1
|
Ting JE, Hooper CA, Dalrymple AN, Weber DJ. Tonic Stimulation of Dorsal Root Ganglion Results in Progressive Decline in Recruitment of Aα/β-Fibers in Rats. Neuromodulation 2024; 27:1347-1359. [PMID: 39046395 PMCID: PMC11625011 DOI: 10.1016/j.neurom.2024.06.498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/25/2024]
Abstract
OBJECTIVES In this study, we aimed to characterize the recruitment and maintenance of action potential firing in Aα/β-fibers generated during tonic dorsal root ganglion stimulation (DRGS) applied over a range of clinically relevant stimulation parameters. MATERIALS AND METHODS We delivered electrical stimulation to the L5 dorsal root ganglion and recorded antidromic evoked compound action potentials (ECAPs) in the sciatic nerve during DRGS in Sprague Dawley rats. We measured charge thresholds to elicit ECAPs in Aα/β-fibers during DRGS applied at multiple pulse widths (50, 150, 300, 500 μs) and frequencies (5, 20, 50, 100 Hz). We measured the peak-to-peak amplitudes, latencies, and widths of ECAPs generated during 180 seconds of DRGS, and excitation threshold changes to investigate potential mechanisms of ECAP suppression. RESULTS Tonic DRGS produced ECAPs in Aα/β-fibers at charge thresholds below the motor threshold. Increasing the pulse width of DRGS led to a significant increase in the charge required to elicit ECAPs in Aα/β-fibers, while varying DRGS frequency did not influence ECAP thresholds. Over the course of 180 seconds, ECAP peak-to-peak amplitude decreased progressively in a frequency-dependent manner, where 5- and 100-Hz DRGS resulted in 22% and 87% amplitude reductions, respectively, and ECAP latencies increased from baseline measurements during DRGS at 10, 20, 50, and 100 Hz. Regardless of DRGS frequency, ECAP amplitudes recovered within 120 seconds after turning DRGS off. We determined that ECAP suppression may be attributed to increasing excitation thresholds for individual fibers during DRGS. Following 180 seconds of DRGS, an average of 7.33% increase in stimulation amplitude was required to restore the ECAP to baseline amplitude. CONCLUSIONS DRGS produces a progressive and frequency-dependent reduction in ECAP amplitude that occurs within and above the frequency range used clinically to relieve pain. If DRGS-mediated analgesia relies on Aβ-fiber activation, then the frequency or duty cycle of stimulation should be set to the lowest effective level to maintain sufficient activation of Aβ-fibers.
Collapse
Affiliation(s)
- Jordyn E Ting
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Charli Ann Hooper
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Ashley N Dalrymple
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA; Department of Physical Medicine and Rehabilitation, University of Utah, Salt Lake City, UT, USA
| | - Douglas J Weber
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA; Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Velasco E, Flores-Cortés M, Guerra-Armas J, Flix-Díez L, Gurdiel-Álvarez F, Donado-Bermejo A, van den Broeke EN, Pérez-Cervera L, Delicado-Miralles M. Is chronic pain caused by central sensitization? A review and critical point of view. Neurosci Biobehav Rev 2024; 167:105886. [PMID: 39278607 DOI: 10.1016/j.neubiorev.2024.105886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/28/2024] [Accepted: 09/09/2024] [Indexed: 09/18/2024]
Abstract
Chronic pain causes disability and loss of health worldwide. Yet, a mechanistic explanation for it is still missing. Frequently, neural phenomena, and among them, Central Sensitization (CS), is presented as causing chronic pain. This narrative review explores the evidence substantiating the relationship between CS and chronic pain: four expert researchers were divided in two independent teams that reviewed the available evidence. Three criteria were established for a study to demonstrate a causal relationship: (1) confirm presence of CS, (2) study chronic pain, and (3) test sufficiency or necessity of CS over chronic pain symptoms. No study met those criteria, failing to demonstrate that CS can cause chronic pain. Also, no evidence reporting the occurrence of CS in humans was found. Worryingly, pain assessments are often confounded with CS measures in the literature, omitting that the latter is a neurophysiological and not a perceptual phenomenon. Future research should avoid this misconception to directly interrogate what is the causal contribution of CS to chronic pain to better comprehend this problematic condition.
