1
|
Tan L, Wang X, Wang S, Wu Z, Zhang L, Zhang T, Dou H, Cao P, Hou Y. Soufeng Sanjie formula alleviates the progression of lupus and joint injury by regulating the ALKBH5-FoxO1-PFKFB3 axis in M-MDSCs. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156687. [PMID: 40215825 DOI: 10.1016/j.phymed.2025.156687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 03/15/2025] [Accepted: 03/24/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) cases present with impaired immune function and injured organs, with joint injury being one of the most common complications. Soufeng Sanjie formula (SF) is a traditional Chinese medicine (TCM) that alleviates rheumatoid arthritis and has a significant regulatory effect on T cells. Recently, myeloid-derived suppressor cells (MDSCs) have been considered an essential factor contributing to SLE pathogenesis, as they can mediate the abnormal amplification of Th17 cells. However, it remains unclear whether SF targets MDSCs to alleviate SLE and joint injury. PURPOSE We aim to examine SF for therapeutic effects in lupus mice and the potential molecular mechanisms. STUDY DESIGN AND METHODS We developed an IMQ-induced lupus mouse model for assessing the high and low doses of SF for their effects. The manifestations of joint injury were also examined. Changes in immune cell populations were analyzed by flow cytometry and in vitro co-culture experiments. The key targets and active components of the SF were identified through network pharmacological analysis. Moreover, SF-containing serum was prepared to stimulate TLR7 against R848-induced-MDSCs in vitro. We also developed a pristane-induced lupus model in myeloid FoxO1-deficient mice. ECAR and OCR detection, measurements of glucose and lactic acid levels, luciferase reporter gene assays and ChIP-qPCR were employed to assess the transcriptional regulatory mechanisms of FoxO1. Dot blot analysis in conjunction with RNA immunoprecipitation (RIP) was used to assess post-transcriptional regulation. RESULTS SF significantly alleviated the symptoms of IMQ-induced lupus in mice, including joint damage. SF decreased the proportion of monocytic MDSCs (M-MDSCs), with no significant effects on granulocytic MDSCs (G-MDSCs), in both blood and spleen. Network pharmacological analysis indicated that FoxO1 was a key target of SF in M-MDSCs. Expectedly, SF-containing serum enhanced the immunosuppressive effect of M-MDSCs on Th17 cells by increasing FoxO1. The therapeutic efficacy of SF was diminished in the pristane-induced lupus model with myeloid FoxO1-deficient mice. Mechanistically, FoxO1 impaired the glycolytic process in M-MDSCs by inhibiting PFKFB3 transcription, thereby enhancing their immunosuppressive effect on Th17 cells. Additionally, delphinidin chloride (DP), an important constituent of SF, increased FoxO1 mRNA stability by downregulating ALKBH5-m6A modification in M-MDSCs. CONCLUSION This study confirmed that SF enhanced glycolysis in M-MDSCs by regulating the ALKBH5-FoxO1-PFKFB3 axis, which decreased Th17 cells and alleviated lupus and joint injury. These data firstly indicate SF may represent a potential treatment option for SLE and joint damage, revealing regulatory effects of DP, the key active component of SF, at the post-transcriptional level.
Collapse
Affiliation(s)
- Liping Tan
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, PR China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China
| | - Xiuzhu Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, PR China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China
| | - Shuangan Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, PR China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China
| | - Zirou Wu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, PR China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China
| | - Lingyu Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, PR China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China
| | - Tianshu Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, PR China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China
| | - Huan Dou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, PR China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China.
| | - Peng Cao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China.
