1
|
Giordano R, Arendt-Nielsen L, Gerra MC, Kappel A, Østergaard SE, Capriotti C, Dallabona C, Petersen KKS. Pain mechanistic networks: the development using supervised multivariate data analysis and implications for chronic pain. Pain 2025; 166:847-857. [PMID: 39297729 DOI: 10.1097/j.pain.0000000000003410] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/20/2024] [Indexed: 03/20/2025]
Abstract
ABSTRACT Chronic postoperative pain is present in approximately 20% of patients undergoing total knee arthroplasty. Studies indicate that pain mechanisms are associated with development and maintenance of chronic postoperative pain. The current study assessed pain sensitivity, inflammation, microRNAs, and psychological factors and combined these in a network to describe chronic postoperative pain. This study involved 75 patients with and without chronic postoperative pain after total knee arthroplasty. Clinical pain intensity, Oxford Knee Score, and pain catastrophizing were assessed as clinical parameters. Quantitative sensory testing was assessed to evaluate pain sensitivity and microRNAs, and inflammatory markers were likewise analyzed. Supervised multivariate data analysis with "Data Integration Analysis for Biomarker Discovery" using Latent cOmponents (DIABLO) was used to describe the chronic postoperative pain intensity. Two DIABLO models were constructed by dividing the patients into 3 groups or 2 defined by clinical pain intensities. Data Integration Analysis for Biomarker discovery using Latent cOmponents model explained chronic postoperative pain and identified factors involved in pain mechanistic networks among assessments included in the analysis. Developing models of 3 or 2 patient groups using the assessments and the networks could explain 81% and 69% of the variability in clinical postoperative pain intensity. The reduction of the number of parameters stabilized the models and reduced the explanatory value to 69% and 51%. This is the first study to use the DIABLO model for chronic postoperative pain and to demonstrate how different pain mechanisms form a pain mechanistic network. The complex model explained 81% of the variability of clinical pain intensity, whereas the less complex model explained 51% of the variability of clinical pain intensity.
Collapse
Affiliation(s)
- Rocco Giordano
- Department of Oral and Maxillofacial Surgery, Aalborg University Hospital, Aalborg, Denmark
- Center for Neuroplasticity and Pain (CNAP), SMI®, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Lars Arendt-Nielsen
- Center for Neuroplasticity and Pain (CNAP), SMI®, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
- Center for Mathematical Modeling of Knee Osteoarthritis (MathKOA), Department of Material and Production, Faculty of Engineering and Science, Aalborg University, Aalborg, Denmark
- Department of Gastroenterology & Hepatology, MechSense, Aalborg University Hospital, Aalborg, Denmark
- Steno Diabetes Center North Denmark, Clinical Institute, Aalborg University Hospital, Aalborg, Denmark
| | - Maria Carla Gerra
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Andreas Kappel
- Interdisciplinary Orthopedics, Department of Orthopedic Surgery, Aalborg University Hospital, Aalborg University Hospital, Aalborg, Denmark
| | - Svend Erik Østergaard
- Interdisciplinary Orthopedics, Department of Orthopedic Surgery, Aalborg University Hospital, Aalborg University Hospital, Aalborg, Denmark
| | - Camila Capriotti
- Center for Neuroplasticity and Pain (CNAP), SMI®, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Cristina Dallabona
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Kristian Kjær-Staal Petersen
- Center for Neuroplasticity and Pain (CNAP), SMI®, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
- Center for Mathematical Modeling of Knee Osteoarthritis (MathKOA), Department of Material and Production, Faculty of Engineering and Science, Aalborg University, Aalborg, Denmark
| |
Collapse
|
2
|
Zhang R, Yang Y, Li X, Jiao C, Lou M, Mi W, Mao-Ying QL, Chu Y, Wang Y. Exploring shared targets in cancer immunotherapy and cancer-induced bone pain: Insights from preclinical studies. Cancer Lett 2024; 611:217399. [PMID: 39689823 DOI: 10.1016/j.canlet.2024.217399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/13/2024] [Accepted: 12/14/2024] [Indexed: 12/19/2024]
Abstract
Cancer casts a profound shadow on global health, with pain emerging as one of the dominant and severe complications, particularly in advanced stages. The effective management of cancer-induced pain remains an unmet need. Emerging preclinical evidence suggests that targets related to tumor immunotherapy may also modulate cancer-related pain pathways, thus offering a promising therapeutic direction. This review, focusing on more than ten molecular targets that link cancer immunotherapy and cancer-induced bone pain, underscores their potential to tackle both aspects in the context of comprehensive cancer care. Emphasizing factors such as types of cancer, drug administration methods, and sex differences in the analgesic efficacy of immunotherapeutic agents provides neuroscientific insights into personalized pain management for patients with cancer.
