1
|
Shang H, Liu X, Bai M, Li X, Lan Y, Bai B, Yang S, Wu X, Li G. Causal Relationship Between Circulating Inflammatory Cytokines and the Risk of Trigeminal Neuralgia: A Mendelian Randomization Study. Brain Behav 2025; 15:e70463. [PMID: 40195053 PMCID: PMC11975542 DOI: 10.1002/brb3.70463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 03/10/2025] [Accepted: 03/17/2025] [Indexed: 04/09/2025] Open
Abstract
BACKGROUND Inflammatory regulators play a fundamental role in the development of trigeminal neuralgia (TN). However, the precise mechanisms and causal relationship with the risk of TN remain poorly understood. METHODS This study aimed to assess the causal relationship between 41 inflammatory cytokines and TN using Mendelian randomization (MR) analysis. A two-sample MR approach was utilized, employing genetic variation data on TN from a large publicly available genome-wide association study (GWAS) comprising 1777 cases of European ancestry and 360,538 controls. Additionally, summary data from a GWAS on inflammatory cytokines, comprising 8293 healthy participants, were utilized. The causal relationship between exposure and outcome was primarily assessed using the inverse variance weighted (IVW) method, accompanied by sensitivity analyses. RESULTS The study revealed an association between increased risk of TN and cutaneous T cell-attracting chemokine(CTACK) (odds ratio [OR] = 1.187; 95% confidence interval [CI], 1.041-1.35; p = 0.01) and interferon (IFN)-gamma(MIG) (OR = 1.232; 95% CI, 1.080-1.449; p = 0.01), while interleukin (IL)-16 (OR = 0.823; 95% CI, 0.685-0.989; p = 0.03) and interferon (IFN)-G (OR = 0.779; 95% CI, 0.612-0.992; p = 0.04) were associated with decreased risk of TN. Notably, no potential effect of TN on inflammatory factors was observed. CONCLUSION This study provides novel insights into the pathogenesis of TN, highlighting the crucial role of inflammatory cytokines in TN risk. SIGNIFICANCE This study advances our understanding of TN by using MR to identify the causal roles of specific inflammatory cytokines. These results underscore the importance of inflammation in TN development and suggest potential targets for new treatments.
Collapse
Affiliation(s)
- Hui Shang
- Department of AnesthesiologyShenzhen Hospital (Fu Tian) of Guangzhou University of Chinese MedicineShenzhenPeople's Republic of China
| | - Xianqiang Liu
- Graduate SchoolMedical School of Chinese PLABeijingPeople's Republic of China
| | - Mengying Bai
- Reproductive Health Department, Shenzhen Traditional Chinese Medicine Hospitalthe Fourth Clinical Medical College of Guangzhou University of Chinese MedicineShenzhenPeople's Republic of China
| | - Xiao Li
- Department of AnesthesiologyThe First Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouPeople's Republic of China
| | - Yuhang Lan
- Department of AnesthesiologyShenzhen Hospital (Fu Tian) of Guangzhou University of Chinese MedicineShenzhenPeople's Republic of China
| | - Bingbing Bai
- Department of AnesthesiologyShenzhen Hospital (Fu Tian) of Guangzhou University of Chinese MedicineShenzhenPeople's Republic of China
| | - Shuyun Yang
- Department of AnesthesiologyShenzhen Hospital (Fu Tian) of Guangzhou University of Chinese MedicineShenzhenPeople's Republic of China
| | - Xianlin Wu
- Cancer CenterShenzhen Hospital (Fu Tian) of Guangzhou University of Chinese MedicineShenzhenPeople's Republic of China
| | - Guocai Li
- Department of AnesthesiologyShenzhen Hospital (Fu Tian) of Guangzhou University of Chinese MedicineShenzhenPeople's Republic of China
| |
Collapse
|
2
|
Dong FL, Yu L, Feng PD, Ren JX, Bai XH, Lin JQ, Cao DL, Deng YT, Zhang Y, Shen HH, Gong H, Sun WX, Chi DQ, Mei Y, Ma L, Yin MZ, Li MN, Zhang PF, Hu N, Zhou BL, Liu Y, Zheng XJ, Chen YF, Zhong D, Tao YX, Yan M, Jiang BC. An atlas of neuropathic pain-associated molecular pathological characteristics in the mouse spinal cord. Commun Biol 2025; 8:70. [PMID: 39820760 PMCID: PMC11739467 DOI: 10.1038/s42003-025-07506-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/09/2025] [Indexed: 01/19/2025] Open
Abstract
Peripheral nerve injury (PNI)-induced neuropathic pain (NP) is a severe disease with high prevalence in clinics. Gene reprogramming and tissue remodeling in the dorsal root ganglia (DRG) and spinal cord (SC) drive the development and maintenance of neuropathic pain (NP). However, our understanding of the NP-associated spatial molecular processing landscape of SC and the non-synaptic interactions between DRG neurons and SC cells remains limited. We here integrate spatial transcriptomics (ST) with single-nucleus RNA-sequencing (snRNA-seq) and bulk RNA-sequencing (bulk RNA-seq) to characterize regional pathological heterogeneity of the SC under NP conditions. First, the SC of NP mice manifests unique spatial atlases of genes, cell populations, cell-cell cross-talks, signaling pathways, and transcriptional regulatory networks compared to sham mice. We further report that injured DRG sensory neurons and the corresponding ventral horn of the SC show similar expression patterns after PNI. In addition, for the first time, we systematically exhibit "cross-talk omics" between the DRG neurons and SC dorsal horn neurons and glial cells, indicating an altered communication profile under NP conditions. Together, our findings decode the spatial and cellular heterogeneity of molecular pathological mechanisms underlying NP, providing a foundation for designing therapeutic targets for this disorder.
Collapse
Affiliation(s)
- Fu-Lu Dong
- Department of Anesthesiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Pathology, Medical School, Nantong University, Nantong, China
| | - Lina Yu
- Department of Anesthesiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Key Laboratory of Pain Perception and Neuromodulation, Hangzhou, China
| | - Pei-Da Feng
- Department of Pathology, Medical School, Nantong University, Nantong, China
| | - Jin-Xuan Ren
- Department of Anesthesiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xue-Hui Bai
- Department of Anesthesiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jia-Qi Lin
- Department of Anesthesiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - De-Li Cao
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China
| | - Yu-Tao Deng
- Department of Anesthesiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Zhang
- Department of Anesthesiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hui-Hui Shen
- Department of Anesthesiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Gong
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China
| | - Wen-Xing Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, China
| | - Dong-Qiu Chi
- Medical Service Center, Nantong University, Nantong, China
| | - Yixiao Mei
- Department of Anesthesiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Longfei Ma
- Department of Anesthesiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Key Laboratory of Pain Perception and Neuromodulation, Hangzhou, China
| | - Ming-Zhe Yin
- Department of Anesthesiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Meng-Na Li
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China
| | - Peng-Fei Zhang
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China
| | - Nan Hu
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China
| | - Bing-Lin Zhou
- Department of Anesthesiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Liu
- Department of Anesthesiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuan-Jie Zheng
- Department of Anesthesiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi-Fan Chen
- Department of Pathology, Medical School, Nantong University, Nantong, China
| | - Da Zhong
- Department of Anesthesiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuan-Xiang Tao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA.
| | - Min Yan
- Department of Anesthesiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang Key Laboratory of Pain Perception and Neuromodulation, Hangzhou, China.
- Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China.
| | - Bao-Chun Jiang
- Department of Anesthesiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang Key Laboratory of Pain Perception and Neuromodulation, Hangzhou, China.
| |
Collapse
|
3
|
Xu C, Wang Y, Ni C, Xu M, Yin C, He Q, Ma B, Fu J, Zhao B, Chen L, Zhi T, Wei S, Cheng L, Xu H, Xiao J, Yang L, Xu Q, Kuang J, Liu B, Zhou Q, Lin X, Yao M, Ni H. Histone modifications and Sp1 promote GPR160 expression in bone cancer pain within rodent models. EMBO Rep 2024; 25:5429-5455. [PMID: 39448865 PMCID: PMC11624276 DOI: 10.1038/s44319-024-00292-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/15/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024] Open
Abstract
Bone cancer pain (BCP) affects ~70% of patients in advanced stages, primarily due to bone metastasis, presenting a substantial therapeutic challenge. Here, we profile orphan G protein-coupled receptors in the dorsal root ganglia (DRG) following tumor infiltration, and observe a notable increase in GPR160 expression. Elevated Gpr160 mRNA and protein levels persist from postoperative day 6 for over 18 days in the affected DRG, predominantly in small-diameter C-fiber type neurons specific to the tibia. Targeted interventions, including DRG microinjection of siRNA or AAV delivery, mitigate mechanical allodynia, cold, and heat hyperalgesia induced by the tumor. Tumor infiltration increases DRG neuron excitability in wild-type mice, but not in Gpr160 gene knockout mice. Tumor infiltration results in reduced H3K27me3 and increased H3K27ac modifications, enhanced binding of the transcription activator Sp1 to the Gpr160 gene promoter region, and induction of GPR160 expression. Modulating histone-modifying enzymes effectively alleviated pain behavior. Our study delineates a novel mechanism wherein elevated Sp1 levels facilitate Gpr160 gene transcription in nociceptive DRG neurons during BCP in rodents.
Collapse
Affiliation(s)
- Chengfei Xu
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, 314001, Jiaxing, China
- Department of Anesthesiology, The Third People's Hospital of Bengbu, 38 Shengli Middle Road, 233000, Bengbu, China
| | - Yahui Wang
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, 314001, Jiaxing, China
| | - Chaobo Ni
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, 314001, Jiaxing, China
| | - Miao Xu
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, 314001, Jiaxing, China
| | - Chengyu Yin
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Qiuli He
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, 314001, Jiaxing, China
| | - Bing Ma
- Department of Anesthesiology, The Third People's Hospital of Bengbu, 38 Shengli Middle Road, 233000, Bengbu, China
| | - Jie Fu
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, 314001, Jiaxing, China
| | - Baoxia Zhao
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, 314001, Jiaxing, China
| | - Liping Chen
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, 314001, Jiaxing, China
| | - Tong Zhi
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, 314001, Jiaxing, China
| | - Shirong Wei
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, 314001, Jiaxing, China
| | - Liang Cheng
- Department of Anesthesiology, The Third People's Hospital of Bengbu, 38 Shengli Middle Road, 233000, Bengbu, China
| | - Hui Xu
- Department of Anesthesiology, The First People's Hospital of Bengbu, 233000, Bengbu, China
| | - Jiajun Xiao
- Bengbu Hospital of Traditional Chinese Medicine, 4339 Huai-Shang Road, 233000, Bengbu, China
| | - Lei Yang
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, 314001, Jiaxing, China
| | - Qingqing Xu
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, 314001, Jiaxing, China
| | - Jiao Kuang
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, 314001, Jiaxing, China
| | - Boyi Liu
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Clinical Medical College, Zhejiang Chinese Medical University, 310053, Hangzhou, China
| | - Qinghe Zhou
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, 314001, Jiaxing, China
| | - Xuewu Lin
- Department of Pain Medicine, The First Affiliated Hospital of Bengbu Medical University, 233000, Bengbu, China.
| | - Ming Yao
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, 314001, Jiaxing, China.
| | - Huadong Ni
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, 314001, Jiaxing, China.
| |
Collapse
|
4
|
Qi Z, Peng J, Wang H, Wang L, Su Y, Ding L, Cao B, Zhao Y, Xing Q, Yang J. Modulating neuroinflammation and cognitive function in postoperative cognitive dysfunction via CCR5-GPCRs-Ras-MAPK pathway targeting with microglial EVs. CNS Neurosci Ther 2024; 30:e14924. [PMID: 39143678 PMCID: PMC11324532 DOI: 10.1111/cns.14924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/28/2024] [Accepted: 08/02/2024] [Indexed: 08/16/2024] Open
Abstract
AIMS Postoperative cognitive dysfunction (POCD) is prevalent among the elderly, characterized primarily by cognitive decline after surgery. This study aims to explore how extracellular vesicles (EVs) derived from BV2 microglial cells, with and without the C-C chemokine receptor type 5 (CCR5), affect neuroinflammation, neuronal integrity, and cognitive function in a POCD mouse model. METHODS We collected EVs from LPS-stimulated BV2 cells expressing CCR5 (EVsM1) and from BV2 cells with CCR5 knockdown (EVsM1-CCR5). These were administered to POCD-induced mice. Protein interactions between CCR5, G-protein-coupled receptors (GPCRs), and Ras were analyzed using structure-based docking and co-immunoprecipitation (Co-IP). We assessed the phosphorylation of p38 and Erk, the expression of synaptic proteins PSD95 and MAP2, and conducted Morris Water Maze tests to evaluate cognitive function. RESULTS Structure-based docking and Co-IP confirmed interactions between CCR5, GPR, and Ras, suggesting a CCR5-GPCRs-Ras-MAPK pathway involvement in neuroinflammation. EVsM1 heightened neuroinflammation, reduced synaptic integrity, and impaired cognitive function in POCD mice. In contrast, EVsM1-CCR5 reduced neuroinflammatory markers, preserved synaptic proteins, enhanced dendritic spine structure, and improved cognitive outcomes. CONCLUSION EVsM1 induced neuroinflammation via the CCR5-GPCRs-Ras-MAPK pathway, with EVsM1-CCR5 showing protective effects on POCD progression, suggesting a new therapeutic strategy for POCD management via targeted modification of microglial EVs.
Collapse
Affiliation(s)
- Zheng Qi
- Department of Anesthesiology, Pain and Perioperative MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Junlin Peng
- Department of Anesthesiology, Pain and Perioperative MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Haitao Wang
- Department of Anesthesiology, Pain and Perioperative MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Li Wang
- Biobank of The First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yu Su
- Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Lan Ding
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Bin Cao
- Department of Anesthesiology, Pain and Perioperative MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yingying Zhao
- Department of Anesthesiology, Pain and Perioperative MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Qinghe Xing
- Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Jian‐jun Yang
- Department of Anesthesiology, Pain and Perioperative MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
5
|
Xu C, Wang Y, Ni H, Yao M, Cheng L, Lin X. The role of orphan G protein-coupled receptors in pain. Heliyon 2024; 10:e28818. [PMID: 38590871 PMCID: PMC11000026 DOI: 10.1016/j.heliyon.2024.e28818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/10/2024] Open
Abstract
G protein-coupled receptors (GPCRs), which form the largest family of membrane protein receptors in humans, are highly complex signaling systems with intricate structures and dynamic conformations and locations. Among these receptors, a specific subset is referred to as orphan GPCRs (oGPCRs) and has garnered significant interest in pain research due to their role in both central and peripheral nervous system function. The diversity of GPCR functions is attributed to multiple factors, including allosteric modulators, signaling bias, oligomerization, constitutive signaling, and compartmentalized signaling. This review primarily focuses on the recent advances in oGPCR research on pain mechanisms, discussing the role of specific oGPCRs including GPR34, GPR37, GPR65, GPR83, GPR84, GPR85, GPR132, GPR151, GPR160, GPR171, GPR177, and GPR183. The orphan receptors among these receptors associated with central nervous system diseases are also briefly described. Understanding the functions of these oGPCRs can contribute not only to a deeper understanding of pain mechanisms but also offer a reference for discovering new targets for pain treatment.
