1
|
Kahraman E, Vasconcelos D, Ribeiro B, Monteiro AC, Mastromatteo E, Bortolin A, Couto M, Boschis L, Lamghari M, Neto E. Deciphering cartilage neuro-immune interactions and innervation profile through 3D engineered osteoarthritic micropathophysiological system. Mater Today Bio 2025; 31:101491. [PMID: 39896288 PMCID: PMC11786692 DOI: 10.1016/j.mtbio.2025.101491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 11/15/2024] [Accepted: 01/12/2025] [Indexed: 02/04/2025] Open
Abstract
Osteoarthritis (OA) is an inflammatory musculoskeletal disorder that results in cartilage breakdown and alterations in the surrounding tissue microenvironment. Imbalances caused by inflammation and catabolic processes potentiate pathological nerves and blood vessels outgrowth toward damaged areas leading to pain in the patients. Yet, the precise mechanisms leading the nerve sprouting into the aneural cartilaginous tissue remain elusive. In this work, we aim to recapitulate in vitro the hallmarks of OA pathophysiology, including the sensory innervation profile, and provide a sensitive and reliable analytical tool to monitor the in vitro disease progression at microscale. Leveraging the use of patient-derived cells and bioengineering cutting-edge technologies, we engineered cartilage-like microtissues composed of primary human chondrocytes encapsulated in gelatin methacrylate hydrogel. Engineered constructs patterned inside microfluidic devices show the expression of cartilage markers, namely collagen type II, aggrecan, SOX-9 and glycosaminoglycans. Upon pro-inflammatory triggering, using primary human pro-inflammatory macrophage secretome, hallmarks of OA are recapitulated namely catabolic processes of human chondrocytes and the sensory innervation profile, supported by gene expression and functional assays. To monitor the OA micropathological system, a highly sensitive technology - EliChip™ - is presented to quantitively assess the molecular signature of cytokines and growth factors (interleukin 6 and nerve growth factor) produced from a single microfluidic chip. Herein, we report a miniaturized pathophysiological model and analytical tool to foster the neuro-immune interactions playing a role in cartilage-related disorders.
Collapse
Affiliation(s)
- Emine Kahraman
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- FEUP - Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal
| | - Daniela Vasconcelos
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Beatriz Ribeiro
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Ana Carolina Monteiro
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- ICBAS, Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Enzo Mastromatteo
- Trustech Innovation Technology, Via Baraggino, 76, 10034, Chivasso, Torino, Italy
| | - Andrea Bortolin
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- FEUP - Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal
| | - Marina Couto
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- ICBAS, Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Laura Boschis
- Trustech Innovation Technology, Via Baraggino, 76, 10034, Chivasso, Torino, Italy
| | - Meriem Lamghari
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Estrela Neto
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| |
Collapse
|
2
|
Goodwin GL, Marin AC, Walker JV, Hobbs C, Denk F. Using in vivo calcium imaging to examine joint neuron spontaneous activity and home cage analysis to monitor activity changes in mouse models of arthritis. Arthritis Res Ther 2025; 27:67. [PMID: 40148904 PMCID: PMC11948904 DOI: 10.1186/s13075-025-03515-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 02/21/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Studying pain in rodent models of arthritis is challenging. For example, assessing functional changes in joint neurons is challenging due to their relative scarcity amongst all sensory neurons. Additionally, studying pain behaviors in rodent models of arthritis poses its own set of difficulties. Commonly used tests, such as static weight-bearing, often require restraint, which can induce stress and consequently alter nociception. The aim of this study was to evaluate two emerging techniques for investigating joint pain in mouse models of rheumatoid- and osteo-arthritis: In vivo calcium imaging to monitor joint afferent activity and group-housed home cage monitoring to assess pain-like behaviors. Specifically, we examined whether there was increased spontaneous activity in joint afferents and reduced locomotor activity following induction of arthritis. METHODS Antigen induced arthritis (AIA) was used to model rheumatoid arthritis and partial medial meniscectomy (PMX) was used to model osteoarthritis. Group-housed home cage monitoring was used to assess locomotor behavior in all mice, and weight bearing was assessed in PMX mice. In vivo calcium imaging with GCaMP6s was used to monitor spontaneous activity in L4 ganglion joint neurons retrogradely labelled with fast blue 2 days following AIA and 13-15 weeks following PMX model induction. Cartilage degradation was assessed in knee joint sections stained with Safranin O and fast green in PMX mice. RESULTS Antigen induced arthritis produced knee joint swelling and PMX caused degeneration of articular cartilage in the knee. In the first 46 h following AIA, mice travelled less distance and were less mobile compared to their control cage mates. In contrast, no such differences were found between PMX and sham mice when measured between 4-12 weeks post-surgery. A larger fraction of joint neurons showed spontaneous activity in AIA but not PMX mice. Spontaneous activity was mostly displayed by medium-sized neurons in AIA mice and was not correlated with any of the home cage behaviors. CONCLUSION Group-housed home cage monitoring revealed locomotor changes in AIA mice, but not PMX mice (with n = 10/group). In vivo calcium imaging can be used to assess activity in multiple retrogradely labelled joint afferents and revealed increased spontaneous activity in AIA but not PMX mice.
Collapse
Affiliation(s)
- George L Goodwin
- Wolfson Sensory, Pain and Regeneration Centre (SPaRC), King's College London, SE1 1UL, London, UK.
| | - Alina-Cristina Marin
- Wolfson Sensory, Pain and Regeneration Centre (SPaRC), King's College London, SE1 1UL, London, UK
| | - Julia Vlachaki Walker
- Wolfson Sensory, Pain and Regeneration Centre (SPaRC), King's College London, SE1 1UL, London, UK
| | - Carl Hobbs
- Wolfson Sensory, Pain and Regeneration Centre (SPaRC), King's College London, SE1 1UL, London, UK
| | - Franziska Denk
- Wolfson Sensory, Pain and Regeneration Centre (SPaRC), King's College London, SE1 1UL, London, UK
| |
Collapse
|
3
|
Liew JW, Johnston JD, Bacon K, Wang N, Lynch J, Lewis C, Torner J, Neogi T. Relationship between knee pain and depth-specific measures of proximal tibial subchondral bone density. Osteoarthritis Cartilage 2025:S1063-4584(25)00827-1. [PMID: 40089263 DOI: 10.1016/j.joca.2025.02.781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/20/2025] [Accepted: 02/11/2025] [Indexed: 03/17/2025]
Abstract
BACKGROUND Altered subchondral bone mineral density (BMD) may be a possible contributor to osteoarthritis (OA) pain. We evaluated the relation of compartment-specific proximal tibial BMD, at varying depths beneath the subchondral surface, to knee pain. METHODS Multicenter Osteoarthritis (MOST) study participants with knee CTs were included. A 3D imaging tool measuring BMD in relation to depth from the subchondral surface was used to assess proximal tibial subchondral BMD at depths of 0-2.5, 2.5-5.0, and 5-10 mm. Knee pain in the past 30 days was scored on a numeric rating scale (range 0-100), dichotomized at 40/100 to define the presence of at least moderate pain. We cross-sectionally evaluated the relation of subchondral BMD to the presence of knee pain using binomial regression with generalized estimating equations (to account for correlations between two knees per individual) for each compartment and depth in separate models and adjusted for age, sex, and body mass index (BMI). RESULTS We included 2082 participants (mean age: 61 years, 56.5% female, mean BMI: 29 kg/m2). The prevalence of moderate pain was significantly lower for each SD unit increase in average subchondral BMD, after confounder adjustment, in each compartment. The magnitude of association did not differ for increasing depths beneath the subchondral surface or between compartments. CONCLUSION Lower subchondral proximal tibial BMD measures were associated with the prevalence of moderate knee pain in individuals with or at risk for knee OA, without differences by depth or compartment. These findings suggest bone remodeling responses throughout subchondral bone contribute to the knee pain experience.
Collapse
Affiliation(s)
- Jean W Liew
- Section of Rheumatology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - James D Johnston
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Canada
| | - Kathy Bacon
- Section of Rheumatology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Na Wang
- School of Public Health, Boston University, Boston, MA, USA
| | - John Lynch
- University of California, San Francisco, San Francisco, CA, USA
| | - Cora Lewis
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Tuhina Neogi
- Section of Rheumatology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
| |
Collapse
|
4
|
Liu S, Wu C, Yao Y, Dong X, Xu L. Single monoiodoacetic acid injection reveals toll-like receptor, oestrogen, oxidative stress, and altered energy metabolism as key drivers of temporomandibular joint osteoarthritis in female rats. Arch Oral Biol 2025; 174:106233. [PMID: 40090181 DOI: 10.1016/j.archoralbio.2025.106233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/03/2025] [Accepted: 03/10/2025] [Indexed: 03/18/2025]
Abstract
OBJECTIVES This study aimed to establish a reproducible and minimally invasive rat model of temporomandibular joint osteoarthritis (TMJ-OA) using intra-articular monoiodoacetic acid (MIA) injection, and to investigate the pathological mechanisms underlying TMJ-OA development, aimed at providing insights for potential clinical treatments. DESIGN We compared the effects of single versus multiple MIA injections on body weight, pain behaviour, and condylar pathology in female Sprague-Dawley rats. We longitudinally assessed the progression of TMJ-OA over 5 weeks by evaluating condylar pathology and immunohistochemical staining. We investigated the potential mechanism of MIA-induced TMJ-OA through transcriptome sequencing and polymerase chain reaction validation. RESULTS A single MIA injection (0.5 mg) into the joint space effectively induced TMJ-OA in rats and sustained inflammatory reactions and pain without significantly affecting weight. MIA continuously promoted the development of TMJ-OA through the activation of the toll-like receptor pathway, oestrogen metabolism promotion, oxidative stress response enhancement, and energy metabolism alteration in condylar chondrocytes. CONCLUSION We have presented a simple and minimally invasive method for modelling TMJ-OA in rats, which can be utilised in animal trials focusing on TMJ-OA treatment strategies. The study also reveals toll-like receptor, oestrogen, oxidative stress, and altered energy metabolism as key drivers of TMJ-OA in female rats.