Collapse
Affiliation(s)
- Enrique Velasco
- Laboratory of Ion Channel Research, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium. Department of Cellular and Molecular Medicine, KU Leuven, Belgium; Neuroscience in Physiotherapy (NiP), independent research group, Elche, Spain.
| | - Mar Flores-Cortés
- International Doctorate School, Faculty of Health Sciences, University of Málaga, Málaga 29071, Spain
| | - Javier Guerra-Armas
- International Doctorate School, Faculty of Health Sciences, University of Málaga, Málaga 29071, Spain
| | - Laura Flix-Díez
- Department of Otorrinolaryngology, Clínica Universidad de Navarra, University of Navarra, Madrid, Spain
| | - Francisco Gurdiel-Álvarez
- International Doctorate School, Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Universidad Rey Juan Carlos, 28933 Alcorcón, Spain. Cognitive Neuroscience, Pain, and Rehabilitation Research Group (NECODOR), Faculty of Health Sciences, Rey Juan Carlos University, Madrid 28032, Spain
| | - Aser Donado-Bermejo
- International Doctorate School, Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Universidad Rey Juan Carlos, 28933 Alcorcón, Spain. Cognitive Neuroscience, Pain, and Rehabilitation Research Group (NECODOR), Faculty of Health Sciences, Rey Juan Carlos University, Madrid 28032, Spain
| | | | - Laura Pérez-Cervera
- Neuroscience in Physiotherapy (NiP), independent research group, Elche, Spain
| | - Miguel Delicado-Miralles
- Neuroscience in Physiotherapy (NiP), independent research group, Elche, Spain; Department of Pathology and Surgery. Physiotherapy Area. Faculty of Medicine, Miguel Hernandez University, Alicante, Spain
| |
Collapse
|
3
|
Zhang S, Chen L, Woon E, Liu J, Ryu J, Chen H, Fang H, Feng B. Suppression of Visceral Nociception by Selective C-Fiber Transmission Block Using Temporal Interference Sinusoidal Stimulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.13.618090. [PMID: 39464113 PMCID: PMC11507756 DOI: 10.1101/2024.10.13.618090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Chronic visceral pain management remains challenging due to limitations in selective targeting of C-fiber nociceptors. This study investigates temporal interference stimulation (TIS) on dorsal root ganglia (DRG) as a novel approach for selective C-fiber transmission block. We employed (1) GCaMP6 recordings in mouse whole DRG using a flexible, transparent microelectrode array for visualizing L6 DRG neuron activation, (2) ex vivo single-fiber recordings to assess sinusoidal stimulation effects on peripheral nerve axons, (3) in vivo behavioral assessment measuring visceromotor responses (VMR) to colorectal distension in mice, including a TNBS-induced visceral hypersensitivity model, and (4) immunohistological analysis to evaluate immediate immune responses in DRG following TIS. We demonstrated that TIS (2000 Hz and 2020 Hz carrier frequencies) enabled tunable activation of L6 DRG neurons, with the focal region adjustable by altering stimulation amplitude ratios. Low-frequency (20-50 Hz) sinusoidal stimulation effectively blocked C-fiber and Aδ-fiber transmission while sparing fast-conducting A-fibers, with 20 Hz showing highest efficacy. TIS of L6 DRG reversibly suppressed VMR to colorectal distension in both control and TNBS-induced visceral hypersensitive mice. The blocking effect was fine-tunable by adjusting interfering stimulus signal amplitude ratios. No apparent immediate immune responses were observed in DRG following hours-long TIS. In conclusion, TIS on lumbosacral DRG demonstrates promise as a selective, tunable approach for managing chronic visceral pain by effectively blocking C-fiber transmission. This technique addresses limitations of current neuromodulation methods and offers potential for more targeted relief in chronic visceral pain conditions.
Collapse
|
4
|
Zhang Z, Zheng H, Yu Q, Jing X. Understanding of Spinal Wide Dynamic Range Neurons and Their Modulation on Pathological Pain. J Pain Res 2024; 17:441-457. [PMID: 38318328 PMCID: PMC10840524 DOI: 10.2147/jpr.s446803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/12/2024] [Indexed: 02/07/2024] Open
Abstract
The spinal dorsal horn (SDH) transmits sensory information from the periphery to the brain. Wide dynamic range (WDR) neurons within this relay site play a critical role in modulating and integrating peripheral sensory inputs, as well as the process of central sensitization during pathological pain. This group of spinal multi-receptive neurons has attracted considerable attention in pain research due to their capabilities for encoding the location and intensity of nociception. Meanwhile, transmission, processing, and modulation of incoming afferent information in WDR neurons also establish the underlying basis for investigating the integration of acupuncture and pain signals. This review aims to provide a comprehensive examination of the distinctive features of WDR neurons and their involvement in pain. Specifically, we will examine the regulation of diverse supraspinal nuclei on these neurons and analyze their potential in elucidating the mechanisms of acupuncture analgesia.