Collapse
Affiliation(s)
- Ruofan Zhang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yachen Yang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiang Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Chunmeng Jiao
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Mengping Lou
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Wenli Mi
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Qi-Liang Mao-Ying
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yuxia Chu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yanqing Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
3
|
Panou T, Gouveri E, Papazoglou D, Papanas N. The role of novel inflammation-associated biomarkers in diabetic peripheral neuropathy. Metabol Open 2024; 24:100328. [PMID: 39559514 PMCID: PMC11570971 DOI: 10.1016/j.metop.2024.100328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/20/2024] Open
Abstract
Diabetic neuropathy is one of the commonest complications of diabetes mellitus. Its most frequent form is diabetic peripheral neuropathy (DPN). Currently, there is no established and widely used biomarker for diagnosis and clinical staging of DPN. There is accumulating evidence that low-grade systemic inflammation is a key element in its pathogenesis. In this context, several clinical studies have so far identified potential biomarkers of DPN. These studies have enrolled both subjects with type 1 diabetes mellitus (T1DM) and subjects with type 2 diabetes mellitus (T2DM), including children with T1DM and elderly T2DM subjects. They have also evaluated participants with prediabetes. Potential biomarkers include a wide spectrum of cytokines, chemokines and immune receptors, notably interleukins (IL), mostly IL-1, IL-6 or IL-10, as well as mediators of the tumour necrosis factor-α (TNF-α) related pathway. Cell-ratios, such as neurtrophil-to-lymphocyte ratio (NLR), have yielded promising results as well. Other works have focused on adipokines and identified several signalling molecules (adiponectin, neuregulin 4, isthmin-1 and omentin) as promising biomarkers of DPN. Finally, epigenetic biomarkers have been investigated. Further experience is being gathered with the use of biomarkers in specific age groups and in the discrimination between painless and painful DPN. Prospective studies appear promising in monitoring of DPN progression, but experience is rather limited. Finally, certain cut-off values have been proposed for DPN screening, but these need confirmation. Future large-scale studies are now required to validate biomarkers and to investigate their potential clinical utility.
Collapse
Affiliation(s)
- Theodoros Panou
- Diabetes Centre, Second Department of Internal Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Evanthia Gouveri
- Diabetes Centre, Second Department of Internal Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Dimitrios Papazoglou
- Diabetes Centre, Second Department of Internal Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Nikolaos Papanas
- Diabetes Centre, Second Department of Internal Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
4
|
Wang Y, Zhou W, Zhang F, Wei J, Wang S, Min K, Chen Y, Yang H, Lv X. Exploring the bidirectional causal associations between pain and circulating inflammatory proteins: A Mendelian randomization study. Clin Exp Pharmacol Physiol 2024; 51:e13905. [PMID: 38965671 DOI: 10.1111/1440-1681.13905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 07/06/2024]
Abstract
Multisite chronic pain (MCP) and site-specific chronic pain (SSCP) may be influenced by circulating inflammatory proteins, but the causal relationship remains unknown. To overcome this limitation, two-sample bidirectional Mendelian randomization (MR) analysis was used to analyse data for 91 circulating inflammatory proteins, MCP and SSCP encompassing headache, back pain, shoulder pain, hip pain, knee pain, stomach abdominal pain and facial pain. The primary MR method used was inverse variance weighting, sensitivity analyses included weighted median, MR pleiotropy residual sum and outlier and the Egger intercept method. Heterogeneity was also detected using Cochrane's Q test and leave-one-out analyses. Finally, a causal relationship between 29 circulating inflammatory proteins and chronic pain was identified. Among these proteins, 14 exhibited a protective effect, including MCP (T-cell surface glycoprotein cluster of differentiation 5), headache (4E-binding protein 1 [4EBP1], cluster of differentiation 40, cluster of differentiation 6 and C-X-C motif chemokine [CXCL] 11), back pain (leukaemia inhibitory factor), shoulder pain (fibroblast growth factor [FGF]-5 and interleukin [IL]-18R1), stomach abdominal pain (tumour necrosis factor [TNF]-α), hip pain (CXCL1, IL-20 and signalling lymphocytic activation molecule 1) and knee pain (IL-7 and TNF-β). Additionally, 15 proteins were identified as risk factors for MCP and SSCP: MCP (colony-stimulating factor 1, human glial cell line-derived neurotrophic factor and IL-17C), headache (fms-related tyrosine kinase 3 ligand, IL-20 receptor subunit α [IL-20RA], neurotrophin-3 and tumour necrosis factor receptor superfamily member 9), facial pain (CXCL1), back pain (TNF), shoulder pain (IL-17C and matrix metalloproteinase-10), stomach abdominal pain (IL-20RA), hip pain (C-C motif chemokine 11/eotaxin-1 and tumour necrosis factor ligand superfamily member 12) and knee pain (4EBP1). Importantly, in the opposite direction, MCP and SSCP did not exhibit a significant causal impact on circulating inflammatory proteins. Our study identified potential causal influences of various circulating inflammatory proteins on MCP and SSCP and provided promising treatments for the clinical management of MCP and SSCP.