Collapse
Affiliation(s)
- Shasha Liu
- Department of Rehabilitation Medicine, The Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; Department of Rehabilitation Medicine, Sijing Hospital of the Songjiang District of Shanghai, Shanghai 201600, China.
| | - Chaolun Wu
- Department of Rehabilitation Medicine, The Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yuan Yao
- Department of Rehabilitation Medicine, The Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xiongwei Dong
- Department of Rehabilitation Medicine, Sijing Hospital of the Songjiang District of Shanghai, Shanghai 201600, China.
| | - Lili Xu
- Department of Rehabilitation Medicine, The Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; Department of Rehabilitation Medicine, Sijing Hospital of the Songjiang District of Shanghai, Shanghai 201600, China.
| |
Collapse
|
5
|
Ai H, Dou C, Wu Y, Zhang D, Zhang Z, Zhang C, Xi Y, Qu Y, Tan J, Yin P, Xu J, Guo S, Luo F. Osteoclast-derived apoptotic bodies accelerate the pathological progression of osteoarthritis via disturbing subchondral bone remodeling. J Orthop Translat 2025; 51:108-118. [PMID: 40123999 PMCID: PMC11930187 DOI: 10.1016/j.jot.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 12/03/2024] [Accepted: 01/10/2025] [Indexed: 03/25/2025] Open
Abstract
Objective To investigate the role of osteoclast-derived apoptotic bodies (OC-ABs) in osteoarthritis (OA), specifically their impact on subchondral bone remodeling and disease progression, and to explore potential therapeutic strategies targeting OC-AB-induced pathways. Methods We utilized a mouse model of anterior cruciate ligament transection (ACLT) to simulate post-traumatic osteoarthritis (PTOA). Levels of OC-ABs were assessed in subchondral bone and correlated with OA severity. Additionally, apoptotic body-deficient MRL/lpr mice were analyzed to evaluate the direct contribution of OC-ABs to OA progression and subchondral bone remodeling. The involvement of OC-ABs in osteogenesis was further examined using mesenchymal stem cells (MSCs), with a focus on the RANKL reverse signaling pathway. The therapeutic potential of rapamycin to counteract OC-AB effects was tested. Results Increased OC-AB accumulation in subchondral bone was positively correlated with OA severity in ACLT-induced mice. Apoptotic body-deficient MRL/lpr mice demonstrated slower OA progression and maintained more stable subchondral bone architecture, indicating a pathogenic role of OC-ABs in OA. OC-ABs significantly stimulated osteogenesis in MSCs via the RANKL reverse signaling pathway. Treatment with rapamycin effectively reversed OC-AB-induced subchondral bone formation, mitigated OA progression, and inhibited the RANKL reverse signaling pathway. Conclusion OC-ABs play a critical role in exacerbating OA by promoting subchondral bone remodeling via the RANKL reverse signaling pathway. Rapamycin presents as a promising therapeutic agent capable of mitigating OC-AB-driven pathology, highlighting new avenues for targeted OA treatment.
Collapse
Affiliation(s)
- Hongbo Ai
- Department of Orthopaedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Ce Dou
- Department of Orthopaedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yutong Wu
- Department of Orthopaedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Department of Orthopedics, 75th Group Army Hospital, Dali, 671000, China
| | - Dongyang Zhang
- Department of Orthopaedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Ziyang Zhang
- Department of Orthopaedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Chao Zhang
- Department of Orthopedics, 75th Group Army Hospital, Dali, 671000, China
| | - Yuhang Xi
- Department of Orthopaedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Ying Qu
- Department of Orthopaedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jiulin Tan
- Department of Orthopaedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Pengbin Yin
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, 100853, China
| | - Jianzhong Xu
- Department of Orthopaedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Shuquan Guo
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Fei Luo
- Department of Orthopaedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| |
Collapse
|
6
|
Lin Q, Tan X, Ma D, Huang Y, Wang L, Zheng D, Lin J, Zhu Z, Mao M, Yi Z, Wang J, Li X. Verification of Pain-Related Neuromodulation Mechanisms of Calcitonin in Knee Osteoarthritis. Mol Neurobiol 2025:10.1007/s12035-025-04707-w. [PMID: 39994161 DOI: 10.1007/s12035-025-04707-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 01/14/2025] [Indexed: 02/26/2025]
Abstract
Chronic pain represents the prevailing symptom among patients suffering from knee osteoarthritis (KOA). In KOA, peripheral sensitization is driven by disruptions in subchondral bone homeostasis, local inflammatory responses, and variations in neuropeptide and neurotransmitter levels. Calcitonin, a pivotal peptide involved in bone metabolism, additionally exhibits potent analgesic properties. This study aimed to elucidate the mechanisms underlying calcitonin's neuromodulatory effects related to pain in the treatment of KOA. Three experiments were conducted: (1) assessing calcitonin's therapeutic effects via histomorphology, nociceptive behavioral assessments, and Western blot analysis of proteins; (2) verification of the involvement of neurotransmitters and neuropeptides in calcitonin's action using the Signal Transduction PathwayFinder PCR Array, Bio-Plex suspension chip, and ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS); and (3) exploration of calcitonin's impact on brain function through functional magnetic resonance imaging (fMRI). Experiment 1 validated calcitonin's efficacy in KOA models. Experiment 2 demonstrated the involvement of the retinoic acid signaling pathway in calcitonin treatment, confirming that its analgesic efficacy is associated with the modulation of neuropeptides and neurotransmitters. Experiment 3 revealed that calcitonin treatment could reverse regional homogeneity and amplitude of low-frequency fluctuations in the hippocampus and tegmental nucleus. The study affirmed the critical role of pain-related neuromodulation mechanisms in calcitonin treatment, demonstrating that its analgesic effects are mediated through the modulation of neurotransmitters, neuropeptides, and brain function, as observed via fMRI. These findings provide a theoretical foundation for the clinical application of calcitonin in the treatment of KOA pain.
Collapse
Affiliation(s)
- Qing Lin
- College of Integrative Medicine, Department of Science and Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Xue Tan
- College of Integrative Medicine, Department of Science and Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Dezun Ma
- College of Integrative Medicine, Department of Science and Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Fujian Key Laboratory of Integrative Medicine On Geriatrics, Fuzhou, 350122, China
| | - Yanfeng Huang
- College of Integrative Medicine, Department of Science and Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Lili Wang
- College of Integrative Medicine, Department of Science and Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Fujian Key Laboratory of Integrative Medicine On Geriatrics, Fuzhou, 350122, China
| | - Danhao Zheng
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
- Shanghai Key Laboratory of Emotions and Affective Disorders (LEAD), Songjiang Research Institute, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 800 Dongchuan Road, Shanghai, 201100, China
| | - Jiaqiu Lin
- The Third Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Zaishi Zhu
- College of Integrative Medicine, Department of Science and Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Min Mao
- College of Integrative Medicine, Department of Science and Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Zhouping Yi
- College of Integrative Medicine, Department of Science and Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Jie Wang
- College of Integrative Medicine, Department of Science and Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
- Shanghai Key Laboratory of Emotions and Affective Disorders (LEAD), Songjiang Research Institute, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 800 Dongchuan Road, Shanghai, 201100, China
| | - Xihai Li
- College of Integrative Medicine, Department of Science and Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
- Fujian Key Laboratory of Integrative Medicine On Geriatrics, Fuzhou, 350122, China.
| |
Collapse
|
7
|
Hestehave S, Allen HN, Gomez K, Duran P, Calderon-Rivera A, Loya-López S, Rodríguez-Palma EJ, Khanna R. Small molecule targeting Na V 1.7 via inhibition of CRMP2-Ubc9 interaction reduces pain-related outcomes in a rodent osteoarthritic model. Pain 2025; 166:99-111. [PMID: 39106443 PMCID: PMC11649477 DOI: 10.1097/j.pain.0000000000003357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/30/2024] [Indexed: 08/09/2024]
Abstract
ABSTRACT Osteoarthritis (OA) is a highly prevalent and disabling joint disease, characterized by pathological progressive joint deformation and clinical symptoms of pain. Disease-modifying treatments remain unavailable, and pain-mitigation is often suboptimal, but recent studies suggest beneficial effects by inhibition of the voltage-gated sodium channel Na V 1.7. We previously identified compound 194 as an indirect inhibitor of Na V 1.7 by preventing SUMOylation of the Na V 1.7-trafficking protein, collapsin response mediator protein 2. Compound 194 reduces the functional activity of Na V 1.7 channels and produces effective analgesia in a variety of acute and neuropathic pain models. However, its effectiveness has not yet been evaluated in models of OA. Here, we explore the effects of 194 on pain-related outcomes in the OA-like monoiodoacetate model using behavioral assessment, biochemistry, novel in vivo fiber photometry, and patch clamp electrophysiology. We found that the monoiodoacetate model induced (1) increased pain-like behaviors and calcium responses of glutamatergic neurons in the parabrachial nucleus after evoked cold and mechanical stimuli, (2) conditioned place aversion to mechanical stimulation, (3) functional weight bearing asymmetry, (4) increased sodium currents in dorsal root ganglia neurons, and (5) increased calcitonin gene-related peptide-release in the spinal cord. Crucially, administration of 194 improved all these pain-related outcomes. Collectively, these findings support indirect inhibition of Na V 1.7 as an effective treatment of OA-related pain through the inhibition of collapsin response mediator protein 2-SUMOylation via compound 194.