Collapse
Affiliation(s)
- Chengfei Xu
- Department of Anesthesiology, The Third People's Hospital of Bengbu, Bengbu, 233000, PR China
| | - Yahui Wang
- Department of Anesthesiology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, PR China
| | - Huadong Ni
- Department of Anesthesiology and Pain Research Center, Affiliated Hospital of Jiaxing University, Jiaxing, 314000, PR China
| | - Ming Yao
- Department of Anesthesiology and Pain Research Center, Affiliated Hospital of Jiaxing University, Jiaxing, 314000, PR China
| | - Liang Cheng
- Department of Anesthesiology, The Third People's Hospital of Bengbu, Bengbu, 233000, PR China
| | - Xuewu Lin
- Department of Anesthesiology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, PR China
| |
Collapse
|
6
|
Ji R, Chang L, An C, Zhang J. Proton-sensing ion channels, GPCRs and calcium signaling regulated by them: implications for cancer. Front Cell Dev Biol 2024; 12:1326231. [PMID: 38505262 PMCID: PMC10949864 DOI: 10.3389/fcell.2024.1326231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/14/2024] [Indexed: 03/21/2024] Open
Abstract
Extracellular acidification of tumors is common. Through proton-sensing ion channels or proton-sensing G protein-coupled receptors (GPCRs), tumor cells sense extracellular acidification to stimulate a variety of intracellular signaling pathways including the calcium signaling, which consequently exerts global impacts on tumor cells. Proton-sensing ion channels, and proton-sensing GPCRs have natural advantages as drug targets of anticancer therapy. However, they and the calcium signaling regulated by them attracted limited attention as potential targets of anticancer drugs. In the present review, we discuss the progress in studies on proton-sensing ion channels, and proton-sensing GPCRs, especially emphasizing the effects of calcium signaling activated by them on the characteristics of tumors, including proliferation, migration, invasion, metastasis, drug resistance, angiogenesis. In addition, we review the drugs targeting proton-sensing channels or GPCRs that are currently in clinical trials, as well as the relevant potential drugs for cancer treatments, and discuss their future prospects. The present review aims to elucidate the important role of proton-sensing ion channels, GPCRs and calcium signaling regulated by them in cancer initiation and development. This review will promote the development of drugs targeting proton-sensing channels or GPCRs for cancer treatments, effectively taking their unique advantage as anti-cancer drug targets.
Collapse
Affiliation(s)
- Renhui Ji
- Foundational and Translational Medical Research Center, Department of Allergy and General Surgery, Hohhot First Hospital, Hohhot, China
- Department of Pathophysiology, Basic Medicine College of Inner Mongolia Medical University, Hohhot, China
| | - Li Chang
- Foundational and Translational Medical Research Center, Department of Allergy and General Surgery, Hohhot First Hospital, Hohhot, China
- Department of Pathophysiology, Basic Medicine College of Inner Mongolia Medical University, Hohhot, China
| | - Caiyan An
- Foundational and Translational Medical Research Center, Department of Allergy and General Surgery, Hohhot First Hospital, Hohhot, China
| | - Junjing Zhang
- Foundational and Translational Medical Research Center, Department of Allergy and General Surgery, Hohhot First Hospital, Hohhot, China
| |
Collapse
|
7
|
Uniyal A, Tiwari V, Tsukamoto T, Dong X, Guan Y, Raja SN. Targeting sensory neuron GPCRs for peripheral neuropathic pain. Trends Pharmacol Sci 2023; 44:1009-1027. [PMID: 37977131 PMCID: PMC10657387 DOI: 10.1016/j.tips.2023.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/29/2023] [Accepted: 10/10/2023] [Indexed: 11/19/2023]
Abstract
Despite the high prevalence of peripheral neuropathic pain (NP) conditions and significant progress in understanding its underlying mechanisms, the management of peripheral NP remains inadequate. Existing pharmacotherapies for NP act primarily on the central nervous system (CNS) and are often associated with CNS-related adverse effects, limiting their clinical effectiveness. Mounting preclinical evidence indicates that reducing the heightened activity in primary sensory neurons by targeting G-protein-coupled receptors (GPCRs), without activating these receptors in the CNS, relieves pain without central adverse effects. In this review, we focus on recent advancements in GPCR-mediated peripheral pain relief and discuss strategies to advance the development of more effective and safer therapies for peripheral NP by shifting from traditional CNS modulatory approaches toward selective targeting of GPCRs on primary sensory neurons.
Collapse
Affiliation(s)
- Ankit Uniyal
- Division of Pain Medicine, Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University, Baltimore, MD, USA
| | - Vinod Tiwari
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (B.H.U), Varanasi, India
| | - Takashi Tsukamoto
- Department of Neurology and Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xinzhong Dong
- Department of Neuroscience, The Johns Hopkins University, Baltimore, MD, USA
| | - Yun Guan
- Division of Pain Medicine, Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University, Baltimore, MD, USA; Department of Neurological Surgery, The Johns Hopkins University, Baltimore, MD, USA
| | - Srinivasa N Raja
- Division of Pain Medicine, Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University, Baltimore, MD, USA; Department of Neurology and Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
8
|
Chai Y, Sheng D, Ji X, Meng Y, Shen F, He R, Ma R, Wang Y. Developmental and neurobehavioral toxicity of 2,2'-methylenebis(6-tert-butyl-4-methylphenol) (antioxidant AO2246) during the early life stage of zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:166306. [PMID: 37586501 DOI: 10.1016/j.scitotenv.2023.166306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 07/30/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND 2,2'-Methylenebis (4-methyl-6-tert-butylphenol) (AO2246) is a synthetic phenolic antioxidant extensively used in food packaging bags and cosmetics. Recently, AO2246 was detected with unexpectedly high concentrations in plasma and breast milk samples from pregnant and lactating women. Hence, it is essential to conduct a thorough investigation to evaluate the detrimental effects of AO2246 on biota. OBJECTIVE To investigate the developmental and behavioral toxicity of AO2246 in zebrafish, as well as the molecular mechanisms underlying these effects. METHODS Zebrafish embryos were exposed to AO2246 at concentrations ranging from 0.05 to 10 μM for up to 6 days postfertilization (dpf). Hatching rate, survival rate, heart rate, and body length were measured. Locomotor behavioral and electrophysiologal analyses were performed. Two fluorescence-labeled transgenic zebrafish lines (endothelium-Tg and macrophage/microglia-Tg) were employed. RNA sequencing was carried out. RESULTS AO2246 has a 96-hour LC50 value of 3 μM. The exposure of AO2246 resulted in a significant reduction in both hatching rate and heart rate. Analysis of locomotor behavior demonstrated that larvae exposed to AO2246 doses exceeding 2 μM exhibited a significant decrease in both total distance and mean velocity. Electrophysiological recordings demonstrated a noteworthy reduction in spike activity at a concentration of 3 μM, relative to control conditions. The administration of AO2246 at 3 μM elicited morphological reactivity and immune alteration of the midbrain microglia in the macrophage/microglia-transgenic zebrafish line, indicating a potential contribution of neurological disorders to behavioral defects. RNA sequencing analysis revealed altered gene expression profiles at high AO2246 concentrations, particularly the dysregulation of pathways associated with neuronal function. CONCLUSIONS The present study demonstrates that AO2246 exposure elicits developmental and neurobehavioral toxicity in zebrafish larvae. Specifically, exposure to AO2246 was found to cause disturbances in neuronal electrophysiological activity and neurological disorders, which ultimately led to the impairment of locomotor behavior in zebrafish larvae.
