1
|
Beckers P, Charlier M, Azria-Richter L, Braconnier P, Desmet N, Massie A, Hermans E. Implication of system x c- in complete Freund's adjuvant-induced peripheral inflammation and associated nociceptive sensitization. Neuropharmacology 2025; 269:110340. [PMID: 39889848 DOI: 10.1016/j.neuropharm.2025.110340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/22/2025] [Accepted: 01/28/2025] [Indexed: 02/03/2025]
Abstract
BACKGROUND Persistent inflammation leading to neuronal sensitization in pain pathways, are key features of chronic inflammatory pain. Alike macrophages in the periphery, glial cells exacerbate hypersensitivity by releasing proalgesic mediators in the central nervous system. Expressed by peripheral and central immune cells, the cystine-glutamate antiporter system xc- plays a significant role in inflammatory responses, but its involvement in chronic inflammatory pain remains underexplored. We herein investigated the contribution of this exchanger in nociceptive hypersensitivity triggered by a peripheral inflammatory insult. METHODS Complete Freund's adjuvant (CFA) was injected into the left hind paw of wild-type C57Bl/6 female mice, of xCT-deficient mice (specific subunit of system xc-) and of mice receiving the system xc- inhibitor sulfasalazine. Paw edema was measured over three weeks and pain-associated behaviors were evaluated. Additionally, pro-inflammatory cytokine levels were assessed in blood samples. RESULTS CFA injection led to a persistent increase in paw edema and hypersensitivity to mechanical and thermal stimuli, which were less pronounced in xCT-deficient mice. This reduced sensitivity was accompanied by lower systemic pro-inflammatory cytokine levels in xCT-deficient mice. Accordingly, pharmacological inhibition of system xc- with sulfasalazine, either before or after pain induction, efficiently reduced the algesic and inflammatory responses to CFA in wild-type mice. CONCLUSION Our findings reveal a critical role for system xc- in the pathophysiology of inflammatory pain. xCT deficiency reduces pain behaviors and peripheral inflammation, positioning system xc- as a promising therapeutic target for alleviating chronic inflammatory pain.
Collapse
Affiliation(s)
- Pauline Beckers
- Institute of Neuroscience, Group of Neuropharmacology, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 53 (B1.53.01), 1200, Brussels, Belgium
| | - Mathilde Charlier
- Institute of Neuroscience, Group of Neuropharmacology, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 53 (B1.53.01), 1200, Brussels, Belgium
| | - Lorie Azria-Richter
- Institute of Neuroscience, Group of Neuropharmacology, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 53 (B1.53.01), 1200, Brussels, Belgium
| | - Pauline Braconnier
- Institute of Neuroscience, Group of Neuropharmacology, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 53 (B1.53.01), 1200, Brussels, Belgium
| | - Nathalie Desmet
- Institute of Neuroscience, Group of Neuropharmacology, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 53 (B1.53.01), 1200, Brussels, Belgium
| | - Ann Massie
- Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Emmanuel Hermans
- Institute of Neuroscience, Group of Neuropharmacology, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 53 (B1.53.01), 1200, Brussels, Belgium.
| |
Collapse
|
2
|
Burek DJ, Ibrahim KM, Hall AG, Sharma A, Musiek ES, Morón JA, Carlezon WA. Inflammatory pain in mice induces light cycle-dependent effects on sleep architecture. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.610124. [PMID: 39257818 PMCID: PMC11383991 DOI: 10.1101/2024.08.28.610124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
As a syndrome, chronic pain comprises physical, emotional, and cognitive symptoms such as disability, negative affect, feelings of stress, and fatigue. A rodent model of long-term inflammatory pain, induced by complete Freund's adjuvant (CFA) injection, has previously been shown to cause anhedonia and dysregulated naturalistic behaviors, in a manner similar to animal models of stress. We examined whether this extended to alterations in circadian rhythms and sleep, such as those induced by chronic social defeat stress, using actigraphy and wireless EEG. CFA-induced inflammatory pain profoundly altered sleep architecture in male and female mice. Injection of the hind paw, whether with CFA or saline, reduced some measures of circadian rhythmicity such as variance, period, and amplitude. CFA increased sleep duration primarily in the dark phase, while sleep bout length was decreased in the light and increased in the dark phase. Additionally, CFA reduced wake bout length, especially during the dark phase. Increases in REM and SWS duration and bouts were most significant in the dark phase, regardless of whether CFA had been injected at its onset or 12 hours prior. Taken together, these results indicate that inflammatory pain acutely promotes but also fragments sleep.