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, PR China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China.
| |
Collapse
|
2
|
Xin K, Sun R, Xiao W, Lu W, Sun C, Lou J, Xu Y, Chen T, Wu D, Gao Y. Short Peptides from Asian Scorpions: Bioactive Molecules with Promising Therapeutic Potential. Toxins (Basel) 2025; 17:114. [PMID: 40137887 PMCID: PMC11946205 DOI: 10.3390/toxins17030114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/18/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025] Open
Abstract
Scorpion venom peptides, particularly those derived from Asian species, have garnered significant attention, offering therapeutic potential in pain management, cancer, anticoagulation, and infectious diseases. This review provides a comprehensive analysis of scorpion venom peptides, focusing on their roles as voltage-gated sodium (Nav), potassium (Kv), and calcium (Cav) channel modulators. It analyzed Nav1.7 inhibition for analgesia, Kv1.3 blockade for anticancer activity, and membrane disruption for antimicrobial effects. While the low targeting specificity and high toxicity of some scorpion venom peptides pose challenges to their clinical application, recent research has made strides in overcoming these limitations. This review summarizes the latest progress in scorpion venom peptide research, discussing their mechanisms of action, therapeutic potential, and challenges in clinical translation. This work aims to provide new insights and directions for the development of novel therapeutic drugs.
Collapse
Affiliation(s)
- Kaiyun Xin
- Zhejiang Provincial Key Laboratory for Water Environment and Marine, Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (K.X.); (W.X.); (W.L.); (C.S.)
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (J.L.); (Y.X.)
| | - Ruize Sun
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT7 1NN, UK; (R.S.); (T.C.)
| | - Wanyang Xiao
- Zhejiang Provincial Key Laboratory for Water Environment and Marine, Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (K.X.); (W.X.); (W.L.); (C.S.)
| | - Weijie Lu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine, Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (K.X.); (W.X.); (W.L.); (C.S.)
| | - Chenhui Sun
- Zhejiang Provincial Key Laboratory for Water Environment and Marine, Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (K.X.); (W.X.); (W.L.); (C.S.)
| | - Jietao Lou
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (J.L.); (Y.X.)
| | - Yanyan Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (J.L.); (Y.X.)
| | - Tianbao Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT7 1NN, UK; (R.S.); (T.C.)
| | - Di Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (J.L.); (Y.X.)
| | - Yitian Gao
- Zhejiang Provincial Key Laboratory for Water Environment and Marine, Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (K.X.); (W.X.); (W.L.); (C.S.)
| |
Collapse
|
3
|
Zheng Y, Wen Q, Huang Y, Guo D. The Significant Therapeutic Effects of Chinese Scorpion: Modern Scientific Exploration of Ion Channels. Pharmaceuticals (Basel) 2024; 17:1735. [PMID: 39770577 PMCID: PMC11678150 DOI: 10.3390/ph17121735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Chinese scorpion (CS), a traditional animal-based medicine used for over a millennium, has been documented since AD 935-960. It is derived from the scorpion Buthus martensii Karsch and is used to treat various ailments such as stroke, epilepsy, rheumatism, and more. Modern research has identified the pharmacological mechanisms behind its traditional uses, with active components like venom and proteins showing analgesic, antitumor, antiepileptic, and antithrombotic effects. Studies reveal that CS affects ion channels, crucial for cellular functions, through interactions with sodium, potassium, and calcium channels, potentially explaining its therapeutic effects. Future research aims to elucidate the precise mechanisms, target specific ion channel subtypes, and validate clinical efficacy and safety, paving the way for novel therapies based on these natural compounds.
Collapse
Affiliation(s)
- Yueyuan Zheng
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Y.Z.); (Q.W.); (Y.H.)
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Qiuyi Wen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Y.Z.); (Q.W.); (Y.H.)
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Yushi Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Y.Z.); (Q.W.); (Y.H.)
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Dean Guo
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Y.Z.); (Q.W.); (Y.H.)