Collapse
Affiliation(s)
- Yinan Chai
- Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 311121, China; College of stomatology, Hangzhou Normal University, Hangzhou 311121, China
| | - Donglai Sheng
- Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiaowei Ji
- Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 311121, China; Department of Stomatology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Yanlong Meng
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Feihao Shen
- Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 311121, China; College of stomatology, Hangzhou Normal University, Hangzhou 311121, China
| | - Rui He
- College of stomatology, Hangzhou Normal University, Hangzhou 311121, China
| | - Runjia Ma
- College of Nursing and Rehabilitation, North China University of Science and Technology, Tangshan 063210, China
| | - Yuying Wang
- Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 311121, China; College of stomatology, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
9
|
Tang J, Lin M, Ou C. High-throughput transcriptome sequencing reveals the critical role of long non-coding RNA Gm14376 in the occurrence of neuropathic pain. Neurosci Lett 2023; 810:137312. [PMID: 37236343 DOI: 10.1016/j.neulet.2023.137312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/02/2023] [Accepted: 04/18/2023] [Indexed: 05/28/2023]
Abstract
Long noncoding RNAs (lncRNAs) have been suggested as important regulators in neuropathic pain. Our study aims to explore the possible molecular mechanism underlying the role of long non-coding RNA (lncRNA) Gm14376 in neuropathic pain in mice by high-throughput transcriptome sequencing. A mouse model of spared nerve injury (SNI) was constructed for mechanical, thermal and spontaneous pain testing. Transcriptomic changes in lncRNAs and mRNAs in the dorsal root ganglion (DRG) of SNI mice were analyzed using RNA-sequencing techniques in conjunction with public data analysis. AAV5 viral vector was constructed to assess the effect of Gm14376 on SNI-induced pain hypersensitivity and inflammatory response. Cis-target genes of Gm14376 were obtained and the functions of Gm14376 were analyzed by GO and KEGG pathway enrichment analyses. Results from bioinformatic analysis identified a conserved Gm14376, which was up-regulated in the DRG of SNI mice, specifically in response to nerve injury. Overexpression of Gm14376 in DRG induced neuropathic pain-like symptoms in mice. Furthermore, the functions of Gm14376 were related to the phosphatidylinositol 3-kinase (PI3K)/Akt pathway and fibroblast growth factor 3 (Fgf3) was identified as the cis-target gene of Gm14376. Gm14376 could directly up-regulate Fgf3 expression to activate the PI3K/Akt pathway, which alleviated pain hypersensitivity to mechanical and thermal stimuli and reduced the release of inflammatory factors in SNI mice. From our data, we conclude that SNI-induced up-regulation of Gm14376 expression in DRG activates the PI3K/Akt pathway through up-regulation of Fgf3 expression, thereby promoting the development of neuropathic pain in mice.
Collapse
Affiliation(s)
- Jian Tang
- Department of Pain Management, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Department of Anesthesiology, Southwest Medical University, Luzhou, Sichuan Province 64600, 0, China
| | - Min Lin
- Department of Pain Management, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Department of Anesthesiology, Southwest Medical University, Luzhou, Sichuan Province 64600, 0, China
| | - Cehua Ou
- Department of Pain Management, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
10
|
Xu H, Zhang B, Liu Q. Deep learning-based classification model for GPR151 activator activity prediction. BMC Bioinformatics 2023; 24:245. [PMID: 37296398 DOI: 10.1186/s12859-023-05369-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND GPR151 is a kind of protein belonging to G protein-coupled receptor family that is closely associated with a variety of physiological and pathological processes.The potential use of GPR151 as a therapeutic target for the management of metabolic disorders has been demonstrated in several studies, highlighting the demand to explore its activators further. Activity prediction serves as a vital preliminary step in drug discovery, which is both costly and time-consuming. Thus, the development of reliable activity classification model has become an essential way in the process of drug discovery, aiming to enhance the efficiency of virtual screening. RESULTS We propose a learning-based method based on feature extractor and deep neural network to predict the activity of GPR151 activators. We first introduce a new molecular feature extraction algorithm which utilizes the idea of bag-of-words model in natural language to densify the sparse fingerprint vector. Mol2vec method is also used to extract diverse features. Then, we construct three classical feature selection algorithms and three types of deep learning model to enhance the representational capacity of molecules and predict activity label by five different classifiers. We conduct experiments using our own dataset of GPR151 activators. The results demonstrate high classification accuracy and stability, with the optimal model Mol2vec-CNN significantly improving performance across multiple classifiers. The svm classifier achieves the best accuracy of 0.92 and F1 score of 0.76 which indicates promising applications for our method in the field of activity prediction. CONCLUSION The results suggest that the experimental design of this study is appropriate and well-conceived. The deep learning-based feature extraction algorithm established in this study outperforms traditional feature selection algorithm for activity prediction. The model developed can be effectively utilized in the pre-screening stage of drug virtual screening.
Collapse
Affiliation(s)
- Huangchao Xu
- Computer Network Information Center, Chinese Academy of Sciences, Dongsheng Sourth Street No.2, Haidian District, Beijing, 100190, China
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing, 101408, China
| | - Baohua Zhang
- Computer Network Information Center, Chinese Academy of Sciences, Dongsheng Sourth Street No.2, Haidian District, Beijing, 100190, China
| | - Qian Liu
- Computer Network Information Center, Chinese Academy of Sciences, Dongsheng Sourth Street No.2, Haidian District, Beijing, 100190, China.
| |
Collapse
|
11
|
Zhang X, Cheng J, Deng Y, Guo C, Cao Y, Wang S, Zhou C, Lin Z, Tang S, Zhou J. Identification and validation of biomarkers related to Th1 cell infiltration in neuropathic pain. J Inflamm (Lond) 2023; 20:19. [PMID: 37264427 DOI: 10.1186/s12950-023-00343-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 05/01/2023] [Indexed: 06/03/2023] Open
Abstract
Neuropathic pain (NP) is a widespread chronic pain with a prevalence of 6.9-10% in the general population, severely affecting patients' physical and mental health. Accumulating evidence indicated that the immune environment is an essential factor causing NP. However, the mechanism is unclear. This study attempted to analyze NP-related immune infiltration patterns. We downloaded the expression profiles from the Gene Expression Omnibus (GEO) database. The novel method of single-sample gene set enrichment analysis (ssGSEA) algorithm and weighted gene co-expression network analysis (WGCNA) was applied to identify immune-related genes and verified in vitro and in vivo experiments. The spared nerve injury (SNI) group was closely related to type1 T helper cells (Th1 cells), and two key genes (Abca1 and Fyb) positively correlated with Th1 cell infiltration. At the single-cell level, Abca1 and Fyb were significantly expressed in macrophages. In addition, we verified that Abca1 could affect the function of macrophages. Finally, we hypothesized that Abca1 is involved in the infiltration of Th1 cells into dorsal root ganglion (DRG) tissues and induces NP via immunoinflammatory response. Hence, the present study aimed to elucidate the correlation between NP and neuroinflammation and identify a new therapeutic target for treating NP.