Collapse
Affiliation(s)
- Zhiyun Zhang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Hao Zheng
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Qingquan Yu
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Xianghong Jing
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
5
|
Wahezi SE, Caparo MA, Malhotra R, Sundaram L, Batti K, Ejindu P, Veeramachaneni R, Anitescu M, Hunter CW, Naeimi T, Farah F, Kohan L. Current Waveforms in Spinal Cord Stimulation and Their Impact on the Future of Neuromodulation: A Scoping Review. Neuromodulation 2024; 27:47-58. [PMID: 38184341 DOI: 10.1016/j.neurom.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/16/2023] [Accepted: 11/13/2023] [Indexed: 01/08/2024]
Abstract
BACKGROUND Neuromodulation is a standard and well-accepted treatment for chronic refractory neuropathic pain. There has been progressive innovation in the field over the last decade, particularly in areas of spinal cord stimulation (SCS) and dorsal root ganglion stimulation. Improved outcomes using proprietary waveforms have become customary in the field, leading to an unprecedented expansion of these products and a plethora of options for the management of pain. Although advances in waveform technology have improved our fundamental understanding of neuromodulation, a scoping review describing new energy platforms and their associated clinical effects and outcomes is needed. The authors submit that understanding electrophysiological neuromodulation may be important for clinical decision-making and programming selection for personalized patient care. OBJECTIVE This review aims to characterize ways differences in mechanism of action and clinical outcomes of current spinal neuromodulation products may affect contemporary clinical decision-making while outlining a possible path for the future SCS. STUDY DESIGN The study is a scoping review of the literature about newer generation SCS waveforms. MATERIALS AND METHODS A literature report was performed on PubMed and chapters to include articles on spine neuromodulation mechanism of action and efficacy. RESULTS A total of 8469 studies were identified, 75 of which were included for the scoping review after keywords defining recent waveform technology were added. CONCLUSIONS Clinical data suggest that neuromodulation remains a promising tool in the treatment of chronic pain. The evidence for SCS for treating chronic pain seems compelling; however, more long-term and comparative data are needed for a comparison of waveforms when it comes to the etiology of pain. In addition, an exploration into combination waveform therapy and waveform cycling may be paramount for future clinical studies and the development of new technologies.
Collapse
Affiliation(s)
- Sayed E Wahezi
- Multidisciplinary Pain Program, Montefiore Medical Center, Bronx, New York, USA.
| | - Moorice A Caparo
- Multidisciplinary Pain Program, Montefiore Medical Center, Bronx, New York, USA
| | - Ria Malhotra
- Multidisciplinary Pain Program, Montefiore Medical Center, Bronx, New York, USA
| | - Lakshman Sundaram
- Multidisciplinary Pain Program, Montefiore Medical Center, Bronx, New York, USA
| | - Kevin Batti
- Multidisciplinary Pain Program, Montefiore Medical Center, Bronx, New York, USA
| | - Prince Ejindu
- Multidisciplinary Pain Program, Montefiore Medical Center, Bronx, New York, USA
| | | | - Magdalena Anitescu
- Multidisciplinary Pain Program, Montefiore Medical Center, Bronx, New York, USA
| | - Corey W Hunter
- Multidisciplinary Pain Program, Montefiore Medical Center, Bronx, New York, USA
| | - Tahereh Naeimi
- Multidisciplinary Pain Program, Montefiore Medical Center, Bronx, New York, USA
| | - Fadi Farah
- Multidisciplinary Pain Program, Montefiore Medical Center, Bronx, New York, USA
| | - Lynn Kohan
- Multidisciplinary Pain Program, Montefiore Medical Center, Bronx, New York, USA
| |
Collapse
|
6
|
Tran H, Feng Y, Chao D, Liu QS, Hogan QH, Pan B. Descending mechanism by which medial prefrontal cortex endocannabinoid signaling controls the development of neuropathic pain and neuronal activity of dorsal root ganglion. Pain 2024; 165:102-114. [PMID: 37463226 PMCID: PMC10787817 DOI: 10.1097/j.pain.0000000000002992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 06/05/2023] [Indexed: 07/20/2023]
Abstract
ABSTRACT Although regulation of nociceptive processes in the dorsal horn by deep brain structures has long been established, the role of cortical networks in pain regulation is minimally explored. The medial prefrontal cortex (mPFC) is a key brain area in pain processing that receives ascending nociceptive input and exerts top-down control of pain sensation. We have shown critical changes in mPFC synaptic function during neuropathic pain, controlled by endocannabinoid (eCB) signaling. This study tests whether mPFC eCB signaling modulates neuropathic pain through descending control. Intra-mPFC injection of cannabinoid receptor type 1 (CB1R) agonist WIN-55,212-2 (WIN) in the chronic phase transiently alleviates the pain-like behaviors in spared nerve injury (SNI) rats. By contrast, intra-mPFC injection of CB1R antagonist AM4113 in the early phase of neuropathic pain reduces the development of pain-like behaviors in the chronic phase. Spared nerve injury reduced the mechanical threshold to induce action potential firing of dorsal horn wide-dynamic-range neurons, but this was reversed in rats by WIN in the chronic phase of SNI and by mPFC injection of AM4113 in the early phase of SNI. Elevated dorsal root ganglion neuronal activity after injury was also diminished in rats by mPFC injection of AM4113, potentially by reducing antidromic activity and subsequent neuronal inflammation. These findings suggest that depending on the phase of the pain condition, both blocking and activating CB1 receptors in the mPFC can regulate descending control of pain and affect both dorsal horn neurons and peripheral sensory neurons, contributing to changes in pain sensitivity.