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| |
Collapse
|
4
|
Xia Z, Xie L, Li B, Lv X, Zhang H, Cao Z. Antimicrobial Potential of Scorpion-Venom-Derived Peptides. Molecules 2024; 29:5080. [PMID: 39519721 PMCID: PMC11547508 DOI: 10.3390/molecules29215080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
The frequent and irrational use of antibiotics by humans has led to the escalating rise of antimicrobial resistance (AMR) with a high rate of morbidity-mortality worldwide, which poses a challenge to the development of effective treatments. A large number of host defense peptides from different organisms have gained interest due to their broad antibacterial spectrum, rapid action, and low target resistance, implying that these natural sources might be a new alternative to antimicrobial drugs. As important effectors of prey capture, defense against other animal attacks, and competitor deterrence, scorpion venoms have been developed as important candidate sources for modern drug development. With the rapid progress of bioanalytical and high throughput sequencing techniques, more and more scorpion-venom-derived peptides, including disulfide-bridged peptides (DBPs) and non-disulfide-bridged peptides (NDBPs), have been recently identified as having massive pharmacological activities in channelopathies, pathogen infections, and cancer treatments. In this review, we summarize the molecular diversity and corresponding structural classification of scorpion venom peptides with antibacterial, antifungal, and/or antiparasitic activity. We also aim to improve the understanding of the underlying mechanisms by which scorpion-venom-derived peptides exert these antimicrobial functions, and finally highlight their key aspects and prospects for antimicrobial therapeutic or pharmaceutical application.
Collapse
Affiliation(s)
- Zhiqiang Xia
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian 463000, China; (Z.X.); (L.X.)
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Zhumadian Huazhong Chia Tai Co., Ltd., Zhumadian 463000, China; (B.L.); (X.L.)
- Henan Topfond Pharmaceutical Company Limited, Zhumadian 463000, China;
- Shenzhen Research Institute, Wuhan University, Shenzhen 518057, China
| | - Lixia Xie
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian 463000, China; (Z.X.); (L.X.)
| | - Bing Li
- Zhumadian Huazhong Chia Tai Co., Ltd., Zhumadian 463000, China; (B.L.); (X.L.)
| | - Xiangyun Lv
- Zhumadian Huazhong Chia Tai Co., Ltd., Zhumadian 463000, China; (B.L.); (X.L.)
| | - Hongzhou Zhang
- Henan Topfond Pharmaceutical Company Limited, Zhumadian 463000, China;
| | - Zhijian Cao
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Shenzhen Research Institute, Wuhan University, Shenzhen 518057, China
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
5
|
Wang X, Luo H, Peng X, Chen J. Spider and scorpion knottins targeting voltage-gated sodium ion channels in pain signaling. Biochem Pharmacol 2024; 227:116465. [PMID: 39102991 DOI: 10.1016/j.bcp.2024.116465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
In sensory neurons that transmit pain signals, whether acute or chronic, voltage-gated sodium channels (VGSCs) are crucial for regulating excitability. NaV1.1, NaV1.3, NaV1.6, NaV1.7, NaV1.8, and NaV1.9 have been demonstrated and defined their functional roles in pain signaling based on their biophysical properties and distinct patterns of expression in each subtype of sensory neurons. Scorpions and spiders are traditional Chinese medicinal materials, belonging to the arachnid class. Most of the studied species of them have evolved venom peptides that exhibit a wide variety of knottins specifically targeting VGSCs with subtype selectivity and conformational specificity. This review provides an overview on the exquisite knottins from scorpion and spider venoms targeting pain-related NaV channels, describing the sequences and the structural features as well as molecular determinants that influence their selectivity on special subtype and at particular conformation, with an aim for the development of novel research tools on NaV channels and analgesics with minimal adverse effects.
Collapse
Affiliation(s)
- Xiting Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Huan Luo
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Xiaozhen Peng
- School of Public Health & Laboratory Medicine, Hunan University of Medicine, Huaihua 418000, China.
| | - Jinjun Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Provincial Engineering Technology Research Center for Cell Mechanics and Function Analysis, Changsha 418000, China.