Collapse
Affiliation(s)
- Xiangsheng Zhang
- The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Jiurong Cheng
- The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yingdong Deng
- The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Caiyun Guo
- The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yu Cao
- The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Suo Wang
- The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Chenxi Zhou
- The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Ziqiang Lin
- The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Simin Tang
- The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Jun Zhou
- The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.
| |
Collapse
|
12
|
von Breitenbuch P, Kurz B, Wallner S, Zeman F, Brochhausen C, Schlitt HJ, Schreml S. Expression of pH-Sensitive GPCRs in Peritoneal Carcinomatosis of Colorectal Cancer-First Results. J Clin Med 2023; 12:jcm12051803. [PMID: 36902589 PMCID: PMC10003041 DOI: 10.3390/jcm12051803] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/06/2023] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
Solid tumors have an altered metabolism with a so-called inside-out pH gradient (decreased pHe < increased pHi). This also signals back to tumor cells via proton-sensitive ion channels or G protein-coupled receptors (pH-GPCRs) to alter migration and proliferation. Nothing, however, is known about the expression of pH-GPCRs in the rare form of peritoneal carcinomatosis. Paraffin-embedded tissue samples of a series of 10 patients with peritoneal carcinomatosis of colorectal (including appendix) origin were used for immunohistochemistry to study the expression of GPR4, GPR65, GPR68, GPR132, and GPR151. GPR4 was just expressed weakly in 30% of samples and expression was significantly reduced as compared to GPR56, GPR132, and GPR151. Furthermore, GPR68 was only expressed in 60% of tumors and showed significantly reduced expression as compared to GPR65 and GPR151. This is the first study on pH-GPCRs in peritoneal carcinomatosis, which shows lower expression of GPR4 and GPR68 as compared to other pH-GPCRs in this type of cancer. It may give rise to future therapies targeting either the TME or these GPCRs directly.
Collapse
Affiliation(s)
| | - Bernadett Kurz
- Department of Dermatology, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Susanne Wallner
- Department of Dermatology, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Florian Zeman
- Center for Clinical Studies, University Medical Center Regensburg, 93053 Regensburg, Germany
| | - Christoph Brochhausen
- Institute of Pathology, University Medical Center Regensburg, 93053 Regensburg, Germany
| | - Hans-Jürgen Schlitt
- Department of Surgery, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Stephan Schreml
- Department of Dermatology, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
- Correspondence:
| |
Collapse
|
13
|
Franchini L, Orlandi C. Probing the orphan receptors: Tools and directions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 195:47-76. [PMID: 36707155 DOI: 10.1016/bs.pmbts.2022.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The endogenous ligands activating a large fraction of the G Protein Coupled Receptor (GPCR) family members have yet to be identified. These receptors are commonly labeled as orphans (oGPCRs), and because of the absence of available pharmacological tools they are currently understudied. Nonetheless, genome wide association studies, together with research using animal models identified many physiological functions regulated by oGPCRs. Similarly, mutations in some oGPCRs have been associated with rare genetic disorders or with an increased risk of developing pathologies. The once underestimated pharmacological potential of targeting oGPCRs is increasingly being exploited by the development of novel tools to understand their biology and by drug discovery endeavors aimed at identifying new modulators of their activity. Here, we summarize recent advancements in the field of oGPCRs and future directions.
Collapse
Affiliation(s)
- Luca Franchini
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, United States
| | - Cesare Orlandi
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, United States.
| |
Collapse
|
14
|
Zhu LP, Xu ML, Yuan BT, Ma LJ, Gao YJ. Chemokine CCL7 mediates trigeminal neuropathic pain via CCR2/CCR3-ERK pathway in the trigeminal ganglion of mice. Mol Pain 2023; 19:17448069231169373. [PMID: 36998150 PMCID: PMC10413901 DOI: 10.1177/17448069231169373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/11/2023] [Accepted: 03/26/2023] [Indexed: 04/01/2023] Open
Abstract
BACKGROUND Chemokine-mediated neuroinflammation plays an important role in the pathogenesis of neuropathic pain. The chemokine CC motif ligand 7 (CCL7) and its receptor CCR2 have been reported to contribute to neuropathic pain via astrocyte-microglial interaction in the spinal cord. Whether CCL7 in the trigeminal ganglion (TG) involves in trigeminal neuropathic pain and the involved mechanism remain largely unknown. METHODS The partial infraorbital nerve transection (pIONT) was used to induce trigeminal neuropathic pain in mice. The expression of Ccl7, Ccr1, Ccr2, and Ccr3 was examined by real-time quantitative polymerase chain reaction. The distribution of CCL7, CCR2, and CCR3 was detected by immunofluorescence double-staining. The activation of extracellular signal-regulated kinase (ERK) was examined by Western blot and immunofluorescence. The effect of CCL7 on neuronal excitability was tested by whole-cell patch clamp recording. The effect of selective antagonists for CCR1, CCR2, and CCR3 on pain hypersensitivity was checked by behavioral testing. RESULTS Ccl7 was persistently increased in neurons of TG after pIONT, and specific inhibition of CCL7 in the TG effectively relieved pIONT-induced orofacial mechanical allodynia. Intra-TG injection of recombinant CCL7 induced mechanical allodynia and increased the phosphorylation of ERK in the TG. Incubation of CCL7 with TG neurons also dose-dependently enhanced the neuronal excitability. Furthermore, pIONT increased the expression of CCL7 receptors Ccr1, Ccr2, and Ccr3. The intra-TG injection of the specific antagonist of CCR2 or CCR3 but not of CCR1 alleviated pIONT-induced orofacial mechanical allodynia and reduced ERK activation. Immunostaining showed that CCR2 and CCR3 are expressed in TG neurons, and CCL7-induced hyperexcitability of TG neurons was decreased by antagonists of CCR2 or CCR3. CONCLUSION CCL7 activates ERK in TG neurons via CCR2 and CCR3 to enhance neuronal excitability, which contributes to the maintenance of trigeminal neuropathic pain. CCL7-CCR2/CCR3-ERK pathway may be potential targets for treating trigeminal neuropathic pain.
Collapse
Affiliation(s)
| | | | - Bao-Tong Yuan
- Institute of Pain Medicine and Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Ling-Jie Ma
- Institute of Pain Medicine and Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yong-Jing Gao
- Institute of Pain Medicine and Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
15
|
Upregulation of LncRNA71132 in the spinal cord regulates hypersensitivity in a rat model of bone cancer pain. Pain 2023; 164:180-196. [PMID: 35543644 DOI: 10.1097/j.pain.0000000000002678] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/13/2022] [Indexed: 01/09/2023]
Abstract
ABSTRACT Bone cancer pain (BCP) is a pervasive clinical symptom which impairs the quality life. Long noncoding RNAs (lncRNAs) are enriched in the central nervous system and play indispensable roles in numerous biological processes, while its regulatory function in nociceptive information processing remains elusive. Here, we reported that functional modulatory role of ENSRNOT00000071132 (lncRNA71132) in the BCP process and sponging with miR-143 and its downstream GPR85-dependent signaling cascade. Spinal lncRNA71132 was remarkably increased in the rat model of bone cancer pain. The knockdown of spinal lncRNA71132 reverted BCP behaviors and spinal c-Fos neuronal sensitization. Overexpression of spinal lncRNA71132 in naive rat generated pain behaviors, which were accompanied by increased spinal c-Fos neuronal sensitization. Furthermore, it was found that lncRNA71132 participates in the modulation of BCP by inversely regulating the processing of miR-143-5p. In addition, an increase in expression of spinal lncRNA71132 resulted in the decrease in expression of miR-143 under the BCP state. Finally, it was found that miR-143-5p regulates pain behaviors by targeting GPR85. Overexpression of miR-143-5p in the spinal cord reverted the nociceptive behaviors triggered by BCP, accompanied by a decrease in expression of spinal GPR85 protein, but no influence on expression of gpr85 mRNA. The findings of this study indicate that lncRNA71132 works as a miRNA sponge in miR-143-5p-mediated posttranscriptional modulation of GPR85 expression in BCP. Therefore, epigenetic interventions against lncRNA71132 may potentially work as novel treatment avenues in treating nociceptive hypersensitivity triggered by bone cancer.
