuropathic etiology, pathogenesis, and pathophysiology of migraine. RECENT FINDINGS Vasodilation, which can be asymptomatic in healthy subjects, may produce compression of cranial nerves in migraineurs at both extracranial and intracranial entrapment-prone sites. This may be predetermined by inherited and acquired anatomical factors and may include double crush-type lesions. Neurovascular compression can lead to sensitization of the trigeminal pathways and resultant cephalic hypersensitivity. While descending (central) trigeminal activation is possible, symptomatic intracranial sensitization can probably only occur in subjects who develop neurovascular entrapment of cranial nerves, which can explain why migraine does not invariably afflict everyone. Nerve compression-induced focal neuroinflammation and sensitization of any cranial nerve may neurogenically spread to other cranial nerves, which can explain the clinical complexity of migraine. Trigger dose-dependent alternating intensity of sensitization and its synchrony with cyclic central neural activities, including asymmetric nasal vasomotor oscillations, may explain the laterality and phasic nature of migraine pain. Intracranial allodynia, i.e., pain sensation upon non-painful stimulation, may better explain migraine pain than merely nociceptive mechanisms, because migraine cannot be associated with considerable intracranial structural changes and consequent painful stimuli. Understanding migraine as an intracranial allodynia could stimulate research aimed at elucidating the possible neuropathic compressive etiology of migraine and other primary headaches.
Collapse
|
5
|
Sokolov AY, Volynsky MA, Potapenko AV, Iurkova PM, Zaytsev VV, Nippolainen E, Kamshilin AA. Duality in response of intracranial vessels to nitroglycerin revealed in rats by imaging photoplethysmography. Sci Rep 2023; 13:11928. [PMID: 37488233 PMCID: PMC10366118 DOI: 10.1038/s41598-023-39171-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 07/20/2023] [Indexed: 07/26/2023] Open
Abstract
Among numerous approaches to the study of migraine, the nitroglycerin (NTG) model occupies a prominent place, but there is relatively insufficient information about how NTG affects intracranial vessels. In this study we aim to assess the effects of NTG on blood-flow parameters in meningeal vessels measured by imaging photoplethysmography (iPPG) in animal experiments. An amplitude of the pulsatile component (APC) of iPPG waveform was assessed before and within 2.5 h after the NTG administration in saline (n = 13) or sumatriptan (n = 12) pretreatment anesthetized rats in conditions of a closed cranial window. In animals of both groups, NTG caused a steady decrease in blood pressure. In 7 rats of the saline group, NTG resulted in progressive increase in APC, whereas decrease in APC was observed in other 6 rats. In all animals in the sumatriptan group, NTG administration was accompanied exclusively by an increase in APC. Diametrically opposite changes in APC due to NTG indicate a dual effect of this drug on meningeal vasomotor activity. Sumatriptan acts as a synergist of the NTG vasodilating action. The results we obtained contribute to understanding the interaction of vasoactive drugs in the study of the headache pathophysiology and methods of its therapy.
Collapse
Affiliation(s)
- Alexey Y Sokolov
- Department of Neuropharmacology, Valdman Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
- Laboratory of Cortico-Visceral Physiology, Pavlov Institute of Physiology of the Russian Academy of Sciences, Saint Petersburg, Russia
| | - Maxim A Volynsky
- School of Physics and Engineering, ITMO University, Saint Petersburg, Russia
- Laboratory of Functional Materials and Systems for Photonics, Institute of Automation and Control Processes of Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Anastasiia V Potapenko
- Department of Neuropharmacology, Valdman Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
- Laboratory of Biochemistry, Medical Genetic Center, Saint Petersburg, Russia
| | - Polina M Iurkova
- Laboratory of Functional Materials and Systems for Photonics, Institute of Automation and Control Processes of Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
- Faculty of General Therapy, Saint Petersburg State Pediatric Medical University, Saint Petersburg, Russia
| | - Valeriy V Zaytsev
- Laboratory of Functional Materials and Systems for Photonics, Institute of Automation and Control Processes of Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Ervin Nippolainen
- Laboratory of Functional Materials and Systems for Photonics, Institute of Automation and Control Processes of Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Alexei A Kamshilin
- Laboratory of Functional Materials and Systems for Photonics, Institute of Automation and Control Processes of Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia.