| |
Collapse
|
6
|
Qin C, Yang X, Zuo Z, Yuan P, Sun F, Luo X, Ye X, Cao Z, Chen Z, Wu Y. Differential potassium channel inhibitory activities of a novel thermostable degradation peptide BmKcug1a-P1 from scorpion medicinal material and its N-terminal truncated/restored peptides. Sci Rep 2024; 14:16092. [PMID: 38997408 PMCID: PMC11245557 DOI: 10.1038/s41598-024-66794-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024] Open
Abstract
Thermally stable full-length scorpion toxin peptides and partially degraded peptides with complete disulfide bond pairing are valuable natural peptide resources in traditional Chinese scorpion medicinal material. However, their pharmacological activities are largely unknown. This study discovered BmKcug1a-P1, a novel N-terminal degraded peptide, in this medicinal material. BmKcug1a-P1 inhibited hKv1.2 and hKv1.3 potassium channels with IC50 values of 2.12 ± 0.27 μM and 1.54 ± 0.28 μM, respectively. To investigate the influence of N-terminal amino acid loss on the potassium channel inhibiting activities, three analogs (i.e., full-length BmKcug1a, BmKcug1a-P1-D2 and BmKcug1a-P1-D4) of BmKcug1a-P1 were prepared, and their potassium channel inhibiting activities on hKv1.3 channel were verified by whole-cell patch clamp technique. Interestingly, the potassium channel inhibiting activity of full-length BmKcug1a on the hKv1.3 channel was significantly improved compared to its N-terminal degraded form (BmKcug1a-P1), while the activities of two truncated analogs (i.e., BmKcug1a-P1-D2 and BmKcug1a-P1-D4) were similar to that of BmKcug1a-P1. Extensive alanine-scanning experiments identified the bonding interface (including two key functional residues, Asn30 and Arg34) of BmKcug1a-P1. Structural and functional dissection further elucidated whether N-terminal residues of the peptide are located at the bonding interface is important in determining whether the N-terminus significantly influences the potassium channel inhibiting activity of the peptide. Altogether, this research identified a novel N-terminal degraded active peptide, BmKcug1a-P1, from traditional Chinese scorpion medicinal material and elucidated how the N-terminus of peptides influences their potassium channel inhibiting activity, contributing to the functional identification and molecular truncation optimization of full-length and degraded peptides from traditional Chinese scorpion medicinal material Buthus martensii Karsch.
Collapse
Affiliation(s)
- Chenhu Qin
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, China
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xuhua Yang
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zheng Zuo
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Peixin Yuan
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Fang Sun
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, China
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xudong Luo
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, China
| | - Xiangdong Ye
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, China
| | - Zhijian Cao
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Center for BioDrug Research, Wuhan University, Wuhan, 430072, China
| | - Zongyun Chen
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, China.
- College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Yingliang Wu
- College of Life Sciences, Wuhan University, Wuhan, 430072, China.
- Center for BioDrug Research, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
7
|
Chen M, Lu M, Feng X, Wu M, Luo X, Xiang R, Luo R, Wu H, Liu Z, Wang M, Zhou X. LmNaTx15, a novel scorpion toxin, enhances the activity of Nav channels and induces pain in mice. Toxicon 2023; 236:107331. [PMID: 37918718 DOI: 10.1016/j.toxicon.2023.107331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/04/2023]
Abstract
Polypeptide toxins are major bioactive components found in venomous animals. Many polypeptide toxins can specifically act on targets, such as ion channels and voltage-gated sodium (Nav) channels, in the nervous, muscle, and cardiovascular systems of the recipient to increase defense and predation efficiency. In this study, a novel polypeptide toxin, LmNaTx15, was isolated from the venom of the scorpion Lychas mucronatus, and its activity was analyzed. LmNaTx15 slowed the fast inactivation of Nav1.2, Nav1.3, Nav1.4, Nav1.5, and Nav1.7 and inhibited the peak current of Nav1.5, but it did not affect Nav1.8. In addition, LmNaTx15 altered the voltage-dependent activation and inactivation of these Nav channel subtypes. Furthermore, like site 3 neurotoxins, LmNaTx15 induced pain in mice. These results show a novel scorpion toxin with a modulatory effect on specific Nav channel subtypes and pain induction in mice. Therefore, LmNaTx15 may be a key bioactive component for scorpion defense and predation. Besides, this study provides a basis for analyzing structure-function relationships of the scorpion toxins affecting Nav channel activity.