Collapse
Affiliation(s)
- Sara Hestehave
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York 10010, USA
- Pain Research Center, New York University, New York, NY 10010, USA
| | - Heather N. Allen
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York 10010, USA
- Pain Research Center, New York University, New York, NY 10010, USA
| | - Kimberly Gomez
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York 10010, USA
- Pain Research Center, New York University, New York, NY 10010, USA
| | - Paz Duran
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York 10010, USA
- Pain Research Center, New York University, New York, NY 10010, USA
| | - Aida Calderon-Rivera
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York 10010, USA
- Pain Research Center, New York University, New York, NY 10010, USA
| | - Santiago Loya-López
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York 10010, USA
- Pain Research Center, New York University, New York, NY 10010, USA
| | - Erick J. Rodríguez-Palma
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York 10010, USA
- Pain Research Center, New York University, New York, NY 10010, USA
| | - Rajesh Khanna
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York 10010, USA
- Pain Research Center, New York University, New York, NY 10010, USA
| |
Collapse
|
8
|
Mathew S, Ashraf S, Shorter S, Tozzi G, Koutsikou S, Ovsepian SV. Neurobiological Correlates of Rheumatoid Arthritis and Osteoarthritis: Remodelling and Plasticity of Nociceptive and Autonomic Innervations in Synovial Joints. Neuroscientist 2024:10738584241293049. [PMID: 39668598 DOI: 10.1177/10738584241293049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Swelling, stiffness, and pain in synovial joints are primary hallmarks of osteoarthritis and rheumatoid arthritis. Hyperactivity of nociceptors and excessive release of inflammatory factors and pain mediators play a crucial role, with emerging data suggesting extensive remodelling and plasticity of joint innervations. Herein, we review structural, functional, and molecular alterations in sensory and autonomic axons wiring arthritic joints and revisit mechanisms implicated in the sensitization of nociceptors, leading to chronic pain. Sprouting and reorganization of sensory and autonomic fibers with the invasion of ectopic branches into surrounding inflamed tissues are associated with the upregulation of pain markers. These changes are frequently complemented by a phenotypic switch of sensory and autonomic profiles and activation of silent axons, inferring homeostatic adjustments and reprogramming of innervations. Identifying critical molecular players and neurobiological mechanisms underpinning the rewiring and sensitization of joints is likely to elucidate causatives of neuroinflammation and chronic pain, assisting in finding new therapeutic targets and opportunities for interventions.
Collapse
Affiliation(s)
- Sharon Mathew
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent, UK
| | - Sadaf Ashraf
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent, UK
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, Kent, UK
| | - Susan Shorter
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent, UK
| | - Gianluca Tozzi
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent, UK
| | - Stella Koutsikou
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent, UK
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, Kent, UK
| | - Saak V Ovsepian
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent, UK
- Faculty of Medicine, Tbilisi State University, Tbilisi, Republic of Georgia
| |
Collapse
|
9
|
Morgan M, Nazemian V, Thai J, Lin I, Northfield S, Ivanusic JJ. BDNF sensitizes bone and joint afferent neurons at different stages of MIA-induced osteoarthritis. Bone 2024; 189:117260. [PMID: 39299629 DOI: 10.1016/j.bone.2024.117260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/15/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
There is emerging evidence that Brain Derived Neurotrophic Factor (BDNF), and one of its receptors TrkB, play important roles in the pathogenesis of osteoarthritis (OA) pain. Whilst these studies clearly highlight the potential for targeting BDNF/TrkB signaling to treat OA pain, the mechanism for how BDNF/TrkB signaling contributes to OA pain remains unclear. In this study, we used an animal model of mono-iodoacetate (MIA)-induced OA, in combination with electrophysiology, behavioral testing, Western blot analysis, and retrograde tracing and immunohistochemistry, to identify roles for BDNF/TrkB signaling in the pathogenesis of OA pain. We found that: 1) TrkB is expressed in myelinated medium diameter neurons that innervate the knee joint and bone in naïve animals; 2) peripheral application of BDNF increases the sensitivity of Aδ, but not C knee joint and bone afferent neurons, in response to mechanical stimulation, in naïve animals; 3) BDNF expression increases in synovial tissue in early MIA-induced OA, when pathology is confined to the joint, and in the subchondral bone in late MIA-induced OA, when there is additional damage to the surrounding bone; and 4) TrkB inhibition reverses MIA-induced changes in the sensitivity of Aδ but not C knee joint afferent neurons early in MIA-induced OA, and Aδ but not C bone afferent neurons late in MIA-induced OA. Our findings suggest that BDNF/TrkB signaling may have a role to play in the pathogenesis of OA pain, through effects on knee joint afferent neurons early in disease when there is inflammation confined to the joint, and bone afferent neurons late in disease when there is involvement of damage to subchondral bone. Targeted manipulation of BDNF/TrkB signaling may provide therapeutic benefit for the management of OA pain.
Collapse
Affiliation(s)
- Michael Morgan
- Department of Anatomy and Physiology, University of Melbourne, Victoria, Australia
| | - Vida Nazemian
- Department of Anatomy and Physiology, University of Melbourne, Victoria, Australia
| | - Jenny Thai
- Department of Anatomy and Physiology, University of Melbourne, Victoria, Australia
| | - Irene Lin
- Department of Biochemistry and Pharmacology, University of Melbourne, Victoria, Australia
| | - Susan Northfield
- Department of Biochemistry and Pharmacology, University of Melbourne, Victoria, Australia
| | - Jason J Ivanusic
- Department of Anatomy and Physiology, University of Melbourne, Victoria, Australia.
| |
Collapse
|
10
|
Yu M, Gordon C, Studholme K, Hassan M, Sadar F, Khan A, Nicholson J, Komatsu DE, Kaczocha M. Monoacylglycerol Lipase and Cyclooxygenase-2 Expression in Osteoarthritic Human Knees. Cannabis Cannabinoid Res 2024; 9:1370-1376. [PMID: 37358789 PMCID: PMC11535461 DOI: 10.1089/can.2023.0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023] Open
Abstract
Background: Osteoarthritis (OA) is a progressive degenerative joint disease that presents with significant pain and functional disability. The endocannabinoid 2-arachidonoylglycerol activates cannabinoid receptors to reduce pain while its hydrolysis by the enzyme monoacylglycerol lipase (MAGL) generates arachidonic acid, the direct precursor to proalgesic eicosanoids synthesized by cyclooxygenase-2 (COX-2), highlighting the potential for crosstalk between MAGL and COX-2. While COX-2 expression in human OA cartilage has been described, the distribution of MAGL in knee osteochondral tissue has not been reported and was the goal of the current study. Methods: MAGL and COX-2 expression in International Cartilage Repair Society grade II and grade IV knee osteochondral tissue obtained from male and female subjects with OA was investigated through immunohistochemistry. Immunolocalization of both proteins was investigated within articular cartilage and subchondral bone. Results: MAGL is expressed throughout the cartilage of grade II arthritic tissue, with prominent distribution in the superficial and deep zones. Elevated expression of MAGL was evident in grade IV samples, with additional distribution observed in subchondral bone. COX-2 expression followed a similar pattern, with uniform distribution in cartilage and increased expression in grade IV tissue. Conclusions: This study establishes MAGL expression in arthritic cartilage and subchondral bone of subjects with OA. The proximity between MAGL and COX-2 suggests the potential for crosstalk between endocannabinoid hydrolysis and eicosanoid signaling in the maintenance of OA pain.
Collapse
Affiliation(s)
- Mei Yu
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Chris Gordon
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Keith Studholme
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Mariam Hassan
- Half Hollow Hills High School West, Dix Hills, New York, USA
| | - Faisal Sadar
- Department of Orthopedics and Rehabilitation, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Ayesha Khan
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - James Nicholson
- Department of Orthopedics and Rehabilitation, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - David E. Komatsu
- Department of Orthopedics and Rehabilitation, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Martin Kaczocha
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
- Stony Brook University Pain and Analgesia Research Center (SPARC), Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
11
|
O'Brien MS, McDougall JJ. Comparison of nociceptor properties using electrophysiology in preclinical models of osteoarthritis. Neurosci Lett 2024; 840:137950. [PMID: 39182667 DOI: 10.1016/j.neulet.2024.137950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Osteoarthritis (OA) pain originates in the joint by sensitization of articular nociceptors. While behavioural assessments provide valuable information regarding pain symptoms, the techniques are subjective and open to interpretation by the experimenter. This study used in vivo electrophysiological approaches to measure objectively joint nociceptor properties in three rodent models of OA. Single unit extracellular recordings of joint mechanosensitive afferents were carried out in male and female rats following either (1) transection of the medial meniscus (MMT: post-traumatic OA), (2) intra-articular injection of sodium monoiodoacetate (MIA: chemically-induced OA), or (3) intra-articular injection of lysophosphatidic acid (LPA: neuropathic OA). In naïve male control rats, the mechanical threshold of joint mechanonociceptors (23.5 ± 1.8 mNm) was significantly reduced with MMT (9.4 ± 1.1 mNm) and MIA (15.1 ± 1.6 mNm). In females, the mechanical threshold of naïve rats (23.2 ± 3.1 mNm) was reduced following induction of MMT (8.3 ± 1.0 mNm) and LPA (10.6 ± 2.2 mNm). Afferent firing frequency increased in male MMT (∼275 %), LPA (∼175 %), MIA (225 %), and female MMT (∼146 %), LPA (∼200 %), and MIA (∼192 %). Mechanical threshold and evoked firing were negatively correlated in all models for both sexes except LPA rats (male + female) and female MMT. These data indicate that MMT, MIA, and LPA induce peripheral sensitization of joint afferents thereby validating their use in OA pain studies.
Collapse
Affiliation(s)
- Melissa S O'Brien
- Departments of Pharmacology and Anaesthesia, Pain Management & Perioperative Medicine, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, B3H 4R2, Canada.
| | - Jason J McDougall
- Departments of Pharmacology and Anaesthesia, Pain Management & Perioperative Medicine, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, B3H 4R2, Canada.
| |
Collapse
|
12
|
Zou Y, Liu C, Wang Z, Li G, Xiao J. Neural and immune roles in osteoarthritis pain: Mechanisms and intervention strategies. J Orthop Translat 2024; 48:123-132. [PMID: 39220678 PMCID: PMC11363721 DOI: 10.1016/j.jot.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Pain is the leading symptom for most individuals with osteoarthritis (OA), a complex condition marked by joint discomfort. Recently, the dynamic interplay between the nervous and immune systems has become a focal point for understanding pain regulation. Despite this, there is still a substantial gap in our comprehensive understanding of the neuroimmune interactions and their effects on pain in OA. This review examines the bidirectional influences between immune cells and nerves in OA progression. It explores current approaches that target neuroimmune pathways, including promoting M2 macrophage polarization and specific neuronal receptor targeting, for effective pain reduction. Translational potential statement This review provides a comprehensive overview of the mechanisms underlying the interplay between the immune system and nervous system during the progression of OA, as well as their contributions to pain. Additionally, it compiles existing intervention strategies targeting neuroimmunity for the treatment of OA pain. This information offers valuable insights for researchers seeking to address the challenge of OA pain.