| |
Collapse
|
6
|
Ashina H, Iljazi A, Al-Khazali HM, Do TP, Eigenbrodt AK, Larsen EL, Andersen AM, Hansen KJ, Bräuner KB, Chaudhry BA, Christensen CE, Amin FM, Schytz HW. CGRP-induced migraine-like headache in persistent post-traumatic headache attributed to mild traumatic brain injury. J Headache Pain 2022; 23:135. [PMID: 36253732 PMCID: PMC9578273 DOI: 10.1186/s10194-022-01499-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/16/2022] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE To ascertain whether intravenous infusion of calcitonin gene-related peptide (CGRP) can induce migraine-like headache in people with persistent post-traumatic headache attributed to mild traumatic brain injury (TBI) and no pre-existing migraine. METHODS A non-randomized, single-arm, open-label study at a single site in Denmark. Eligible participants were aged 18 to 65 years and had a known history of persistent post-traumatic headache attributed to mild TBI for ≥ 12 months. All participants received continuous intravenous infusion of CGRP (1.5 µg/min) over 20 min. A headache diary was used to collect outcome data until 12 h after the start of CGRP infusion. The primary end point was the incidence of migraine-like headache during 12-hour observational period. RESULTS A total of 60 participants completed the study protocol and provided data for the analysis of the primary end point. The median age was 32.5 (IQR, 25.5-43.0) years; 43 participants (72%) were female. Following CGRP infusion, 43 (72%) of 60 participants developed migraine-like headache during the 12-hour observational period. The median time to peak headache intensity was 40 min (IQR, 20-60), and the median peak headache intensity was 6 (IQR, 5-8) on the 11-point numeric rating scale. CONCLUSION Intravenous infusion of CGRP is a potent inducer of migraine-like headache in people with persistent post-traumatic headache attributed to mild TBI. This observation underscores the importance of CGRP in the genesis of migraine-like headache that is often experienced by individuals who are afflicted by persistent post-traumatic headache. Further research is warranted to ascertain whether other signaling molecules also contribute to the disease mechanisms underlying post-traumatic headache.
Collapse
Affiliation(s)
- Håkan Ashina
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Danish Headache Center, Department of Neurology, Faculty of Health and Medical Sciences, Rigshospitalet - Glostrup, University of Copenhagen, Copenhagen, Denmark.,Department of Neurorehabilitation / Traumatic Brain Injury, Rigshospitalet, Copenhagen, Denmark
| | - Afrim Iljazi
- Danish Headache Center, Department of Neurology, Faculty of Health and Medical Sciences, Rigshospitalet - Glostrup, University of Copenhagen, Copenhagen, Denmark
| | - Haidar M Al-Khazali
- Danish Headache Center, Department of Neurology, Faculty of Health and Medical Sciences, Rigshospitalet - Glostrup, University of Copenhagen, Copenhagen, Denmark
| | - Thien Phu Do
- Danish Headache Center, Department of Neurology, Faculty of Health and Medical Sciences, Rigshospitalet - Glostrup, University of Copenhagen, Copenhagen, Denmark
| | - Anna K Eigenbrodt
- Danish Headache Center, Department of Neurology, Faculty of Health and Medical Sciences, Rigshospitalet - Glostrup, University of Copenhagen, Copenhagen, Denmark
| | - Eigil L Larsen
- Danish Headache Center, Department of Neurology, Faculty of Health and Medical Sciences, Rigshospitalet - Glostrup, University of Copenhagen, Copenhagen, Denmark
| | - Amalie M Andersen
- Danish Headache Center, Department of Neurology, Faculty of Health and Medical Sciences, Rigshospitalet - Glostrup, University of Copenhagen, Copenhagen, Denmark
| | - Kevin J Hansen
- Danish Headache Center, Department of Neurology, Faculty of Health and Medical Sciences, Rigshospitalet - Glostrup, University of Copenhagen, Copenhagen, Denmark
| | - Karoline B Bräuner
- Danish Headache Center, Department of Neurology, Faculty of Health and Medical Sciences, Rigshospitalet - Glostrup, University of Copenhagen, Copenhagen, Denmark
| | - Basit Ali Chaudhry
- Danish Headache Center, Department of Neurology, Faculty of Health and Medical Sciences, Rigshospitalet - Glostrup, University of Copenhagen, Copenhagen, Denmark
| | - Casper E Christensen
- Danish Headache Center, Department of Neurology, Faculty of Health and Medical Sciences, Rigshospitalet - Glostrup, University of Copenhagen, Copenhagen, Denmark
| | - Faisal Mohammad Amin
- Danish Headache Center, Department of Neurology, Faculty of Health and Medical Sciences, Rigshospitalet - Glostrup, University of Copenhagen, Copenhagen, Denmark.,Department of Neurorehabilitation / Traumatic Brain Injury, Rigshospitalet, Copenhagen, Denmark
| | - Henrik W Schytz
- Danish Headache Center, Department of Neurology, Faculty of Health and Medical Sciences, Rigshospitalet - Glostrup, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
7
|
Calcitonin Gene-Related Peptide (CGRP) and Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) in Migraine Pathogenesis. Pharmaceuticals (Basel) 2022; 15:ph15101189. [PMID: 36297301 PMCID: PMC9612382 DOI: 10.3390/ph15101189] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
Migraine is a prevalent and debilitating neurologic disorder. Advancements in understanding the underlying pathophysiological mechanisms are spearheading the effort to introduce disease-specific treatment options. In recent years this effort has largely focused on alteration of endogenous neuropeptide signaling, namely the peptides calcitonin gene-related peptide (CGRP) and pituitary adenylate cyclase-activating polypeptide (PACAP). Human studies into the pathophysiological underpinnings of CGRP and PACAP in migraine are manifold and here we review the works investigating these neuropeptides in patients suffering from migraine in order to elucidate the background for developing new treatment options for this vastly disabling disorder.