Collapse
Affiliation(s)
- Minzhi Chen
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Minjuan Lu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Xujun Feng
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Meijing Wu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Xiaoqing Luo
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Ruiqi Xiang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Ren Luo
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Hang Wu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Zhonghua Liu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Meichi Wang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China.
| | - Xi Zhou
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China.
| |
Collapse
|
8
|
Zhang BW, Dong H, Wu Z, Jiang X, Zou W. An Overview of the Mechanisms Involved in Neuralgia. J Inflamm Res 2023; 16:4087-4101. [PMID: 37745793 PMCID: PMC10516189 DOI: 10.2147/jir.s425966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/26/2023] [Indexed: 09/26/2023] Open
Abstract
Neuralgia is a frequently occurring condition that causes chronic pain and burdens both patients and their families. Earlier research indicated that anti-inflammatory treatment, which was primarily utilized to address conditions like neuralgia, resulted in positive outcomes. However, recent years have witnessed the emergence of various novel mechanisms associated with pain-related disorders. This review provides a concise overview of the inflammatory mechanisms involved in neuralgia. It also examines recent advancements in research, exploring the influence of ion channels and synaptic proteins on neuralgia and its complications. Additionally, the interactions between these mechanisms are discussed with the aim of suggesting innovative therapeutic approaches and research directions for the management of neuralgia.
Collapse
Affiliation(s)
- Bai-Wen Zhang
- Heilongjiang University of Chinese Medicine, Harbin, 150040, People’s Republic of China
| | - Hao Dong
- Heilongjiang University of Chinese Medicine, Harbin, 150040, People’s Republic of China
| | - Zhe Wu
- Heilongjiang University of Chinese Medicine, Harbin, 150040, People’s Republic of China
| | - Xi Jiang
- Jinzhou Medical University, Jinzhou, 121001, People’s Republic of China
| | - Wei Zou
- The Third Department of Acupuncture and Moxibustion, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, People’s Republic of China
| |
Collapse
|
9
|
Qin C, Yang X, Zhang Y, Deng G, Huang X, Zuo Z, Sun F, Cao Z, Chen Z, Wu Y. Functional Characterization of a New Degradation Peptide BmTX4-P1 from Traditional Chinese Scorpion Medicinal Material. Toxins (Basel) 2023; 15:toxins15050340. [PMID: 37235373 DOI: 10.3390/toxins15050340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
Thermally processed Buthus martensii Karsch scorpion is an important traditional Chinese medical material that has been widely used to treat various diseases in China for over one thousand years. Our recent work showed that thermally processed Buthus martensii Karsch scorpions contain many degraded peptides; however, the pharmacological activities of these peptides remain to be studied. Here, a new degraded peptide, BmTX4-P1, was identified from processed Buthus martensii Karsch scorpions. Compared with the venom-derived wild-type toxin peptide BmTX4, BmTX4-P1 missed some amino acids at the N-terminal and C-terminal regions, while containing six conserved cysteine residues, which could be used to form disulfide bond-stabilized α-helical and β-sheet motifs. Two methods (chemical synthesis and recombinant expression) were used to obtain the BmTX4-P1 peptide, named sBmTX4-P1 and rBmTX4-P1. Electrophysiological experimental results showed that sBmTX4-P1 and rBmTX4-P1 exhibited similar activities to inhibit the currents of hKv1.2 and hKv1.3 channels. In addition, the experimental electrophysiological results of recombinant mutant peptides of BmTX4-P1 indicated that the two residues of BmTX4-P1 (Lys22 and Tyr31) were the key residues for its potassium channel inhibitory activity. In addition to identifying a new degraded peptide, BmTX4-P1, from traditional Chinese scorpion medicinal material with high inhibitory activities against the hKv1.2 and hKv1.3 channels, this study also provided a useful method to obtain the detailed degraded peptides from processed Buthus martensii Karsch scorpions. Thus, the study laid a solid foundation for further research on the medicinal function of these degraded peptides.