Collapse
Affiliation(s)
- Yi Zou
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei, 430030, China
| | - Changyu Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei, 430030, China
| | - Zhenggang Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei, 430030, China
| | - Guanghui Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei, 430030, China
| | - Jun Xiao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei, 430030, China
| |
Collapse
|
13
|
Obeidat AM, Ishihara S, Li J, Adamczyk NS, Lammlin L, Junginger L, Maerz T, Miller RJ, Miller RE, Malfait AM. Intra-articular sprouting of nociceptors accompanies progressive osteoarthritis: comparative evidence in four murine models. Front Neuroanat 2024; 18:1429124. [PMID: 39076825 PMCID: PMC11284167 DOI: 10.3389/fnana.2024.1429124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/01/2024] [Indexed: 07/31/2024] Open
Abstract
Objective Knee joints are densely innervated by nociceptors. In human knees and rodent models, sprouting of nociceptors has been reported in late-stage osteoarthritis (OA). Here, we sought to describe progressive nociceptor remodeling in early and late-stage OA, using four distinct experimental mouse models. Methods Sham surgery, destabilization of the medial meniscus (DMM), partial meniscectomy (PMX), or non-invasive anterior cruciate ligament rupture (ACLR) was performed in the right knee of 10-12-week old male C57BL/6 NaV1.8-tdTomato mice. Mice were euthanized (1) 4, 8 or 16 weeks after DMM or sham surgery; (2) 4 or 12 weeks after PMX or sham; (3) 1 or 4 weeks after ACLR injury or sham. Additionally, a cohort of naïve male wildtype mice was evaluated at age 6 and 24 months. Mid-joint cryosections were assessed qualitatively and quantitatively for NaV1.8+ or PGP9.5+ innervation. Cartilage damage, synovitis, and osteophytes were assessed. Results Progressive OA developed in the medial compartment after DMM, PMX, and ACLR. Synovitis and associated neo-innervation of the synovium by nociceptors peaked in early-stage OA. In the subchondral bone, channels containing sprouting nociceptors appeared early, and progressed with worsening joint damage. Two-year old mice developed primary OA in the medial and the lateral compartment, accompanied by nociceptor sprouting in the synovium and the subchondral bone. All four models showed increased nerve signal in osteophytes. Conclusion These findings suggest that anatomical neuroplasticity of nociceptors is intrinsic to OA pathology. The detailed description of innervation of the OA joint and its relationship to joint damage might help in understanding OA pain.
Collapse
Affiliation(s)
- Alia M. Obeidat
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Shingo Ishihara
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Jun Li
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Natalie S. Adamczyk
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Lindsey Lammlin
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Lucas Junginger
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Tristan Maerz
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Richard J. Miller
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Rachel E. Miller
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Anne-Marie Malfait
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
| |
Collapse
|
14
|
Yan X, Ye Y, Wang L, Xue J, Shen N, Li T. Platelet-rich plasma alleviates neuropathic pain in osteoarthritis by downregulating microglial activation. BMC Musculoskelet Disord 2024; 25:331. [PMID: 38725009 PMCID: PMC11080143 DOI: 10.1186/s12891-024-07437-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/12/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND The development of neuropathic pain (NP) is one of the reasons why the pain is difficult to treat, and microglial activation plays an important role in NP. Recently, platelet-rich plasma (PRP) has emerged as a novel therapeutic method for knee osteoarthritis (KOA). However, it's unclarified whether PRP has analgesic effects on NP induced by KOA and the underlying mechanisms unknown. PURPOSE To observe the analgesic effects of PRP on NP induced by KOA and explore the potential mechanisms of PRP in alleviating NP. METHODS KOA was induced in male rats with intra-articular injections of monosodium iodoacetate (MIA) on day 0. The rats received PRP or NS (normal saline) treatment at days 15, 17, and 19 after modeling. The Von Frey and Hargreaves tests were applied to assess the pain-related behaviors at different time points. After euthanizing the rats with deep anesthesia at days 28 and 42, the corresponding tissues were taken for subsequent experiments. The expression of activating transcription factor 3 (ATF3) in dorsal root ganglia (DRG) and ionized-calcium-binding adapter molecule-1(Iba-1) in the spinal dorsal horn (SDH) was detected by immunohistochemical staining. In addition, the knee histological assessment was performed by hematoxylin-eosin (HE) staining. RESULTS The results indicated that injection of MIA induced mechanical allodynia and thermal hyperalgesia, which could be reversed by PRP treatment. PRP downregulated the expression of ATF3 within the DRG and Iba-1 within the SDH. Furthermore, an inhibitory effect on cartilage degeneration was observed in the MIA + PRP group only on day 28. CONCLUSION These results indicate that PRP intra-articular injection therapy may be a potential therapeutic agent for relieving NP induced by KOA. This effect could be attributed to downregulation of microglial activation and reduction in nerve injury.
Collapse
Affiliation(s)
- Xiao Yan
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, People's Republic of China
| | - Yinshuang Ye
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, People's Republic of China
| | - Lin Wang
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, People's Republic of China
| | - Junqiang Xue
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, People's Republic of China
| | - Nana Shen
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, People's Republic of China
| | - Tieshan Li
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, People's Republic of China.
| |
Collapse
|
15
|
Tan X, Zheng D, Lin Q, Wang L, Zhu Z, Huang Y, Lin J, Zeng Y, Mao M, Yi Z, Liu L, Ma D, Wang J, Li X. Confirmation of pain-related neuromodulation mechanism of Bushen Zhuangjin Decoction on knee osteoarthritis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117772. [PMID: 38266947 DOI: 10.1016/j.jep.2024.117772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 01/26/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bushen Zhuangjin Decoction (BZD) are an herbal compound commonly used to treat osteoarthritis (OA) in China. AIM OF THE STUDY This study aimed to verify the mechanism of Bushen Zhuangjin Decoction in relieving the pain of knee osteoarthritis. MATERIALS AND METHODS Network pharmacology evaluation was used to discover the potential targets of BZD to relieve pain in KOA. The therapeutic effects of BZD treatment on KOA pain using histomorphology, behavioral assessments, suspension chip analysis, and ultra-high performance liquid chromatography/tandem mass spectrometry (UHPLC-MS/MS) assays. The functional magnetic resonance imaging was used to explore the effects of BZD treatment on brain function associated to KOA. RESULTS Network pharmacological analysis revealed the association between the analgesic effect of BZD on KOA and the pain signaling neurotransmitter 5-HT. Subsequently, we conducted experiments to verify the therapeutic effect of BZD on pain in KOA animal models. Behavioral tests demonstrated that the pain threshold of knee osteoarthritis rats decreased in PWT and PWL, but BZD was able to increase the pain threshold. Histopathological staining indicated thinning of the cartilage layer and sparse trabeculae in the subchondral bone. Suspension chip analysis revealed a significant increase in pro-inflammatory factors of IL-1α, IL-5, IL-12, IL-17A, RANTES, TNF-α and M-CSF in KOA, along with a significant decrease in anti-inflammatory factor of IL-13. However, BZD treatment decreased the expression of pro-inflammatory factors and increased the content of anti-inflammatory factor. UHPLC-MS/MS analysis showed a significant decrease in the serum levels of GABA, E, GSH, Kyn, Met, and VMA in KOA, which were significantly increased by BZD. Conversely, the serum levels of TrpA, TyrA, Spd, and BALa were significantly increased in KOA and significantly decreased by BZD. ELISA and Western blot analysis showed increased expression of subchondral bone pain-related neuropeptides SP, CGRP, TH, NPY, VEGFA, 5-HT3 in KOA, which were decreased in BZD. Functional magnetic resonance imaging demonstrated that BZD exerts its therapeutic effect on KOA by modulating the activity and functional connections of the cortex, hypothalamus, and hippocampus. CONCLUSIONS This study confirmed the significant role of pain-related neuromodulation mechanisms in the analgesic therapy of BZD and provides a theoretical foundation for using BZD as a traditional Chinese medical treatment for KOA pain.
Collapse
Affiliation(s)
- Xue Tan
- Academy of Integrative Medicine, College of Integrative Medicine, Affiliated Third People's Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, 350122, China
| | - Danhao Zheng
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Qing Lin
- Academy of Integrative Medicine, College of Integrative Medicine, Affiliated Third People's Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Lili Wang
- Academy of Integrative Medicine, College of Integrative Medicine, Affiliated Third People's Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, 350122, China
| | - Zaishi Zhu
- Academy of Integrative Medicine, College of Integrative Medicine, Affiliated Third People's Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Yanfeng Huang
- Academy of Integrative Medicine, College of Integrative Medicine, Affiliated Third People's Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Jiaqiu Lin
- Academy of Integrative Medicine, College of Integrative Medicine, Affiliated Third People's Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Yihui Zeng
- Academy of Integrative Medicine, College of Integrative Medicine, Affiliated Third People's Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Min Mao
- Academy of Integrative Medicine, College of Integrative Medicine, Affiliated Third People's Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Zhouping Yi
- Academy of Integrative Medicine, College of Integrative Medicine, Affiliated Third People's Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Linglong Liu
- Academy of Integrative Medicine, College of Integrative Medicine, Affiliated Third People's Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Dezun Ma
- Academy of Integrative Medicine, College of Integrative Medicine, Affiliated Third People's Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, 350122, China
| | - Jie Wang
- Academy of Integrative Medicine, College of Integrative Medicine, Affiliated Third People's Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China; Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China; Shanghai Key Laboratory of Emotions and Affective Disorders (LEAD), Songjiang Research Institute, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xihai Li
- Academy of Integrative Medicine, College of Integrative Medicine, Affiliated Third People's Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, 350122, China.
| |
Collapse
|
16
|
Wang H, Yuan T, Wang Y, Liu C, Li D, Li Z, Sun S. Osteoclasts and osteoarthritis: Novel intervention targets and therapeutic potentials during aging. Aging Cell 2024; 23:e14092. [PMID: 38287696 PMCID: PMC11019147 DOI: 10.1111/acel.14092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/31/2024] Open
Abstract
Osteoarthritis (OA), a chronic degenerative joint disease, is highly prevalent among the aging population, and often leads to joint pain, disability, and a diminished quality of life. Although considerable research has been conducted, the precise molecular mechanisms propelling OA pathogenesis continue to be elusive, thereby impeding the development of effective therapeutics. Notably, recent studies have revealed subchondral bone lesions precede cartilage degeneration in the early stage of OA. This development is marked by escalated osteoclast-mediated bone resorption, subsequent imbalances in bone metabolism, accelerated bone turnover, and a decrease in bone volume, thereby contributing significantly to the pathological changes. While the role of aging hallmarks in OA has been extensively elucidated from the perspective of chondrocytes, their connection with osteoclasts is not yet fully understood. There is compelling evidence to suggest that age-related abnormalities such as epigenetic alterations, proteostasis network disruption, cellular senescence, and mitochondrial dysfunction, can stimulate osteoclast activity. This review intends to systematically discuss how aging hallmarks contribute to OA pathogenesis, placing particular emphasis on the age-induced shifts in osteoclast activity. It also aims to stimulate future studies probing into the pathological mechanisms and therapeutic approaches targeting osteoclasts in OA during aging.