Collapse
|
3
|
Gao L, Zhao JX, Qin XM, Zhao J. The ethanol extract of Scutellaria baicalensis Georgi attenuates complete Freund's adjuvant (CFA)-induced inflammatory pain by suppression of P2X3 receptor. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116762. [PMID: 37301308 DOI: 10.1016/j.jep.2023.116762] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/04/2023] [Accepted: 06/07/2023] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Scutellaria baicalensis Georgi (SBG) is a perennial herb with anti-inflammatory, antibacterial, and antioxidant activities, which is traditionally used to treat inflammation of respiratory tract and gastrointestinal tract, abdominal cramps, bacterial and viral infections. Clinically, it is often used to treat inflammatory-related diseases. Research has shown that the ethanol extract of Scutellaria baicalensis Georgi (SGE) has anti-inflammatory effect, and its main components baicalin and baicalein have analgesic effects. However, the mechanism of SGE in relieving inflammatory pain has not been deeply studied. AIM OF THE STUDY This study aimed to evaluate the analgesic effect of SGE on complete Freund's adjuvant (CFA)-induced inflammatory pain rats, and to investigate whether its effect on relieving inflammatory pain is associated with regulation of P2X3 receptor. MATERIALS AND METHODS The analgesic effects of SGE on CFA-induced inflammatory pain rats were evaluated by measuring mechanical pain threshold, thermal pain threshold, and motor coordination ability. The mechanisms of SGE in relieving inflammatory pain were explored by detecting inflammatory factors levels, NF-κB, COX-2 and P2X3 expression, and were further verified by addition of P2X3 receptor agonist (α, β me-ATP). RESULTS Our results revealed that SGE can notably increase the mechanical pain threshold and thermal pain threshold of CFA-induced inflammatory pain rats, and markedly alleviate the pathological damage in DRG. SGE could suppress the release of inflammatory factors including IL-1β, IL-6, TNF-α and restrain the expression of NF-κB, COX-2 and P2X3. Moreover, α, β me-ATP further exacerbated the inflammatory pain of CFA-induced rats, while SGE could markedly raise the pain thresholds and relieve inflammatory pain. SGE could attenuate the pathological damage, inhibit P2X3 expression, inhibit the elevation of inflammatory factors caused by α, β me-ATP. SGE can also inhibit NF-κB and ERK1/2 activation caused by α, β me-ATP, and inhibit the mRNA expression of P2X3, COX-2, NF-κB, IL-1β, IL-6 and TNF-α in DRG of rats induced by CFA coupled with α, β me-ATP. CONCLUSIONS In summary, our research indicated that SGE could alleviate CFA-induced inflammatory pain by suppression of P2X3 receptor.