Collapse
|
8
|
Abstract
Migraine is a common, chronic, disorder that is typically characterized by recurrent disabling attacks of headache and accompanying symptoms, including aura. The aetiology is multifactorial with rare monogenic variants. Depression, epilepsy, stroke and myocardial infarction are comorbid diseases. Spreading depolarization probably causes aura and possibly also triggers trigeminal sensory activation, the underlying mechanism for the headache. Despite earlier beliefs, vasodilation is only a secondary phenomenon and vasoconstriction is not essential for antimigraine efficacy. Management includes analgesics or NSAIDs for mild attacks, and, for moderate or severe attacks, triptans or 5HT1B/1D receptor agonists. Because of cardiovascular safety concerns, unreliable efficacy and tolerability issues, use of ergots to abort attacks has nearly vanished in most countries. CGRP receptor antagonists (gepants) and lasmiditan, a selective 5HT1F receptor agonist, have emerged as effective acute treatments. Intramuscular onabotulinumtoxinA may be helpful in chronic migraine (migraine on ≥15 days per month) and monoclonal antibodies targeting CGRP or its receptor, as well as two gepants, have proven effective and well tolerated for the preventive treatment of migraine. Several neuromodulation modalities have been approved for acute and/or preventive migraine treatment. The emergence of new treatment targets and therapies illustrates the bright future for migraine management.
Collapse
|
9
|
Liu Y, Yang T, Li J, Xu H, Li S, Xiong L. Breakthroughs on the clinical management of headache and questions that need to be solved. IBRAIN 2021; 7:298-308. [PMID: 37786564 PMCID: PMC10529177 DOI: 10.1002/ibra.12003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 10/04/2023]
Abstract
Headache is a common refractory disorder among adults, especially in females, which can lower the quality of life in patients and increase medical costs. Nearly 90% of people have been affected by headache disorders during their lifetime. The severe situation of headaches has drawn the attention of researchers in recent years. Although the mechanism of headache has not been fully understood by us, there are many effective preventive drugs and treatments available. This review is aimed to sum up the progress in clinical trials of headaches in the past 5 years.