Collapse
Affiliation(s)
- Haojue Wang
- Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Tao Yuan
- Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Yi Wang
- Department of Joint SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation CenterShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
| | - Changxing Liu
- Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Dengju Li
- Department of Joint SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation CenterShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
| | - Ziqing Li
- Department of Joint SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation CenterShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
| | - Shui Sun
- Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
- Department of Joint SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation CenterShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
| |
Collapse
|
17
|
Devor M. Pain in osteoarthritis: Driven by intrinsic rather than extrinsic joint afferents and why this should impact treatment. INTERVENTIONAL PAIN MEDICINE 2024; 3:100381. [PMID: 39239488 PMCID: PMC11372874 DOI: 10.1016/j.inpm.2023.100381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 09/07/2024]
Abstract
Pain in osteoarthritis (OA) results from erosion of joint cartilage, resulting in bone contacting bone without an intervening cushion. The periosteum, including its nociceptive innervation, ends at the border of the cartilage. No other innervated tissue is present between the denuded articular bone ends that could serve as a neuronal pathway to carry a bone-on-bone pain signal to the brain. The pain signaling pathway must therefore originate in afferent axons with electrogenic nociceptive sensory endings that reside within the bone itself, specifically in the opposing surfaces of epiphyseal subchondral bone. Selective ablation of this intrinsic nerve pathway, using any of a variety of approaches, is expected to permanently eliminate OA pain.
Collapse
Affiliation(s)
- Marshall Devor
- Institute of Life Sciences and Center for Research on Pain, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
18
|
Gordon C, Trainor J, Shah RJ, Studholme K, Gelman A, Doswell F, Sadar F, Giovannetti A, Gershenson J, Khan A, Nicholson J, Huang Z, Spurgat M, Tang SJ, Wang H, Ojima I, Carlson D, Komatsu DE, Kaczocha M. Fatty acid binding protein 5 inhibition attenuates pronociceptive cytokine/chemokine expression and suppresses osteoarthritis pain: A comparative human and rat study. Osteoarthritis Cartilage 2024; 32:266-280. [PMID: 38035977 PMCID: PMC11283882 DOI: 10.1016/j.joca.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 10/20/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023]
Abstract
OBJECTIVE Osteoarthritis (OA) is often accompanied by debilitating pain that is refractory to available analgesics due in part to the complexity of signaling molecules that drive OA pain and our inability to target these in parallel. Fatty acid binding protein 5 (FABP5) is a lipid chaperone that regulates inflammatory pain; however, its contribution to OA pain has not been characterized. DESIGN This combined clinical and pre-clinical study utilized synovial tissues obtained from subjects with end-stage OA and rats with monoiodoacetate-induced OA. Cytokine and chemokine release from human synovia incubated with a selective FABP5 inhibitor was profiled with cytokine arrays and ELISA. Immunohistochemical analyses were conducted for FABP5 in human and rat synovium. The efficacy of FABP5 inhibitors on pain was assessed in OA rats using incapacitance as an outcome. RNA-seq was then performed to characterize the transcriptomic landscape of synovial gene expression in OA rats treated with FABP5 inhibitor or vehicle. RESULTS FABP5 was expressed in human synovium and FABP5 inhibition reduced the secretion of pronociceptive cytokines (interleukin-6 [IL6], IL8) and chemokines (CCL2, CXCL1). In rats, FABP5 was upregulated in the OA synovium and its inhibition alleviated incapacitance. The transcriptome of the rat OA synovium exhibited >6000 differentially expressed genes, including the upregulation of numerous pronociceptive cytokines and chemokines. FABP5 inhibition blunted the upregulation of the majority of these pronociceptive mediators. CONCLUSIONS FABP5 is expressed in the OA synovium and its inhibition suppresses pronociceptive signaling and pain, indicating that FABP5 inhibitors may constitute a novel class of analgesics to treat OA.
Collapse
Affiliation(s)
- Chris Gordon
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - James Trainor
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Rohan J Shah
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Keith Studholme
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Alex Gelman
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Faniya Doswell
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Faisal Sadar
- Department of Orthopaedics and Rehabilitation, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Allessio Giovannetti
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Josh Gershenson
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Ayesha Khan
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - James Nicholson
- Department of Orthopaedics and Rehabilitation, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - ZeYu Huang
- Department of Orthopaedic Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Michael Spurgat
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Shao-Jun Tang
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA; Stony Brook University Pain and Analgesia Research Center (SPARC), Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Hehe Wang
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA
| | - Iwao Ojima
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA; Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, USA
| | - David Carlson
- Genomics Core Facility and Institute for Advanced Computational Sciences, Stony Brook University, Stony Brook, NY, USA
| | - David E Komatsu
- Department of Orthopaedics and Rehabilitation, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA.
| | - Martin Kaczocha
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA; Stony Brook University Pain and Analgesia Research Center (SPARC), Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA; Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
19
|
Malek N, Borowczyk J, Kostrzewa M, Pawlowska A, Drukala J, Starowicz K. The Impact of JWH-133 on Articular Cartilage Regeneration in Osteoarthritis Via Metalloproteinase 13-Dependent Mechanism. Cannabis Cannabinoid Res 2023; 8:779-789. [PMID: 36318796 PMCID: PMC10589480 DOI: 10.1089/can.2022.0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023] Open
Abstract
Objective: Osteoarthritis (OA) is common degenerative joint disease, mostly characterized by gradual cartilage breakdown. Currently there are no disease-modifying drugs available, therefore, there is an increasing need for basic research to focus on cartilage function in OA. Changes in cannabinoid receptor 2 (CB2) expression were observed in the OA-affected joints, although its action on cartilage chondrocytes remain unclear. We studied the action of dimethylbutyl-deoxy-delta-8-THC (JWH-133), selective CB2 agonist, on chondrocytes metabolism using both in vitro and in vivo studies. Design: Intraarticular (i.a.) injection of monoiodoacetate (MIA) was used to induce OA in rats. OA-related pain symptoms were assessed by pressure application measurements (PAMs). Primary human chondrocytes treated with MIA were used to investigate action of JWH-133 on chondrocytes viability, proliferation, and motility. Cannabinoid system components, inflammatory cytokines and metalloproteinases (MMPs) expression was measured on messenger RNA and protein levels in chondrocytes and animal cartilage. Results: Repeated, i.a. administration of JWH-133 showed antinociceptive potential in PAM, as well as decreased levels of MMPs, which suggests that CB2 agonism may modify degradation of cartilage. JWH-133 administration partially reduced toxicity, increased proliferation, and chondrocytes' migration. Moreover, our data suggest that CB2 agonism leads to alleviation of MMPs expression both in vitro and in vivo. Conclusions: In this study, we demonstrate modifying effect of JWH-133 local administration on cartilage metabolism and MMP13 expression that was shown to be involved in cartilage degradation. CB2 receptors' activation may be of benefit for chondrocytes' proliferation, therefore delaying disease progression. Our results propose direction of studies on OA-modifying treatment that can benefit in management of human OA.
Collapse
Affiliation(s)
- Natalia Malek
- Laboratory of Neurochemistry, Department of Pharmacology of Pain, Maj Institute of Pharmacology, Polish Academy of Sciences, Cracow, Poland
| | - Julia Borowczyk
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Cracow, Poland
| | - Magdalena Kostrzewa
- Laboratory of Neurochemistry, Department of Pharmacology of Pain, Maj Institute of Pharmacology, Polish Academy of Sciences, Cracow, Poland
| | - Agnieszka Pawlowska
- Laboratory of Neurochemistry, Department of Pharmacology of Pain, Maj Institute of Pharmacology, Polish Academy of Sciences, Cracow, Poland
| | - Justyna Drukala
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Cracow, Poland
| | - Katarzyna Starowicz
- Laboratory of Neurochemistry, Department of Pharmacology of Pain, Maj Institute of Pharmacology, Polish Academy of Sciences, Cracow, Poland
| |
Collapse
|
20
|
Morgan M, Nazemian V, Ooi LS, Burger S, Thai J, Ivanusic J. Artemin sensitizes nociceptors that innervate the osteoarthritic joint to produce pain. Osteoarthritis Cartilage 2023; 31:1342-1352. [PMID: 37353141 DOI: 10.1016/j.joca.2023.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/14/2023] [Accepted: 06/09/2023] [Indexed: 06/25/2023]
Abstract
OBJECTIVE There have been significant developments in understanding artemin/GFRα3 signaling in recent years, and there is now accumulating evidence that artemin has important roles to play in pain signaling, including that derived from joint and bone, and that associated with osteorthritis (OA). METHODS A total of 163 Sprague-Dawley rats were used in this study. We used an animal model of mono-iodoacetate (MIA)-induced OA, in combination with electrophysiology, behavioral testing, Western blot analysis, and retrograde tracing and immunohistochemistry, to identify roles for artemin/GFRα3 signaling in the pathogenesis of OA pain. RESULTS We have found that: 1) GFRα3 is expressed in a substantial proportion of knee joint afferent neurons; 2) exogenous artemin sensitizes knee joint afferent neurons in naïve rats; 3) artemin is expressed in articular tissues of the joint, but not surrounding bone, early in MIA-induced OA; 4) artemin expression increases in bone later in MIA-induced OA when pathology involves subchondral bone; and 5) sequestration of artemin reverses MIA-induced sensitization of both knee joint and bone afferent neurons late in disease when there is inflammation of knee joint tissues and damage to the subchondral bone. CONCLUSIONS Our findings show that artemin/GFRα3 signaling has a role to play in the pathogenesis of OA pain, through effects on both knee joint and bone afferent neurons, and suggest that targeted manipulation of artemin/GFRα3 signaling may provide therapeutic benefit for the management of OA pain. DATA AVAILABILITY Data are available on request of the corresponding author.