Collapse
Affiliation(s)
- Li Gao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, China; The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, China.
| | - Jin-Xia Zhao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, China; The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, China
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, China; The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, China
| | - Jing Zhao
- Wolfson Institute for Biomedical Research, University College London, UK, London.
| |
Collapse
|
4
|
Li Y, Ma L, Deng Y, Du Z, Guo B, Yue J, Liu X, Zhang Y. The Notch1/Hes1 signaling pathway affects autophagy by adjusting DNA methyltransferases expression in a valproic acid-induced autism spectrum disorder model. Neuropharmacology 2023; 239:109682. [PMID: 37543138 DOI: 10.1016/j.neuropharm.2023.109682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/23/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
As a pervasive neurodevelopmental disease, autism spectrum disorder (ASD) is caused by both hereditary and environmental elements. Research has demonstrated the functions of the Notch pathway and DNA methylation in the etiology of ASD. DNA methyltransferases DNMT3 and DNMT1 are responsible for methylation establishment and maintenance, respectively. In this study, we aimed to explore the association of DNA methyltransferases with the Notch pathway in ASD. Our results showed Notch1 and Hes1 were upregulated, while DNMT3A and DNMT3B were downregulated at the protein level in the prefrontal cortex (PFC), hippocampus (HC) and cerebellum (CB) of VPA-induced ASD rats compared with Control (Con) group. However, the protein levels of DNMT3A and DNMT3B were augmented after treatment with 3,5-difluorophenacetyl-L-alanyl-S-phenylglycine-2-butyl ester (DAPT), suggesting that abnormal Notch pathway activation may affect the expression of DNMT3A and DNMT3B. Besides, our previous findings revealed that the Notch pathway may participate in development of ASD by influencing autophagy. Therefore, we hypothesized the Notch pathway adjusts autophagy and contributes to ASD by affecting DNA methyltransferases. Our current results showed that after receiving the DNA methyltransferase inhibitor 5-Aza-2'-deoxycytidine (5-Aza-2'dc), the VPA + DAPT+5-Aza-2'dc (V + D + Aza) group exhibited reduced social interaction ability and increased stereotyped behaviors, and decreased expression of DNMT3A, DNMT3B and autophagy-related proteins, but did not show changes in Notch1 and Hes1 protein levels. Our results indicated that the Notch1/Hes1 pathway may adjust DNMT3A and DNMT3B expression and subsequently affect autophagy in the occurrence of ASD, providing new insight into the pathogenesis of ASD.
Collapse
Affiliation(s)
- Yanfang Li
- Department of Human Anatomy & Histoembryology, Xinxiang Medical University, Xinxiang, Henan, 453003, China; Xinxiang Key Laboratory of Molecular Neurology, Xinxiang, Henan, 453003, China
| | - Liping Ma
- Department of Human Anatomy & Histoembryology, Xinxiang Medical University, Xinxiang, Henan, 453003, China; Xinxiang Key Laboratory of Molecular Neurology, Xinxiang, Henan, 453003, China
| | - Yanan Deng
- Department of Human Anatomy & Histoembryology, Xinxiang Medical University, Xinxiang, Henan, 453003, China; Xinxiang Key Laboratory of Molecular Neurology, Xinxiang, Henan, 453003, China
| | - Ziwei Du
- Department of Human Anatomy & Histoembryology, Xinxiang Medical University, Xinxiang, Henan, 453003, China; Xinxiang Key Laboratory of Molecular Neurology, Xinxiang, Henan, 453003, China
| | - Bingqian Guo
- Department of Human Anatomy & Histoembryology, Xinxiang Medical University, Xinxiang, Henan, 453003, China; Xinxiang Key Laboratory of Molecular Neurology, Xinxiang, Henan, 453003, China
| | - Jianing Yue
- Department of Human Anatomy & Histoembryology, Xinxiang Medical University, Xinxiang, Henan, 453003, China; Xinxiang Key Laboratory of Molecular Neurology, Xinxiang, Henan, 453003, China
| | - Xianxian Liu
- Department of Human Anatomy & Histoembryology, Xinxiang Medical University, Xinxiang, Henan, 453003, China; Xinxiang Key Laboratory of Molecular Neurology, Xinxiang, Henan, 453003, China
| | - Yinghua Zhang
- Department of Human Anatomy & Histoembryology, Xinxiang Medical University, Xinxiang, Henan, 453003, China; Xinxiang Key Laboratory of Molecular Neurology, Xinxiang, Henan, 453003, China.