Collapse
Affiliation(s)
- Hai Tran
- Department of Anesthesiology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226
| | - Yin Feng
- Department of Anesthesiology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226
| | - Dongman Chao
- Department of Anesthesiology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226
| | - Qing-song Liu
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226
| | - Quinn H. Hogan
- Department of Anesthesiology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226
| | - Bin Pan
- Department of Anesthesiology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226
| |
Collapse
|
7
|
Verma N, Knudsen B, Gholston A, Skubal A, Blanz S, Settell M, Frank J, Trevathan J, Ludwig K. Microneurography as a minimally invasive method to assess target engagement during neuromodulation. J Neural Eng 2023; 20:10.1088/1741-2552/acc35c. [PMID: 36898148 PMCID: PMC10587909 DOI: 10.1088/1741-2552/acc35c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 03/10/2023] [Indexed: 03/12/2023]
Abstract
Objective.Peripheral neural signals recorded during neuromodulation therapies provide insights into local neural target engagement and serve as a sensitive biomarker of physiological effect. Although these applications make peripheral recordings important for furthering neuromodulation therapies, the invasive nature of conventional nerve cuffs and longitudinal intrafascicular electrodes (LIFEs) limit their clinical utility. Furthermore, cuff electrodes typically record clear asynchronous neural activity in small animal models but not in large animal models. Microneurography, a minimally invasive technique, is already used routinely in humans to record asynchronous neural activity in the periphery. However, the relative performance of microneurography microelectrodes compared to cuff and LIFE electrodes in measuring neural signals relevant to neuromodulation therapies is not well understood.Approach.To address this gap, we recorded cervical vagus nerve electrically evoked compound action potentials (ECAPs) and spontaneous activity in a human-scaled large animal model-the pig. Additionally, we recorded sensory evoked activity and both invasively and non-invasively evoked CAPs from the great auricular nerve. In aggregate, this study assesses the potential of microneurography electrodes to measure neural activity during neuromodulation therapies with statistically powered and pre-registered outcomes (https://osf.io/y9k6j).Main results.The cuff recorded the largest ECAP signal (p< 0.01) and had the lowest noise floor amongst the evaluated electrodes. Despite the lower signal to noise ratio, microneurography electrodes were able to detect the threshold for neural activation with similar sensitivity to cuff and LIFE electrodes once a dose-response curve was constructed. Furthermore, the microneurography electrodes recorded distinct sensory evoked neural activity.Significance.The results show that microneurography electrodes can measure neural signals relevant to neuromodulation therapies. Microneurography could further neuromodulation therapies by providing a real-time biomarker to guide electrode placement and stimulation parameter selection to optimize local neural fiber engagement and study mechanisms of action.