Collapse
Affiliation(s)
- Michael Morgan
- Department of Anatomy and Physiology, University of Melbourne, Victoria, Australia.
| | - Vida Nazemian
- Department of Anatomy and Physiology, University of Melbourne, Victoria, Australia.
| | - Li Sha Ooi
- Department of Anatomy and Physiology, University of Melbourne, Victoria, Australia.
| | - Sarah Burger
- Department of Anatomy and Physiology, University of Melbourne, Victoria, Australia.
| | - Jenny Thai
- Department of Anatomy and Physiology, University of Melbourne, Victoria, Australia.
| | - Jason Ivanusic
- Department of Anatomy and Physiology, University of Melbourne, Victoria, Australia.
| |
Collapse
|
21
|
Smith ESJ. A new art to treating osteoarthritis pain? Osteoarthritis Cartilage 2023; 31:1275-1277. [PMID: 37460008 DOI: 10.1016/j.joca.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 07/10/2023] [Indexed: 07/31/2023]
Affiliation(s)
- Ewan St J Smith
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK.
| |
Collapse
|
22
|
Dent JO, Segal JP, Brécier A, Gowdy HGM, Dubois RM, Bannerman CA, Halievski K, Silva JR, Ghasemlou N. Advanced Dynamic Weight Bearing as an Observer-independent Measure of Hyperacute Hypersensitivity in Mice. Can J Pain 2023; 7:2249060. [PMID: 37885834 PMCID: PMC10599184 DOI: 10.1080/24740527.2023.2249060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 07/16/2023] [Indexed: 10/28/2023]
Abstract
Background Standard methods assessing pain in rodents are often observer dependent, potentially resulting in biased outcomes. Advanced dynamic weight bearing (ADWB) offers an observer-independent approach that can provide objective, reliable data in preclinical pain research. Aims The aim of this study was to characterize the use of ADWB in assessing murine responses to allyl isothiocyanate (AITC)-induced hyperacute hypersensitivity and identify best practices for use of the device. Methods Male C57BL/6J mice received intraplantar injections of saline or 0.1% AITC solution and were assessed using the ADWB system; simultaneous observer-dependent durations of paw licking and biting were measured. ADWB data were analyzed using the proprietary software from Bioseb and correlated to observer-dependent results, with parameters assessed to optimize data collected. Results ADWB detected pain-directed changes in weight and surface area distribution in AITC-treated mice, with paw weight and surface area placement correlating to paw licking and biting. Optimization of adjustable threshold parameters allowed for reduced coefficients of variability and increased duration of validated data. Conclusions The ADWB assay provides an efficient and unbiased measure of chemical-induced hyperacute hypersensitivity in mice. ADWB detection parameters influence amount of validated data and variability, a consideration for data analysis in future studies.
Collapse
Affiliation(s)
- Jayne O. Dent
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Julia P. Segal
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Aurélie Brécier
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada
- Department of Anesthesiology & Perioperative Medicine, Kingston Health Sciences Centre, Kingston, Ontario, Canada
| | - Hailey G. M. Gowdy
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Rosalin M. Dubois
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Courtney A. Bannerman
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Katherine Halievski
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Jaqueline R. Silva
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada
- Department of Anesthesiology & Perioperative Medicine, Kingston Health Sciences Centre, Kingston, Ontario, Canada
| | - Nader Ghasemlou
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada
- Department of Anesthesiology & Perioperative Medicine, Kingston Health Sciences Centre, Kingston, Ontario, Canada
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
23
|
Ríos Luna A, Fahandezh-Saddi Díaz H, Villanueva Martínez M, Iglesias R, Prado R, Padilla S, Anitua E. Office-Based Intraosseous Infiltrations of PRGF as an Effective Treatment for Knee Osteoarthritis: A Retrospective Observational Clinical Study. J Clin Med 2023; 12:4512. [PMID: 37445547 DOI: 10.3390/jcm12134512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/28/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
The aim of this study was to explore and assess office-based ultrasound-guided intraosseous and intra-articular infiltrations of plasma rich in growth factors (PRGF) in patients with moderate and severe knee osteoarthritis (KOA). Seventy-nine patients (30 women and 49 men) with grade 3-4 KOA according to the Kellgren-Lawrence classification participated in the study. All patients were treated with a minimally invasive technique using local anesthesia WALANT (wide-awake local anesthesia no tourniquet) in the ambulatory setting. A PRGF intra-articular infiltration and two intraosseous infiltrations in the tibial plateau and femoral condyle were performed weekly for a total of three sessions. The evaluation of the results was carried out using knee injury and osteoarthritis outcome score (KOOS) at baseline and post-treatment. After a follow-up period of 11 months (median) [interquartile range, 7-14], all the KOOS domains showed statistically significant improvement (p < 0.001). Moreover, 88% of the patients showed a pain reduction of at least 10 points (minimally clinically important improvement) from pre- to post-treatment. Our retrospective study using the in-office procedure of ultrasound-guided combination of intra-articular and intraosseous infiltrations of PRGF is a safe and efficacious approach for the treatment of grade 3-4 knee osteoarthritis.
Collapse
Affiliation(s)
- Antonio Ríos Luna
- Department of Traumatology and Orthopedic Surgery, Clínica Orthoindal, 04004 Almería, Spain
| | | | | | - Roberto Iglesias
- Department of Traumatology and Orthopedic Surgery, Clínica Orthoindal, 04004 Almería, Spain
| | - Roberto Prado
- Regenerative Medicine Laboratory, BTI-Biotechnology Institute I MAS D, 01007 Vitoria, Spain
| | - Sabino Padilla
- Regenerative Medicine Laboratory, BTI-Biotechnology Institute I MAS D, 01007 Vitoria, Spain
| | - Eduardo Anitua
- Regenerative Medicine Laboratory, BTI-Biotechnology Institute I MAS D, 01007 Vitoria, Spain
| |
Collapse
|
24
|
Perrot S, Anne-Priscille T. Pain in osteoarthritis from a symptom to a disease. Best Pract Res Clin Rheumatol 2023; 37:101825. [PMID: 37236892 DOI: 10.1016/j.berh.2023.101825] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023]
Abstract
Pain is the most frequent symptom of osteoarthritis (OA), occurring much more commonly than stiffness or disability. Classically, OA-related pain has been considered to be a nociceptive pain condition and an alarm signal correlated to the intensity of joint degradation. However, OA-related pain is a specific disease, with a complex pathophysiology, including neuropathic peripheral and central abnormalities, together with local inflammation involving all joint structures. Clinical findings emphasize that it is not a stable and linear condition, that pain experience is poorly correlated to structural modifications, and that the quality of pain in OA is important to consider, aside from its intensity. OA-related pain is modulated by many factors, including the individual patient's psychological and genetic factors, as well as the theoretical role of meteorological influences. Recent findings have improved our knowledge about the central mechanisms of OA pain, especially in persistent cases. A specific questionnaire on OA pain is currently being developed to assess more precisely the patient's experience and target specific pain mechanisms. In conclusion, OA-related pain should be analyzed specifically aside from OA, taking into account the complexity of OA pain as a disease, distinguishing different OA pain phenotypes, to guide more precisely analgesic treatment and OA global management.
Collapse
Affiliation(s)
- Serge Perrot
- Pain Department, Cochin Hospital, Assistance Publique Hôpitaux de Paris, Paris, France; Paris Cité University, INSERM U987, Paris, France.
| | - Trouvin Anne-Priscille
- Pain Department, Cochin Hospital, Assistance Publique Hôpitaux de Paris, Paris, France; Paris Cité University, INSERM U987, Paris, France
| |
Collapse
|
25
|
Tuncay Duruöz M, Öz N, Gürsoy DE, Hande Gezer H. Clinical aspects and outcomes in osteoarthritis. Best Pract Res Clin Rheumatol 2023; 37:101855. [PMID: 37524622 DOI: 10.1016/j.berh.2023.101855] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/11/2023] [Indexed: 08/02/2023]
Abstract
Osteoarthritis (OA) is the most prevalent type of arthritis worldwide, and its incidence significantly increases with age. It commonly affects the knees, hips, spine, big toes, and hands. OA can be identified through clinical examination, symptoms, and imaging methods. Its main symptoms include pain, stiffness, and limitations in joint movement. Examinations may reveal coarse crepitus, bony enlargement, and tenderness at the joint line. In severe cases of OA, rest pain, night pain, and deformity may occur. OA can lead to decreased physical activity, function, and quality of life due to symptoms such as pain and stiffness. To evaluate these impacts, patient-reported outcome measures (PROMs) are necessary. Various generic, disease-specific, and joint-specific PROMs have been developed and used in clinical practice to assess the outcomes of OA.