| |
Collapse
|
5
|
Burek DJ, Massaly N, Yoon HJ, Doering M, Morón JA. Behavioral outcomes of complete Freund adjuvant-induced inflammatory pain in the rodent hind paw: a systematic review and meta-analysis. Pain 2022; 163:809-819. [PMID: 34510137 PMCID: PMC9018465 DOI: 10.1097/j.pain.0000000000002467] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/24/2021] [Indexed: 10/20/2022]
Abstract
ABSTRACT Many analgesics inadequately address the psychiatric comorbidities of chronic and persistent pain, but there is no standard preclinical model of pain-altered behavior to support the development of new therapies. To explore this conflicting and inconclusive literature, we conducted a focused systematic review and meta-analysis on the effect of complete Freund adjuvant-induced (CFA) rodent hind paw inflammation on multiple classical indicators of exploratory behavior, stress coping, and naturalistic behavior. Our primary objective was to define CFA's effect on assays including, but not limited to, the elevated plus maze and forced swim test. Our secondary objective was to discover how variables such as species and strain may influence outcomes in such assays. We searched Ovid MEDLINE, Embase, Scopus, and Web of Science in April and October 2020 for studies with adult rodents injected with CFA into the hind paw and subsequently tested for aspects of "anxiety-like" or "depressive-like" behaviors. Forty-four studies evaluated performance in the elevated plus or zero maze, open field test, light-dark box, place escape and avoidance paradigm, forced swim test, tail suspension test, sucrose preference test, wheel running, and burrowing assay. Complete Freund adjuvant modestly but significantly decreased exploratory behavior, significantly increased passive stress coping in the tail suspension test but not the forced swim test, and significantly decreased preference for sucrose and naturally rewarding activity. Subgroup analyses revealed significant differences between species and animal sourcing. Based on the evidence provided here, we conclude future studies should focus on CFA's effect on natural rewards and naturalistic behaviors.
Collapse
Affiliation(s)
- Dominika J. Burek
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, 63110, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, 63110, USA
- Washington University in St. Louis Pain Center, St. Louis, MO, 63110, USA
| | - Nicolas Massaly
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, 63110, USA
- Washington University in St. Louis Pain Center, St. Louis, MO, 63110, USA
| | - Hye Jean Yoon
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, 63110, USA
- Washington University in St. Louis Pain Center, St. Louis, MO, 63110, USA
| | - Michelle Doering
- Bernard Becker Medical Library, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jose A. Morón
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, 63110, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, 63110, USA
- Washington University in St. Louis Pain Center, St. Louis, MO, 63110, USA
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, 63110, USA
| |
Collapse
|
6
|
Wilhelm EA, Soares PS, Reis AS, Motta KP, Lemos BB, Domingues WB, Blödorn EB, Araujo DR, Barcellos AM, Perin G, Soares MP, Campos VF, Luchese C. Se-[(2,2-Dimethyl-1,3-dioxolan-4-yl)methyl] 4-Chlorobenzoselenolate Attenuates Inflammatory Response, Nociception, and Affective Disorders Related to Rheumatoid Arthritis in Mice. ACS Chem Neurosci 2021; 12:3760-3771. [PMID: 34553902 DOI: 10.1021/acschemneuro.1c00512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Despite major advances, not all patients achieve rheumatoid arthritis (RA) remission, thus highlighting a pressing need for new therapeutic treatments. Given