Collapse
Affiliation(s)
- Yu‐Cong Liu
- School of AnesthesiologyZunyi Medical UniversityZunyiGuizhouChina
| | - Ting‐Ting Yang
- School of AnesthesiologyZunyi Medical UniversityZunyiGuizhouChina
| | - Jing Li
- School of AnesthesiologyZunyi Medical UniversityZunyiGuizhouChina
| | - Hui‐Chan Xu
- School of AnesthesiologyZunyi Medical UniversityZunyiGuizhouChina
| | - Shun‐Lian Li
- School of AnesthesiologyZunyi Medical UniversityZunyiGuizhouChina
| | - Liu‐Lin Xiong
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
- Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| |
Collapse
|
10
|
Chiang CC, Shahid AH, Harriott AM, Tietjen GE, Savastano LE, Klaas JP, Lanzino G. Evaluation and treatment of headache associated with moyamoya disease - a narrative review. Cephalalgia 2021; 42:542-552. [PMID: 34786968 DOI: 10.1177/03331024211056250] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Headache in patients with moyamoya disease is an under-addressed topic in the medical literature. Delay in the diagnosis of moyamoya disease or inappropriate treatment of headache could lead to devastating cerebrovascular outcome. With the evolving understanding of moyamoya disease, migraine pathophysiology, and various migraine-specific medications that have become available, it is crucial to provide an updated overview on this topic. METHODS We searched PubMed for keywords including moyamoya disease, moyamoya syndrome, headache in moyamoya, surgical revascularization, surgical bypass, migraine and moyamoya, and calcitonin gene-related peptide (CGRP). We summarized the literature and provide a comprehensive review of the headache presentation, possible mechanisms, the impact of various surgical revascularizations on headache in patients with moyamoya disease, and the medical management of headache incorporating novel migraine-specific treatments.Results and conclusion: The most common headache phenotype is migraine; tension-type headache, hemiplegic migraine, and cluster headache have also been reported. Most patients experience improvement of headache after surgical revascularization, though some patients report worsening, or new-onset headache after surgery. Given the complexity of moyamoya disease, careful consideration of different types of medical therapy for headache is necessary to improve the quality of life while not increasing the risk of adverse cerebrovascular events. More prospective studies are warranted to better understand and manage headache in patients with moyamoya disease.
Collapse
Affiliation(s)
- Chia-Chun Chiang
- Department of Neurology, 6915Mayo Clinic, Mayo Clinic, Rochester, MN
| | | | | | | | | | - James P Klaas
- Department of Neurology, 6915Mayo Clinic, Mayo Clinic, Rochester, MN
| | | |
Collapse
|
11
|
Amyot F, Lynch CE, Ollinger J, Werner JK, Silverman E, Moore C, Davis C, Turtzo LC, Diaz-Arrastia R, Kenney K. Cerebrovascular Reactivity Measures Are Associated With Post-traumatic Headache Severity in Chronic TBI; A Retrospective Analysis. Front Physiol 2021; 12:649901. [PMID: 34054569 PMCID: PMC8155500 DOI: 10.3389/fphys.2021.649901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/17/2021] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE To characterize the relationship between persistent post-traumatic headache (pPTH) and traumatic cerebrovascular injury (TCVI) in chronic traumatic brain injury (TBI). Cerebrovascular reactivity (CVR), a measure of the cerebral microvasculature and endothelial cell function, is altered both in individuals with chronic TBI and migraine headache disorder (Amyot et al., 2017; Lee et al., 2019b). The pathophysiologies of pPTH and migraine are believed to be associated with chronic microvascular dysfunction. We therefore hypothesize that TCVI may contribute to the underlying migraine-like mechanism(s) of pPTH. MATERIALS AND METHODS 22 moderate/severe TBI participants in the chronic stage (>6 months) underwent anatomic and functional magnetic resonance imaging (fMRI) scanning with hypercapnia gas challenge to measure CVR as well as the change in CVR (ΔCVR) after single-dose treatment of a specific phosphodiesterase-5 (PDE-5) inhibitor, sildenafil, which potentiates vasodilation in response to hypercapnia in impaired endothelium, as part of a Phase2a RCT of sildenafil in chronic TBI (NCT01762475). CVR and ΔCVR measures of each participant were compared with the individual's pPTH severity measured by the headache impact test-6 (HIT-6) survey. RESULTS There was a moderate correlation between HIT-6 and both CVR and ΔCVR scores [Spearman's correlation = -0.50 (p = 0.018) and = 0.46 (p = 0.03), respectively], indicating that a higher headache burden is associated with decreased endothelial function in our chronic TBI population. CONCLUSION There is a correlation between PTH and CVR in chronic moderate-severe TBI. This relationship suggests that chronic TCVI may underlie the pathobiology of pPTH. Further, our results suggest that novel treatment strategies that target endothelial function and vascular health may be beneficial in refractory pPTH.
Collapse
Affiliation(s)
- Franck Amyot
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - Cillian E. Lynch
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - John Ollinger
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - J. Kent Werner
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - E. Silverman
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Carol Moore
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Cora Davis
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - L. Christine Turtzo
- National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Ramon Diaz-Arrastia
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Kimbra Kenney
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, United States
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
12
|
Latest Insights into the Pathophysiology of Migraine: the ATP-Sensitive Potassium Channels. Curr Pain Headache Rep 2020; 24:77. [DOI: 10.1007/s11916-020-00911-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2020] [Indexed: 12/15/2022]
|