Collapse
Affiliation(s)
- Mehmet Tuncay Duruöz
- Marmara University School of Medicine, Physical Medicine, Rehabilitation Department, Rheumatology Division, Istanbul, Turkey; Eastern Mediterranean University, Faculty of Medicine, Famagusta, North Cyprus.
| | - Nuran Öz
- Marmara University School of Medicine, Physical Medicine, Rehabilitation Department, Rheumatology Division, Istanbul, Turkey
| | - Didem Erdem Gürsoy
- İstanbul Prof. Dr. Cemil Taşçıoğlu City Hospital, Physical Medicine and Rehabilitation Department, Rheumatology Clinic, Istanbul, Turkeye
| | - Halise Hande Gezer
- Marmara University School of Medicine, Physical Medicine, Rehabilitation Department, Rheumatology Division, Istanbul, Turkey
| |
Collapse
|
26
|
Dainese P, Mahieu H, De Mits S, Wittoek R, Stautemas J, Calders P. Associations between markers of inflammation and altered pain perception mechanisms in people with knee osteoarthritis: a systematic review. RMD Open 2023; 9:rmdopen-2022-002945. [PMID: 37225282 DOI: 10.1136/rmdopen-2022-002945] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 04/01/2023] [Indexed: 05/26/2023] Open
Abstract
To provide an extensive review on the associations between knee inflammation and altered pain perception mechanisms in people with knee osteoarthritis (OA). MEDLINE, Web of Science, EMBASE and Scopus were searched up to 13 December 2022. We included articles reporting associations between knee inflammation (measured by effusion, synovitis, bone marrow lesions (BMLs) and cytokines) and signs of altered pain processing (assessed by quantitative sensory testing and/or questionnaire for neuropathic-like pain) in people with knee OA. Methodological quality was evaluated using the National Heart, Lung and Blood Institute Study Quality Assessment Tool. Level of evidence and strength of conclusion were determined using the Evidence-Based Guideline Development method. Nine studies were included, comprising of 1889 people with knee OA. Signs of greater effusion/synovitis may be positively associated with lower knee pain pressure threshold (PPT) and neuropathic-like pain. Current evidence could not establish an association between BMLs and pain sensitivity. Evidence on associations between inflammatory cytokines and pain sensitivity or neuropathic-like pain was conflicting. There are indications of a positive association between higher serum C reactive protein (CRP) levels and lower PPT and presence of temporal summation. Methodological quality varied from level C to A2. Signs of effusion/synovitis may be positively associated with neuropathic-like pain and pain sensitivity. There are indications of a possible positive association between serum CRP levels and pain sensitivity. Given the quality and the small amount of included studies, uncertainty remains. Future studies with adequate sample size and follow-up are needed to strengthen the level of evidence.PROSPERO registration number: CRD42022329245.
Collapse
Affiliation(s)
- Paolo Dainese
- Rehabilitation Sciences, Ghent University, Ghent, Belgium
| | - Hanne Mahieu
- Rehabilitation Sciences, Ghent University, Ghent, Belgium
| | - Sophie De Mits
- Rheumatology, University Hospital Ghent, Ghent, Belgium
- Smart Space, University Hospital Ghent, Ghent, Belgium
| | - Ruth Wittoek
- Rheumatology, University Hospital Ghent, Ghent, Belgium
- Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Jan Stautemas
- Rehabilitation Sciences, Ghent University, Ghent, Belgium
| | | |
Collapse
|
27
|
Murakami T, Ishida T, Tanaka S, Nakayama J, Tsurugizawa T, Takahashi Y, Kato F, Kawamata M. Inflammation and subsequent nociceptor sensitization in the bone marrow are involved in an animal model of osteoarthritis pain. Life Sci 2023; 324:121736. [PMID: 37121542 DOI: 10.1016/j.lfs.2023.121736] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 05/02/2023]
Abstract
AIMS This study aimed to determine whether pathological changes in the bone marrow cause Osteoarthritis (OA) pain based on magnetic resonance imaging (MRI), immunohistochemistry, and electrophysiology. MAIN METHODS Adjuvant-induced arthritis (AIA) was achieved by injecting 150 μL of complete Freund's adjuvant into the right knee joints of male Sprague-Dawley rats. AIA rats were compared with saline-injected rats. KEY FINDINGS AIA significantly induced mechanical hyperalgesia and spontaneous pain in the right hind paw 1-14 days after induction. Intratibial injection of 50 μL of 1 % lidocaine significantly suppressed AIA-induced mechanical hyperalgesia (p = 0.0001) and spontaneous pain (p = 0.0006) 3 days after induction. In T2-weighted MRI, AIA induced high-signal intensity within the proximal tibial metaphysis, and the mean T2 values in this area significantly increased on days 3 (p = 0.0043) and 14 (p = 0.0012) after induction. AIA induced intraosseous edema and significantly increased the number of intraosseous granulocytes on days 3 (p < 0.0001) and 14 (p < 0.0001) after induction. The electrophysiological study on days 3-7 after induction showed significantly increased spontaneous firing rates (p = 0.0166) and evoked responses to cutaneous stimuli (brush, p < 0.0001; pinching, p = 0.0359) in the right hind paw plantar surface and intratibial stimuli (p = 0.0002) in wide-dynamic-range neurons of the spinal dorsal horn. SIGNIFICANCE Intraosseous changes caused by OA induce hypersensitivity in the sensory afferents innervating bone marrow may be involved in OA pain. Novel bone marrow-targeted therapies could be beneficial for treating OA pain.
Collapse
Affiliation(s)
- Toru Murakami
- Department of Anesthesiology and Resuscitology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Takashi Ishida
- Department of Anesthesiology and Resuscitology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan.
| | - Satoshi Tanaka
- Department of Anesthesiology and Resuscitology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Jun Nakayama
- Department of Molecular Pathology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Tomokazu Tsurugizawa
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Yukari Takahashi
- Center for Neuroscience of Pain and Department of Neuroscience, The Jikei University School of Medicine, Tokyo, Japan
| | - Fusao Kato
- Center for Neuroscience of Pain and Department of Neuroscience, The Jikei University School of Medicine, Tokyo, Japan
| | - Mikito Kawamata
- Department of Anesthesiology and Resuscitology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| |
Collapse
|
28
|
Ai M, Hotham WE, Pattison LA, Ma Q, Henson FM, Smith ESJ. Role of Human Mesenchymal Stem Cells and Derived Extracellular Vesicles in Reducing Sensory Neuron Hyperexcitability and Pain Behaviors in Murine Osteoarthritis. Arthritis Rheumatol 2023; 75:352-363. [PMID: 36122169 PMCID: PMC10952633 DOI: 10.1002/art.42353] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/24/2022] [Accepted: 09/08/2022] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Mesenchymal stem/stromal cells (MSCs) and MSC-derived extracellular vesicles (MSC-EVs) have been reported to alleviate pain in patients with knee osteoarthritis (OA). We undertook this study to determine whether MSCs and/or MSC-EVs reduce OA pain through influencing sensory neuron excitability in OA joints. METHODS We induced knee OA in adult male C57BL/6J mice through destabilization of the medial meniscus (DMM) surgery. Mice were sorted into 4 experimental groups with 9 mice per group as follows: unoperated sham, untreated DMM, DMM plus MSC treatment, and DMM plus MSC-EV treatment. Treated mice received either MSCs at week 14 postsurgery or MSC-EVs at weeks 12 and 14 postsurgery. Mouse behavior was evaluated by digging and rotarod tests and the Digital Ventilated Cage system. At week 16, mouse knee joints were harvested for histology, and dorsal root ganglion (DRG) neurons were isolated for electrophysiology. Furthermore, we induced hyperexcitability in DRG neurons in vitro using nerve growth factor (NGF) then treated these neurons with or without MSC-EVs and evaluated neuron excitability. RESULTS MSC- and MSC-EV-treated DMM-operated mice did not display pain-related behavior changes (in locomotion, digging, and sleep) that occurred in untreated DMM-operated mice. The absence of pain-related behaviors in MSC- and MSC-EV-treated mice was not the result of reduced joint damage but rather a lack of knee-innervating sensory neuron hyperexcitability that was observed in untreated DMM-operated mice. Furthermore, we found that NGF-induced sensory neuron hyperexcitability is prevented by MSC-EV treatment (P < 0.05 versus untreated NGF-sensitized neurons when comparing action potential threshold). CONCLUSION MSCs and MSC-EVs may reduce pain in OA by direct action on peripheral sensory neurons.
Collapse
Affiliation(s)
- Minji Ai
- Department of Veterinary MedicineUniversity of CambridgeUK
| | - William E. Hotham
- Department of Surgery and Department of MedicineUniversity of CambridgeUK
| | | | - Qingxi Ma
- Department of PharmacologyUniversity of CambridgeUK
| | | | | |
Collapse
|
29
|
Sarvilina IV, Danilov AB, Tkacheva ON, Gromova OA, Solovieva EY, Dudinskaya EN, Rozanov AV, Kartashova EA. [Influence of chronic pain in osteoarthritis on the risk of cardiovascular diseases and modern methods of drug prevention]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:20-30. [PMID: 37315238 DOI: 10.17116/jnevro202312305120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The purpose of the review of scientific medical literature was to evaluate the data of the epidemiology of osteoarthritis (OA) and cardiovascular diseases (CVD) with the analysis of risk factors, pathophysiological and pathobiochemical mechanisms of the relationship between OA and the risk of developing CVD in the presence of chronic pain, modern strategies for screening and management of this cohort of patients, the mechanism of action and pharmacological effects of chondroitin sulfate (CS). Conclusions were drawn about the need for additional clinical and observational studies of the efficacy and safety of the parenteral form of CS (Chondroguard) in patients with chronic pain in OA and CVD, improvement of clinical recommendations for the treatment of chronic pain in patients with OA and cardiovascular risk, with special attention to interventions that eliminate mobility restrictions in patients and the inclusion of basic and adjuvant therapy with DMOADs to achieve the goals of multipurpose monotherapy in patients with contraindications to standard therapy drugs.