Collapse
Affiliation(s)
- Nishant Verma
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States of America
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, United States of America
| | - Bruce Knudsen
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States of America
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, United States of America
| | - Aaron Gholston
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States of America
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, United States of America
| | - Aaron Skubal
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States of America
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, United States of America
| | - Stephan Blanz
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States of America
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, United States of America
| | - Megan Settell
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States of America
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, United States of America
| | - Jennifer Frank
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States of America
| | - James Trevathan
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States of America
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, United States of America
| | - Kip Ludwig
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States of America
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, United States of America
- Department of Neurosurgery, University of Wisconsin-Madison, Madison, WI, United States of America
| |
Collapse
|
8
|
Liu Y, Zhang L, Xu ZH, Zhu J, Ma JL, Gao YP, Xu GY. Increased ten-eleven translocation methylcytosine dioxygenase one in dorsal root ganglion contributes to inflammatory pain in CFA rats. Mol Pain 2022; 18:17448069221143671. [PMID: 36411533 PMCID: PMC9720829 DOI: 10.1177/17448069221143671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
DNA hydroxylation catalyzed by Tet dioxygenases occurs abundantly in neurons in mammals. However, effects of ten-eleven translocation methylcytosine dioxygenase 1 (TET1) expression and hydroxymethylation status on neuron injury remain unclear. This study was designed to explore the effects of TET1 and TET2 expression in the inflammatory pain of rats induced by complete Freund's adjuvant (CFA). Mechanical paw withdrawal threshold (PWT) and thermal withdrawal latency (TWL) were detected to assess pain behavior. The expression of TET1 and TET2 were measured in the dorsal root ganglion (DRG) with western blotting analysis. Immunofluorescence staining is employed to detect the expression and co-location of TRPV1 with TET1. Intrathecal administration of Bobcat339 was used to inhibit TET1 function in dorsal root ganglion. The paw withdrawal threshold and thermal withdrawal latency of rats were significantly reduced after CFA Injection. Western blot results showed that the expression of TET1 was significantly increased at 3 days after CFA injection, but TET2 had no statistical difference. Immunofluorescence results showed that TET1 was co-localized with TRPV1. Intrathecal administration of Bobcat339 improved mechanical and thermal pain threshold in CFA rats. Our findings highlight the role of TET1 in chronic inflammatory pain model. The expression of TET1 was increased in CFA rats, and suppression of TET1 will ameliorate inflammatory pain.
Collapse
Affiliation(s)
- Yun Liu
- Department of Anesthesiology,
The
Affiliated Zhangjiagang Hospital of Soochow
University, Suzhou, China
| | - Ling Zhang
- Center for Translational Medicine,
The
Affiliated Zhangjiagang Hospital of Soochow
University, Suzhou, China
| | - Zhen-hua Xu
- Department of Anesthesiology,
The
Affiliated Zhangjiagang Hospital of Soochow
University, Suzhou, China
| | - Jie Zhu
- Department of Anesthesiology,
The
Affiliated Zhangjiagang Hospital of Soochow
University, Suzhou, China
| | - Jia-ling Ma
- Department of Anesthesiology,
The
Affiliated Zhangjiagang Hospital of Soochow
University, Suzhou, China
| | - Yan-ping Gao
- Department of Anesthesiology,
The
Affiliated Zhangjiagang Hospital of Soochow
University, Suzhou, China,Yan-ping Gao, Department of Anesthesiology,
The Affiliated Zhangjiagang Hospital of Soochow University, 68, Jiyang West
Road, Suzhou 215600, China. and Guang-Yin
Xu, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of
Neuroscience, Soochow University, Suzhou 215123, China.
| | - Guang-Yin Xu
- Center for Translational Medicine,
The
Affiliated Zhangjiagang Hospital of Soochow
University, Suzhou, China,Jiangsu Key Laboratory of
Neuropsychiatric Diseases and Institute of Neuroscience,
Soochow
University, Suzhou, China,Yan-ping Gao, Department of Anesthesiology,
The Affiliated Zhangjiagang Hospital of Soochow University, 68, Jiyang West
Road, Suzhou 215600, China. and Guang-Yin
Xu, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of
Neuroscience, Soochow University, Suzhou 215123, China.