Collapse
|
16
|
Fang ZH, Liao HL, Tang QF, Liu YJ, Zhang YY, Lin J, Yu HP, Zhou C, Li CJ, Liu F, Shen JF. Interactions Among Non-Coding RNAs and mRNAs in the Trigeminal Ganglion Associated with Neuropathic Pain. J Pain Res 2022; 15:2967-2988. [PMID: 36171980 PMCID: PMC9512292 DOI: 10.2147/jpr.s382692] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
Background Recent studies have demonstrated the contribution of non-coding RNAs (ncRNAs) to neuropathic pain. However, the expression profile of ncRNAs in the trigeminal ganglion (TG) and their functional mechanism underlying trigeminal neuropathic pain are still unclear. Methods In the present study, the trigeminal neuropathic pain model induced by chronic constriction injury of the infraorbital nerve (CCI-ION) was used to study the expression profile and potential regulatory mechanism of miRNAs, lncRNAs, circRNAs, and mRNAs in the TG by RNA-sequencing (RNA-seq) and bioinformatics analysis. CCI-ION mice suffered from mechanical allodynia from 3 days to 28 days after surgery. Results The RNA-seq results discovered 67 miRNAs, 216 lncRNAs, 14 circRNAs, 595 mRNAs, and 421 genes were differentially expressed (DE) in the TG of CCI-ION mice 7 days after surgery. And 39 DEGs were known pain genes. Besides, 5 and 35 pain-related DE mRNAs could be targeted by 6 DE miRNAs and 107 DE lncRNAs, respectively. And 23 pain-related DEGs had protein–protein interactions (PPI) with each other. GO analysis indicated membrane-related cell components and binding-related molecular functions were significantly enriched. KEGG analysis showed that nociception-related signaling pathways were significantly enriched for DE ncRNAs and DEGs. Finally, the competing endogenous RNA (ceRNA) regulatory network of DE lncRNA/DE circRNA-DE miRNA-DE mRNA existed in the TG of mice with trigeminal neuropathic pain. Conclusion Our findings demonstrate ncRNAs are involved in the development of trigeminal neuropathic pain, possibly through the ceRNA mechanism, which brings a new bright into the study of trigeminal neuropathic pain and the development of novel treatments targeting ncRNAs.
Collapse
Affiliation(s)
- Zhong-Han Fang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, People's Republic of China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Hong-Lin Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, People's Republic of China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Qing-Feng Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, People's Republic of China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Ya-Jing Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, People's Republic of China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Yan-Yan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, People's Republic of China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Jiu Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, People's Republic of China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Hao-Peng Yu
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Cheng Zhou
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Chun-Jie Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, People's Republic of China.,Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Fei Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, People's Republic of China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Jie-Fei Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, People's Republic of China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
17
|
Zou Y, Bai XH, Kong LC, Xu FF, Ding TY, Zhang PF, Dong FL, Ling YJ, Jiang BC. Involvement of Histone Lysine Crotonylation in the Regulation of Nerve-Injury-Induced Neuropathic Pain. Front Immunol 2022; 13:885685. [PMID: 35911694 PMCID: PMC9329947 DOI: 10.3389/fimmu.2022.885685] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Histone lysine crotonylation (KCR), a novel epigenetic modification, is important in regulating a broad spectrum of biological processes and various diseases. However, whether KCR is involved in neuropathic pain remains to be elucidated. We found KCR occurs in macrophages, sensory neurons, and satellite glial cells of trigeminal ganglia (TG), neurons, astrocytes, and microglia of the medulla oblongata. KCR in TG was detected mainly in small and medium sensory neurons, to a lesser extent in large neurons. Peripheral nerve injury elevated KCR levels in macrophages in the trigeminal and dorsal root ganglia and microglia in the medulla oblongata but reduced KCR levels in sensory neurons. Inhibition of histone crotonyltransferases (p300) by intra-TG or intrathecal administration of C646 significantly alleviated partial infraorbital nerve transection (pIONT)- or spinal nerve ligation (SNL)-induced mechanical allodynia and thermal hyperalgesia. Intra-TG or intrathecal administration of Crotonyl coenzyme A trilithium salt to upregulate KCR dose-dependently induced mechanical allodynia and thermal hyperalgesia in mice. Mechanismly, inhibition of p300 alleviated pIONT-induced macrophage activation and reduced the expression of pain-related inflammatory cytokines Tnfα, Il1β and chemokines Ccl2 and Cxcl10. Correspondingly, exogenous crotonyl-CoA induced macrophage activation and the expression of Tnfα, Il1β, Il6, Ccl2 and Ccl7 in TG, which C646 can repress. These findings suggest that histone crotonylation might be functionally involved in neuropathic pain and neuroinflammation regulation.
Collapse
Affiliation(s)
- Yu Zou
- Pain Research Laboratory, Institute of Nautical Medicine, Nantong University, Nantong, China
| | - Xue-Hui Bai
- Pain Research Laboratory, Institute of Nautical Medicine, Nantong University, Nantong, China
| | - Ling-Chi Kong
- Pain Research Laboratory, Institute of Nautical Medicine, Nantong University, Nantong, China
| | - Fei-Fei Xu
- Medical School of Nantong University, Nantong, China
| | - Ting-Yu Ding
- Pain Research Laboratory, Institute of Nautical Medicine, Nantong University, Nantong, China
| | - Peng-Fei Zhang
- Pain Research Laboratory, Institute of Nautical Medicine, Nantong University, Nantong, China
| | - Fu-Lu Dong
- Medical School of Nantong University, Nantong, China
| | - Yue-Juan Ling
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Bao-Chun Jiang, ; Yue-Juan Ling,
| | - Bao-Chun Jiang
- Pain Research Laboratory, Institute of Nautical Medicine, Nantong University, Nantong, China
- *Correspondence: Bao-Chun Jiang, ; Yue-Juan Ling,
| |
Collapse
|
18
|
Xu FF, Kong LC, Cao DL, Ding BX, Wu Q, Ding YC, Wu H, Jiang BC. Decoding gene expression signatures in mice trigeminal ganglion across trigeminal neuropathic pain stages via high-throughput sequencing. Brain Res Bull 2022; 187:122-137. [PMID: 35781031 DOI: 10.1016/j.brainresbull.2022.06.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/10/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022]
Abstract
Trigeminal neuropathic pain (TNP) arises due to peripheral nerve injury, the mechanisms underlying which are little known. The altered gene expression profile in sensory ganglia is critical for neuropathic pain generation and maintenance. We, therefore, assessed the transcriptome of the trigeminal ganglion (TG) from mice at different periods of pain progression. Trigeminal neuropathic pain was established by partial infraorbital nerve transection (pIONT). High-throughput RNA sequencing was applied to detect the mRNA profiles of TG collected at 3 and 10 days after modeling. Injured TG displayed dramatically altered mRNA expression profiles compared to Sham. Different gene expression profiles were obtained at 3 and 10 days after pIONT. Moreover, 314 genes were significantly upregulated, and 81 were significantly downregulated at both 3 and 10 days post-pIONT. Meanwhile, enrichment analysis of these persistent differentially expressed genes (DEGs) showed that the MAPK pathway was the most significantly enriched pathway for upregulated DEGs, validated by immunostaining. In addition, TG cell populations defined by single-nuclei RNA sequencing displayed cellular localization of DEGs at a single-cell resolution. Protein-protein interaction (PPI) and sub-PPI network analyses constructed networks and identified the top 10 hub genes for DEGs at different time points. The present data provide novel information on the gene expression signatures of TG during the development and maintenance phases of TNP, and the identified hub genes and pathways may serve as potential targets for treatment.