Collapse
Affiliation(s)
- I V Sarvilina
- Medical Center «Novomedicina» LLC, Rostov-on-Don, Russia
| | - Al B Danilov
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - O N Tkacheva
- Russian Clinical and Research Center of Gerontology - Pirogov Russian National Research Medical University, Moscow, Russia
| | - O A Gromova
- Federal Research Center «Computer Science and Control», Moscow, Russia
| | - E Yu Solovieva
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - E N Dudinskaya
- Russian Clinical and Research Center of Gerontology - Pirogov Russian National Research Medical University, Moscow, Russia
| | - A V Rozanov
- Russian Clinical and Research Center of Gerontology - Pirogov Russian National Research Medical University, Moscow, Russia
| | | |
Collapse
|
30
|
Morgan M, Thai J, Nencini S, Xu J, Ivanusic JJ. Stomatin-like protein 3 modulates the responses of Aδ, but not C fiber bone afferent neurons to noxious mechanical stimulation in an animal model of acute experimental bone pain. Mol Pain 2023; 19:17448069231222407. [PMID: 38073226 PMCID: PMC10734363 DOI: 10.1177/17448069231222407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 12/20/2023] Open
Abstract
STOML3 is a membrane bound scaffolding protein that has been shown to facilitate the opening of mechanically sensitive ion channels and contribute to noxious mechanical sensation, allodynia and hyperalgesia. In this study, we aimed to determine the role of STOML3 in noxious mechanical sensitivity of bone afferent neurons and carrageenan-induced acute inflammation in the bone. An in vivo, electrophysiological bone-nerve preparation was used to make recordings of the activity and sensitivity of bone afferent neurons that innervate the tibial marrow cavity in anaesthetised rats, in response to noxious mechanical stimuli delivered to the marrow cavity, before and after injection of either the STOML3 oligomerisation inhibitor OB-1 or vehicle, in either naïve animals or animals with carrageenan-induced inflammation of the marrow cavity. A dynamic weight-bearing apparatus was used to measure weight bearing in response to inflammatory pain before and after injection of OB-1 or saline into the tibial marrow cavity in the presence of carrageenan-induced inflammation. Electrophysiological recordings revealed that Aδ, but not C bone afferent neurons have a reduced discharge frequency in response to mechanical stimulation, and that carrageenan-induced sensitisation of Aδ, but not C bone afferent neurons was attenuated by inhibition of STOML3 oligomerisation with OB-1. Animals treated with OB-1 spent a significantly greater amount of time on the limb injected with carrageenan than animals treated with saline. Our findings demonstrate that inhibition of STOML3 oligomerisation reduces inflammatory bone pain by reducing the sensitivity of Aδ bone afferent neurons to mechanical stimulation. Targeting STOML3 may be an effective approach to reduce pain from noxious pressure and/or painful inflammatory pathology in bone.
Collapse
Affiliation(s)
- Michael Morgan
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC, Australia
| | - Jenny Thai
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC, Australia
| | - Sara Nencini
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC, Australia
| | - James Xu
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC, Australia
| | - Jason J Ivanusic
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
31
|
Chao D, Tran H, Hogan QH, Pan B. Analgesic dorsal root ganglion field stimulation blocks both afferent and efferent spontaneous activity in sensory neurons of rats with monosodium iodoacetate-induced osteoarthritis. Osteoarthritis Cartilage 2022; 30:1468-1481. [PMID: 36030058 PMCID: PMC9588581 DOI: 10.1016/j.joca.2022.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/03/2022] [Accepted: 08/18/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Chronic joint pain is common in patients with osteoarthritis (OA). Non-steroidal anti-inflammatory drugs and opioids are used to relieve OA pain, but they are often inadequately effective. Dorsal root ganglion field stimulation (GFS) is a clinically used neuromodulation approach, although it is not commonly employed for patients with OA pain. GFS showed analgesic effectiveness in our previous study using the monosodium iodoacetate (MIA) - induced OA rat pain model. This study was to evaluate the mechanism of GFS analgesia in this model. METHODS After osteoarthritis was induced by intra-articular injection of MIA, pain behavioral tests were performed. Effects of GFS on the spontaneous activity (SA) were tested with in vivo single-unit recordings from teased fiber saphenous nerve, sural nerve, and dorsal root. RESULTS Two weeks after intra-articular MIA injection, rats developed pain-like behaviors. In vivo single unit recordings from bundles teased from the saphenous nerve and third lumbar (L3) dorsal root of MIA-OA rats showed a higher incidence of SA than those from saline-injected control rats. GFS at the L3 level blocked L3 dorsal root SA. MIA-OA reduced the punctate mechanical force threshold for inducing AP firing in bundles teased from the L4 dorsal root, which reversed to normal with GFS. After MIA-OA, there was increased retrograde SA (dorsal root reflex), which can be blocked by GFS. CONCLUSIONS These results indicate that GFS produces analgesia in MIA-OA rats at least in part by producing blockade of afferent inputs, possibly also by blocking efferent activity from the dorsal horn.
Collapse
Affiliation(s)
- D Chao
- Department of Anesthesiology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, USA
| | - H Tran
- Department of Anesthesiology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, USA
| | - Q H Hogan
- Department of Anesthesiology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, USA
| | - B Pan
- Department of Anesthesiology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, USA.
| |
Collapse
|
32
|
Abstract
Joint pain is the hallmark symptom of osteoarthritis (OA) and the main reason for patients to seek medical assistance. OA pain greatly contributes to functional limitations of joints and reduced quality of life. Although several pain-relieving medications are available for OA treatment, the current intervention strategy for OA pain cannot provide satisfactory pain relief, and the chronic use of the drugs for pain management is often associated with significant side effects and toxicities. These observations suggest that the mechanisms of OA-related pain remain undefined. The current review mainly focuses on the characteristics and mechanisms of OA pain. We evaluate pathways associated with OA pain, such as nerve growth factor (NGF)/tropomyosin receptor kinase A (TrkA), calcitonin gene-related peptide (CGRP), C–C motif chemokine ligands 2 (CCL2)/chemokine receptor 2 (CCR2) and tumor necrosis factor alpha (TNF-α), interleukin-1beta (IL-1β), the NOD-like receptor (NLR) family, pyrin domain-containing protein 3 (NLRP3) inflammasome, and the Wnt/β-catenin signaling pathway. In addition, animal models currently used for OA pain studies and emerging preclinical studies are discussed. Understanding the multifactorial components contributing to OA pain could provide novel insights into the development of more specific and effective drugs for OA pain management.
Collapse
|
33
|
Han FY, Brockman DA, Nicholson JR, Corradini L, Smith MT. Gait analysis as a robust pain behavioural endpoint in the chronic phase of the monoiodoacetate-induced knee joint pain in the rat. Behav Pharmacol 2022; 33:23-31. [PMID: 35007233 DOI: 10.1097/fbp.0000000000000663] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The monoiodoacetate-induced rat model of osteoarthritis knee pain is widely used. However, there are between-study differences in the pain behavioural endpoints assessed and in the dose of intraarticular monoiodoacetate administered. This study evaluated the robustness of gait analysis as a pain behavioural endpoint in the chronic phase of this model, in comparison with mechanical hyperalgesia in the injected (ipsilateral) joint and development of mechanical allodynia in the ipsilateral hind paws. Groups of Sprague-Dawley rats received a single intraarticular injection of monoiodoacetate at 0.5, 1, 2 or 3 mg or vehicle (saline) into the left (ipsilateral) knee joint. An additional group of rats were not injected (naïve group). The pain behavioural methods used were gait analysis, measurement of pressure algometry thresholds in the ipsilateral knee joints, and assessment of mechanical allodynia in the ipsilateral hind paws using von Frey filaments. These pain behavioural endpoints were assessed premonoiodoacetate injection and for up to 42-days postmonoiodoacetate injection in a blinded manner. Body weights were also assessed as a measure of general health. Good general health was maintained as all rats gained weight at a similar rate for the 42-day study period. In the chronic phase of the model (days 9-42), intraarticular monoiodoacetate at 3 mg evoked robust alterations in multiple gait parameters as well as persistent mechanical allodynia in the ipsilateral hind paws. For the chronic phase of the monoiodoacetate-induced rat model of osteoarthritis knee pain, gait analysis, such as mechanical allodynia in the ipsilateral hind paws, is a robust pain behavioural measure.
Collapse
Affiliation(s)
- Felicity Y Han
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Queensland, Australia
| | - David A Brockman
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Queensland, Australia
| | | | - Laura Corradini
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Maree Therese Smith
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Queensland, Australia
| |
Collapse
|
34
|
Morgan M, Nazemian V, Harrington K, Ivanusic JJ. Mini review: The role of sensory innervation to subchondral bone in osteoarthritis pain. Front Endocrinol (Lausanne) 2022; 13:1047943. [PMID: 36605943 PMCID: PMC9808033 DOI: 10.3389/fendo.2022.1047943] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/30/2022] [Indexed: 01/07/2023] Open
Abstract
Osteoarthritis pain is often thought of as a pain driven by nerves that innervate the soft tissues of the joint, but there is emerging evidence for a role for nerves that innervate the underlying bone. In this mini review we cite evidence that subchondral bone lesions are associated with pain in osteoarthritis. We explore recent studies that provide evidence that sensory neurons that innervate bone are nociceptors that signal pain and can be sensitized in osteoarthritis. Finally, we describe neuronal remodeling of sensory and sympathetic nerves in bone and discuss how these processes can contribute to osteoarthritis pain.
Collapse
|
35
|
Han FY, Brockman DA, Nicholson JR, Corradini L, Smith MT. Pharmacological characterization of the chronic phase of the monoiodoacetate-induced rat model of osteoarthritis pain in the knee joint. Clin Exp Pharmacol Physiol 2021; 48:1515-1522. [PMID: 34275162 DOI: 10.1111/1440-1681.13551] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 11/27/2022]
Abstract
For patients with osteoarthritis (OA) of the knee, pain is the most debilitating symptom. Although it has been proposed that the chronic phase of the monoiodoacetate (MIA)-induced rodent model of knee joint pain may be superior to other chronic or acute OA models for assessing the analgesic efficacy of novel molecules, relatively few pharmacological studies have been conducted in the chronic phase of this model. Hence, this study was designed to use pharmacological methods to characterize the chronic phase of the MIA-induced rat model of knee joint OA pain. Rats received a single intraarticular injection of MIA at 2.5 mg or vehicle (saline) into the left (ipsilateral) knee joint. Pain behaviour was assessed by measuring paw withdrawal thresholds (PWTs) in the hindpaws pre-MIA injection and twice-weekly until study completion on day 42. Mechanical allodynia was fully developed in the ipsilateral hindpaws (PWTs ≤6 g) from day 7 and it persisted until day 42. MIA-injected rats with PWTs ≤6 g in the ipsilateral hindpaws received single doses of one of four clinically available drugs that represent four distinct pharmacological classes, viz gabapentin, amitriptyline, meloxicam and morphine, according to a 'washout' protocol with at least 48 hours between successive doses. Gabapentin evoked dose-dependent anti-allodynia as did morphine whereas amitriptyline and meloxicam were inactive. Our findings are aligned with clinical data showing that gabapentin and morphine alleviated OA pain in the knee. The lack of efficacy of amitriptyline is consistent with the loss of descending diffuse noxious inhibitory controls reported by others in this model.
Collapse
Affiliation(s)
- Felicity Y Han
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - David A Brockman
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | | | - Laura Corradini
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Maree T Smith
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|