this scenario, this study sought to evaluate Se-[(2,2-dimethyl-1,3-dioxolan-4-yl)methyl] 4-chlorobenzoselenolate (Se-DMC) potential on a complete Freund's adjuvant (CFA)-induced unilateral arthritis model. The effects of Se-DMC (5 mg/kg; oral dose) and meloxicam (5 mg/kg; oral dose), both administered to animals daily for 14 days, on paw edema, mechanical sensitivity, neurobehavioral deficits (anxiogenic- and depressive-like behaviors), Na+/K+-ATPase activity, oxidative stress, and inflammation were evaluated in male Swiss mice exposed to CFA (intraplantar injection of 0.1 mL; 10 mg/mL). Se-DMC reduced the paw withdrawal threshold and CFA-induced paw edema. Histopathological results revealed the antiedematogenic potential of the compound, which was evidenced by lower quantities of dilated lymphatic vessels compared with the CFA group. Se-DMC reduced mRNA relative expression levels of tumor necrosis factor-α (TNF-α) and nuclear factor-κB (NF-κB) in the hippocampus and paw of CFA mice. The CFA-induced anxiogenic- and depressive-like behaviors were reversed by Se-DMC to the control levels in the elevated plus-maze and tail suspension tests. Se-DMC reduced the paw reactive species levels and restored the superoxide dismutase (hippocampus and paw) and Na+/K+-ATPase (hippocampus) activities previously increased by CFA. Moreover, CFA administration inhibited serum creatinine kinase activity, albeit the Se-DMC effects did not appear to involve the modulation of this enzyme and were equal to or greater than meloxicam. Se-DMC attenuates CFA-induced inflammatory response, nociception, and neurobehavioral deficits in mice.
Collapse
Affiliation(s)
- Ethel A. Wilhelm
- Laboratório de Pesquisa em Farmacologia Bioquímica, CCQFA, Universidade Federal de Pelotas, UFPel, Pelotas 96010-900, Brazil
| | - Paola S. Soares
- Laboratório de Pesquisa em Farmacologia Bioquímica, CCQFA, Universidade Federal de Pelotas, UFPel, Pelotas 96010-900, Brazil
| | - Angélica S. Reis
- Laboratório de Pesquisa em Farmacologia Bioquímica, CCQFA, Universidade Federal de Pelotas, UFPel, Pelotas 96010-900, Brazil
| | - Ketlyn P. Motta
- Laboratório de Pesquisa em Farmacologia Bioquímica, CCQFA, Universidade Federal de Pelotas, UFPel, Pelotas 96010-900, Brazil
| | - Briana B. Lemos
- Laboratório de Pesquisa em Farmacologia Bioquímica, CCQFA, Universidade Federal de Pelotas, UFPel, Pelotas 96010-900, Brazil
| | - William B. Domingues
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Genômica Estrutural, Biotecnologia, Universidade Federal de Pelotas, UFPel, Campus Capão do Leão, Pelotas 96010-900, RS, Brazil
| | - Eduardo B. Blödorn
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Genômica Estrutural, Biotecnologia, Universidade Federal de Pelotas, UFPel, Campus Capão do Leão, Pelotas 96010-900, RS, Brazil
| | - Daniela R. Araujo
- Laboratório de Síntese Orgânica Limpa, CCQFA, Universidade Federal de Pelotas—UFPel, Pelotas 96010-900, Brazil
| | - Angelita M. Barcellos
- Laboratório de Síntese Orgânica Limpa, CCQFA, Universidade Federal de Pelotas—UFPel, Pelotas 96010-900, Brazil
| | - Gelson Perin
- Laboratório de Síntese Orgânica Limpa, CCQFA, Universidade Federal de Pelotas—UFPel, Pelotas 96010-900, Brazil
| | - Mauro P. Soares
- Laboratório Regional de Diagnóstico, Faculdade de Veterinária, Universidade Federal de Pelotas, UFPel, Pelotas 96010-900, Brazil
| | - Vinicius F. Campos
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Genômica Estrutural, Biotecnologia, Universidade Federal de Pelotas, UFPel, Campus Capão do Leão, Pelotas 96010-900, RS, Brazil
| | - Cristiane Luchese
- Laboratório de Pesquisa em Farmacologia Bioquímica, CCQFA, Universidade Federal de Pelotas, UFPel, Pelotas 96010-900, Brazil
| |
Collapse
|