Collapse
Affiliation(s)
- Fei-Fei Xu
- Department of Otolaryngology, Head, and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Ling-Chi Kong
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Jiangsu 226019, China
| | - De-Li Cao
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Jiangsu 226019, China
| | - Bi-Xiao Ding
- Department of Otolaryngology, Head, and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Qiong Wu
- Department of Otolaryngology, Head, and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Yuan-Cheng Ding
- Department of Otolaryngology, Head, and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Hao Wu
- Department of Otolaryngology, Head, and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China.
| | - Bao-Chun Jiang
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Jiangsu 226019, China.
| |
Collapse
|
19
|
Luo Z, Liao X, Luo L, Fan Q, Zhang X, Guo Y, Wang F, Ye Z, Luo D. Extracellular ATP and cAMP signaling promote Piezo2-dependent mechanical allodynia after trigeminal nerve compression injury. J Neurochem 2021; 160:376-391. [PMID: 34757653 DOI: 10.1111/jnc.15537] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 12/17/2022]
Abstract
Trigeminal neuralgia (TN) is a type of severe paroxysmal neuropathic pain commonly triggered by mild mechanical stimulation in the orofacial area. Piezo2, a mechanically gated ion channel that mediates tactile allodynia in neuropathic pain, can be potentiated by a cyclic adenosine monophosphate (cAMP)-dependent signaling pathway that involves the exchange protein directly activated by cAMP 1 (Epac1). To study whether Piezo2-mediated mechanotransduction contributes to peripheral sensitization in a rat model of TN after trigeminal nerve compression injury, the expression of Piezo2 and activation of cAMP signal-related molecules in the trigeminal ganglion (TG) were detected. Changes in purinergic P2 receptors in the TG were also studied by RNA-seq. The expression of Piezo2, cAMP, and Epac1 in the TG of the TN animals increased after chronic compression of the trigeminal nerve root (CCT) for 21 days, but Piezo2 knockdown by shRNA in the TG attenuated orofacial mechanical allodynia. Purinergic P2 receptors P2X4, P2X7, P2Y1, and P2Y2 were significantly up-regulated after CCT injury. In vitro, Piezo2 expression in TG neurons was significantly increased by exogenous adenosine 5'-triphosphate (ATP) and Ca2+ ionophore ionomycin. ATP pre-treated TG neurons displayed elevated [Ca2+ ]i and faster increase in responding to blockage of Na+ /Ca2+ exchanger by KB-R7943. Furthermore, mechanical stimulation of cultured TG neurons led to sustained elevation in [Ca2+ ]i in ATP pre-treated TG neurons, which is much less in naïve TG neurons, or is significantly reduced by Piezo2 inhibitor GsMTx4. These results indicated a pivotal role of Piezo2 in peripheral mechanical allodynia in the rat CCT model. Extracellular ATP, Ca2+ influx, and the cAMP-to-Epac1 signaling pathway synergistically contribute to the pathogenesis and the persistence of mechanical allodynia.
Collapse
Affiliation(s)
- Zhaoke Luo
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, Laboratory of Clinical Applied Anatomy, the School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Human Anatomy, the School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xinyue Liao
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, Laboratory of Clinical Applied Anatomy, the School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Human Anatomy, the School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Lili Luo
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, Laboratory of Clinical Applied Anatomy, the School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Human Anatomy, the School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Qitong Fan
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, Laboratory of Clinical Applied Anatomy, the School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Human Anatomy, the School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xiaofen Zhang
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, Laboratory of Clinical Applied Anatomy, the School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Human Anatomy, the School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yuefeng Guo
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, Laboratory of Clinical Applied Anatomy, the School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Human Anatomy, the School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Feng Wang
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, Laboratory of Clinical Applied Anatomy, the School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Human Anatomy, the School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Zucheng Ye
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, Laboratory of Clinical Applied Anatomy, the School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Human Anatomy, the School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Daoshu Luo
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, Laboratory of Clinical Applied Anatomy, the School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Human Anatomy, the School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| |
Collapse
|
20
|
Sisignano M, Fischer MJM, Geisslinger G. Proton-Sensing GPCRs in Health and Disease. Cells 2021; 10:cells10082050. [PMID: 34440817 PMCID: PMC8392051 DOI: 10.3390/cells10082050] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 12/17/2022] Open
Abstract
The group of proton-sensing G-protein coupled receptors (GPCRs) consists of the four receptors GPR4, TDAG8 (GPR65), OGR1 (GPR68), and G2A (GPR132). These receptors are cellular sensors of acidification, a property that has been attributed to the presence of crucial histidine residues. However, the pH detection varies considerably among the group of proton-sensing GPCRs and ranges from pH of 5.5 to 7.8. While the proton-sensing GPCRs were initially considered to detect acidic cellular environments in the context of inflammation, recent observations have expanded our knowledge about their physiological and pathophysiological functions and many additional individual and unique features have been discovered that suggest a more differentiated role of these receptors in health and disease. It is known that all four receptors contribute to different aspects of tumor biology, cardiovascular physiology, and asthma. However, apart from their overlapping functions, they seem to have individual properties, and recent publications identify potential roles of individual GPCRs in mechanosensation, intestinal inflammation, oncoimmunological interactions, hematopoiesis, as well as inflammatory and neuropathic pain. Here, we put together the knowledge about the biological functions and structural features of the four proton-sensing GPCRs and discuss the biological role of each of the four receptors individually. We explore all currently known pharmacological modulators of the four receptors and highlight potential use. Finally, we point out knowledge gaps in the biological and pharmacological context of proton-sensing GPCRs that should be addressed by future studies.