Collapse
Affiliation(s)
- Chenhu Qin
- College of Life Sciences, Wuhan University, Wuhan 430072, China
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China
| | - Xuhua Yang
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yuanyuan Zhang
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Gang Deng
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xin Huang
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zheng Zuo
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Fang Sun
- College of Life Sciences, Wuhan University, Wuhan 430072, China
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China
| | - Zhijian Cao
- College of Life Sciences, Wuhan University, Wuhan 430072, China
- Center for BioDrug Research, Wuhan University, Wuhan 430072, China
| | - Zongyun Chen
- College of Life Sciences, Wuhan University, Wuhan 430072, China
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China
| | - Yingliang Wu
- College of Life Sciences, Wuhan University, Wuhan 430072, China
- Center for BioDrug Research, Wuhan University, Wuhan 430072, China
| |
Collapse
|
10
|
Chen Y, Xu E, Sang M, Wang Z, Zhang Y, Ye J, Zhou Q, Zhao C, Hu C, Lu W, Cao P. Makatoxin-3, a thermostable Nav1.7 agonist from Buthus martensii Karsch (BmK) scorpion elicits non-narcotic analgesia in inflammatory pain models. JOURNAL OF ETHNOPHARMACOLOGY 2022; 288:114998. [PMID: 35063590 DOI: 10.1016/j.jep.2022.114998] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/31/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chronic pain management represents a serious healthcare problem worldwide. The use of opioid analgesics for pain has always been hampered by their side effects; in particular, the addictive liability associated with chronic use. Finding a morphine replacement has been a long-standing goal in the field of analgesia. In traditional Chinese medicine, processed Buthus martensii Karsch (BmK) scorpion has been used as a painkiller to treat chronic inflammatory arthritis and spondylitis, so called "Scorpio-analgesia". However, the molecular basis and the underline mechanism for the Scorpio-analgesia are still unclear. AIM OF THE STUDY The study aims to investigate the molecular basis of "Scorpio analgesia" and identify novel analgesics from BmK scorpion. MATERIALS AND METHODS In this study, the analgesic abilities were determined using formalin-, acetic acid- and complete Freund's adjuvant-induced pain models. The effect of BmK venom and processed BmK venom on Nav1.7 were detected by whole-cell voltage-clamp recordings on HEK293-hNav1.7 stable cell line. Action potentials in Dorsal root ganglion (DRG) neurons induced by Makatoxin-3-R58A were recorded in current-clamp mode. The content of Makatoxin-3 was detected using competitive enzyme-linked immunosorbent assay based on the Makatoxin-3 antibody. High performance liquid chromatography, western blot and circular dichroism spectroscopy were used to analysis the stability of Makatoxin-3. RESULTS Here we demonstrate that Makatoxin-3, an α-like toxin in BmK scorpion venom targeting Nav1.7 is the critical component in Scorpio-analgesia. The analgesic effect of Makatoxin-3 could not be reversed by naloxone and is more potent than Nav1.7-selective inhibitors and non-steroidal anti-inflammatory drugs in inflammatory models. Moreover, a R58A mutant of Makatoxin-3 is capable of eliciting analgesia effect without inducing pain response. CONCLUSIONS This study advances ion channel biology and proposes Nav1.7 agonists, rather than the presumed Nav1.7-only blockers, for non-narcotic relief of chronic pain.
Collapse
Affiliation(s)
- Yonggen Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Erjin Xu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Ming Sang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
| | - Zhiheng Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
| | - Yuxin Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Juan Ye
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
| | - Qian Zhou
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
| | - Chenglei Zhao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
| | - Chunping Hu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
| | - Wuguang Lu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China.
| | - Peng Cao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|