| |
Collapse
|
9
|
Chao D, Tran H, Hogan QH, Pan B. Analgesic dorsal root ganglion field stimulation blocks both afferent and efferent spontaneous activity in sensory neurons of rats with monosodium iodoacetate-induced osteoarthritis. Osteoarthritis Cartilage 2022; 30:1468-1481. [PMID: 36030058 PMCID: PMC9588581 DOI: 10.1016/j.joca.2022.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/03/2022] [Accepted: 08/18/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Chronic joint pain is common in patients with osteoarthritis (OA). Non-steroidal anti-inflammatory drugs and opioids are used to relieve OA pain, but they are often inadequately effective. Dorsal root ganglion field stimulation (GFS) is a clinically used neuromodulation approach, although it is not commonly employed for patients with OA pain. GFS showed analgesic effectiveness in our previous study using the monosodium iodoacetate (MIA) - induced OA rat pain model. This study was to evaluate the mechanism of GFS analgesia in this model. METHODS After osteoarthritis was induced by intra-articular injection of MIA, pain behavioral tests were performed. Effects of GFS on the spontaneous activity (SA) were tested with in vivo single-unit recordings from teased fiber saphenous nerve, sural nerve, and dorsal root. RESULTS Two weeks after intra-articular MIA injection, rats developed pain-like behaviors. In vivo single unit recordings from bundles teased from the saphenous nerve and third lumbar (L3) dorsal root of MIA-OA rats showed a higher incidence of SA than those from saline-injected control rats. GFS at the L3 level blocked L3 dorsal root SA. MIA-OA reduced the punctate mechanical force threshold for inducing AP firing in bundles teased from the L4 dorsal root, which reversed to normal with GFS. After MIA-OA, there was increased retrograde SA (dorsal root reflex), which can be blocked by GFS. CONCLUSIONS These results indicate that GFS produces analgesia in MIA-OA rats at least in part by producing blockade of afferent inputs, possibly also by blocking efferent activity from the dorsal horn.
Collapse
Affiliation(s)
- D Chao
- Department of Anesthesiology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, USA
| | - H Tran
- Department of Anesthesiology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, USA
| | - Q H Hogan
- Department of Anesthesiology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, USA
| | - B Pan
- Department of Anesthesiology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, USA.
| |
Collapse
|
10
|
Vuka I, Marciuš T, Kovačić D, Šarolić A, Puljak L, Sapunar D. Implantable, Programmable, and Wireless Device for Electrical Stimulation of the Dorsal Root Ganglion in Freely-Moving Rats: A Proof of Concept Study. J Pain Res 2021; 14:3759-3772. [PMID: 34916842 PMCID: PMC8668248 DOI: 10.2147/jpr.s332438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/23/2021] [Indexed: 11/23/2022] Open
Abstract
Objective This was a proof of concept study, based on systematic reviews of the efficacy and safety of the dorsal root ganglion (DRG) stimulation. The main objective was to develop an implantable, programmable, and wireless device for electrical stimulation of DRG and a methodology that can be used in translational research, especially to understand the mechanism of neuromodulation and to test new treatment modalities in animal models of pain. Methods We developed and tested a stimulator that uses a battery-powered microelectronic circuit, to generate constant current square biphasic or monophasic pulsed waveform of variable amplitudes and duration. It is controlled by software and an external controller that allows radio frequency communication with the stimulator. The stimulator was implanted in Sprague–Dawley (SD) rats. The lead was positioned at the L5 DRG level, while the stimulator was placed in the skin pocket at the ipsilateral side. Forty-five animals were used and divided into six groups: spinal nerve ligation (SNL), chronic compression injury of the DRG (CCD), SNL + active DRG stimulation, intact control group, group with the implanted sham stimulator, and sham lead. Behavioral testing was performed on the day preceding surgery and three times postoperatively (1st, 3rd, and 7th day). Results In animals with SNL, neurostimulation reduced pain-related behavior, tested with pinprick hyperalgesia, pinprick withdrawal test, and cold test, while the leads per se did not cause DRG compression. The rats well tolerated the stimulator. It did not hinder animal movement, and it enabled the animals to be housed under regular conditions. Conclusion A proof-of-concept experiment with our stimulator verified the usability of the device. The stimulator enables a wide range of research applications from adjusting stimulation parameters for different pain conditions, studying new stimulation methods with different frequencies and waveforms to obtain knowledge about analgesic mechanisms of DRG stimulation.
Collapse
Affiliation(s)
- Ivana Vuka
- Laboratory for Pain Research, University of Split School of Medicine, Split, Croatia
| | - Tihana Marciuš
- Laboratory for Pain Research, University of Split School of Medicine, Split, Croatia
| | - Damir Kovačić
- Laboratory for Biophysics and Medical Neuroelectronics, University of Split Faculty of Science, Split, Croatia
| | - Antonio Šarolić
- Laboratory for Applied Electromagnetics (EMLab), FESB, University of Split, Split, Croatia
| | - Livia Puljak
- Centre for Evidence-Based Medicine and Health Care, Catholic University of Croatia, Zagreb, Croatia
| | - Damir Sapunar
- Laboratory for Pain Research, University of Split School of Medicine, Split, Croatia
| |
Collapse
|