Collapse
Affiliation(s)
- Marco Sisignano
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital of Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany;
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
- Correspondence:
| | - Michael J. M. Fischer
- Center for Physiology and Pharmacology, Institute of Physiology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria;
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital of Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany;
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| |
Collapse
|
21
|
Xia LP, Luo H, Ma Q, Xie YK, Li W, Hu H, Xu ZZ. GPR151 in nociceptors modulates neuropathic pain via regulating P2X3 function and microglial activation. Brain 2021; 144:3405-3420. [PMID: 34244727 DOI: 10.1093/brain/awab245] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 05/17/2021] [Accepted: 06/01/2021] [Indexed: 11/14/2022] Open
Abstract
Neuropathic pain is a major health problem that affects up to 7-10% of the population worldwide. Currently, neuropathic pain is difficult to treat due to its elusive mechanisms. Here we report that orphan G protein-coupled receptor 151 (GPR151) in nociceptive sensory neurons controls neuropathic pain induced by nerve injury. GPR151 was mainly expressed in nonpeptidergic C-fiber dorsal root ganglion (DRG) neurons and highly upregulated after nerve injury. Importantly, conditional knockout of Gpr151 in adult nociceptive sensory neurons significantly alleviated chronic constriction injury (CCI)-induced neuropathic pain-like behavior but did not affect basal nociception. Moreover, GPR151 in DRG neurons was required for CCI-induced neuronal hyperexcitability and upregulation of colony-stimulating factor 1 (CSF1), which is necessary for microglial activation in the spinal cord after nerve injury. Mechanistically, GPR151 coupled with P2X3 ion channels and promoted their functional activities in neuropathic pain-like hypersensitivity. Knockout of Gpr151 suppressed P2X3-mediated calcium elevation and spontaneous pain behavior in CCI mice. Conversely, overexpression of Gpr151 significantly enhanced P2X3-mediated calcium elevation and DRG neuronal excitability. Furthermore, knockdown of P2X3 in DRGs reversed CCI-induced CSF1 upregulation, spinal microglial activation, and neuropathic pain-like behavior. Finally, the co-expression of GPR151 and P2X3 was confirmed in small-diameter human DRG neurons, indicating the clinical relevance of our findings. Together, our results suggest that GPR151 in nociceptive DRG neurons plays a key role in the pathogenesis of neuropathic pain and could be a potential target for treating neuropathic pain.
Collapse
Affiliation(s)
- Li-Ping Xia
- Department of Neurobiology and Department of Anesthesiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hao Luo
- Department of Neurobiology and Department of Anesthesiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Qiang Ma
- Department of Neurobiology and Department of Anesthesiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ya-Kai Xie
- Department of Neurobiology and Department of Anesthesiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Wei Li
- Department of Neurobiology and Department of Anesthesiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hailan Hu
- Department of Neurobiology and Department of Anesthesiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhen-Zhong Xu
- Department of Neurobiology and Department of Anesthesiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
22
|
Solis-Castro OO, Wong N, Boissonade FM. Chemokines and Pain in the Trigeminal System. FRONTIERS IN PAIN RESEARCH 2021; 2:689314. [PMID: 35295531 PMCID: PMC8915704 DOI: 10.3389/fpain.2021.689314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/11/2021] [Indexed: 11/13/2022] Open
Abstract
Chemotactic cytokines or chemokines are a large family of secreted proteins able to induce chemotaxis. Chemokines are categorized according to their primary amino acid sequence, and in particular their cysteine residues that form disulphide bonds to maintain the structure: CC, CXC, CX3C, and XC, in which X represents variable amino acids. Among their many roles, chemokines are known to be key players in pain modulation in the peripheral and central nervous systems. Thus, they are promising candidates for novel therapeutics that could replace current, often ineffective treatments. The spinal and trigeminal systems are intrinsically different beyond their anatomical location, and it has been suggested that there are also differences in their sensory mechanisms. Hence, understanding the different mechanisms involved in pain modulation for each system could aid in developing appropriate pharmacological alternatives. Here, we aim to describe the current landscape of chemokines that have been studied specifically with regard to trigeminal pain. Searching PubMed and Google Scholar, we identified 30 reports describing chemokines in animal models of trigeminal pain, and 15 reports describing chemokines involved in human pain associated with the trigeminal system. This review highlights the chemokines studied to date at different levels of the trigeminal system, their cellular localization and, where available, their role in a variety of animal pain models.
Collapse
Affiliation(s)
- Oscar O. Solis-Castro
- School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
- The Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Natalie Wong
- School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
- The Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Fiona M. Boissonade
- School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
- The Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
- *Correspondence: Fiona M. Boissonade
| |
Collapse
|
23
|
Abstract
Trigeminal neuralgia (TN) is a severe facial pain disease of unknown cause and unclear genetic background. To examine the existing knowledge about genetics in TN, we performed a systematic study asking about the prevalence of familial trigeminal neuralgia, and which genes that have been identified in human TN studies and in animal models of trigeminal pain. MedLine, Embase, Cochrane Library and Web of Science were searched from inception to January 2021. 71 studies were included in the systematic review. Currently, few studies provide information about the prevalence of familial TN; the available evidence indicates that about 1–2% of TN cases have the familial form. The available human studies propose the following genes to be possible contributors to development of TN: CACNA1A, CACNA1H, CACNA1F, KCNK1, TRAK1, SCN9A, SCN8A, SCN3A, SCN10A, SCN5A, NTRK1, GABRG1, MPZ gene, MAOA gene and SLC6A4. Their role in familial TN still needs to be addressed. The experimental animal studies suggest an emerging role of genetics in trigeminal pain, though the animal models may be more relevant for trigeminal neuropathic pain than TN per se. In summary, this systematic review suggests a more important role of genetic factors in TN pathogenesis than previously assumed.
Collapse
Affiliation(s)
| | - Aslan Lashkarivand
- Department of Neurosurgery, Oslo University Hospital-Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Per Kristian Eide
- Department of Neurosurgery, Oslo University Hospital-Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
24
|
Ma L, Huang Y, Zhang F, Gao DS, Sun N, Ren J, Xia S, Li J, Peng X, Yu L, Jiang BC, Yan M. MMP24 Contributes to Neuropathic Pain in an FTO-Dependent Manner in the Spinal Cord Neurons. Front Pharmacol 2021; 12:673831. [PMID: 33995105 PMCID: PMC8118694 DOI: 10.3389/fphar.2021.673831] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/06/2021] [Indexed: 12/04/2022] Open
Abstract
Nerve injury-induced gene expression change in the spinal cord is critical for neuropathic pain genesis. RNA N6-methyladenosine (m6A) modification represents an additional layer of gene regulation. We showed that spinal nerve ligation (SNL) upregulated the expression of matrix metallopeptidase 24 (MMP24) protein, but not Mmp24 mRNA, in the spinal cord neurons. Blocking the SNL-induced upregulation of spinal MMP24 attenuated local neuron sensitization, neuropathic pain development and maintenance. Conversely, mimicking MMP24 increase promoted the spinal ERK activation and produced evoked nociceptive hypersensitivity. Methylated RNA Immunoprecipitation Sequencing (MeRIP-seq) and RNA Immunoprecipitation (RIP) assay indicated the decreased m6A enrichment in the Mmp24 mRNA under neuropathic pain condition. Moreover, fat-mass and obesity-associated protein (FTO) was colocalized with MMP24 in spinal neurons and shown increased binding to the Mmp24 mRNA in the spinal cord after SNL. Overexpression or suppression of FTO correlates with promotion or inhibition of MMP24 expression in cultured spinal cord neurons. In conclusion, SNL promoted the m6A eraser FTO binding to the Mmp24 mRNA, which subsequently facilitated the translation of MMP24 in the spinal cord, and ultimately contributed to neuropathic pain genesis.
Collapse
Affiliation(s)
- Longfei Ma
- Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yangyuxin Huang
- Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Fengjiang Zhang
- Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Dave Schwinn Gao
- Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Na Sun
- Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jinxuan Ren
- Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Suyun Xia
- Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jia Li
- Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyi Peng
- Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Lina Yu
- Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Bao-Chun Jiang
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, China
| | - Min Yan
- Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|