Collapse
Affiliation(s)
- Yu Wang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wenyu Zhou
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Faqiang Zhang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Juan Wei
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Sheng Wang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Keting Min
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuanli Chen
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hao Yang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xin Lv
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
5
|
Bäckryd E, Themistocleous A, Larsson A, Gordh T, Rice ASC, Tesfaye S, Bennett DL, Gerdle B. Eleven neurology-related proteins measured in serum are positively correlated to the severity of diabetic neuropathy. Sci Rep 2024; 14:17068. [PMID: 39048581 PMCID: PMC11269577 DOI: 10.1038/s41598-024-66471-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 07/01/2024] [Indexed: 07/27/2024] Open
Abstract
About 20% of patients with diabetes suffer from chronic pain with neuropathic characteristics. We investigated the multivariate associations between 92 neurology-related proteins measured in serum from 190 patients with painful and painless diabetic neuropathy. Participants were recruited from the Pain in Neuropathy Study, an observational cross-sectional multicentre study in which participants underwent deep phenotyping. In the exploration cohort, two groups were defined by hierarchical cluster analyses of protein data. The proportion of painless vs painful neuropathy did not differ between the two groups, but one group had a significantly higher grade of neuropathy as measured by the Toronto Clinical Scoring System (TCSS). This finding was replicated in the replication cohort. Analyzing both groups together, we found that a group of 11 inter-correlated proteins (TNFRSF12A, SCARB2, N2DL-2, SKR3, EFNA4, LAYN, CLM-1, CD38, UNC5C, GFR-alpha-1, and JAM-B) were positively associated with TCSS values. Notably, EFNA4 and UNC5C are known to be part of axon guidance pathways. To conclude, although cluster analysis of 92 neurology-related proteins did not distinguish painful from painless diabetic neuropathy, we identified 11 proteins which positively correlated to neuropathy severity and warrant further investigation as potential biomarkers.
Collapse
Affiliation(s)
- Emmanuel Bäckryd
- Pain and Rehabilitation Center, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.
| | | | - Anders Larsson
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
| | - Torsten Gordh
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Andrew S C Rice
- Pain Research, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Solomon Tesfaye
- Diabetes Research Unit, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - David L Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Björn Gerdle
- Pain and Rehabilitation Center, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
6
|
Bäckryd E, Novo M, Hallsén J, Schultze S, Rivano Fischer M, Gerdle B. The new chronic pain MG30 category and diagnostic specificity in quality registries-problems and suggested solutions with special reference to Swedish Quality Registry for Pain rehabilitation (SQRP). FRONTIERS IN PAIN RESEARCH 2024; 5:1396429. [PMID: 39027915 PMCID: PMC11254812 DOI: 10.3389/fpain.2024.1396429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024] Open
Abstract
The Swedish Quality Registry for Pain rehabilitation (SQRP) is a well-established clinical registry for adult patients with complex chronic pain conditions. SQRP registers patient-reported outcome measures from a majority of specialist chronic pain units/departments in Sweden. Up to four International Classification of Diseases version 10 (ICD-10) diagnoses can be registered in SQRP. The aim of the paper is to describe how we envision the new chronic pain category MG30 in ICD-11 can be used in SQRP. We envision that the first diagnosis in SQRP shall always be a MG30 diagnosis, which will ensure broad implementation of ICD-11 in Swedish pain care. However, at first glance, there seems to be specificity problems with ICD-11 codes that might impair their useability in SQRP or other registries. But ICD-11 offers more than meets the eye. First, the entries at the level of the so-called foundational layer have unique resource identifiers (URI) that can be used to enhance specificity. Second, ICD-11 contains numerous extension codes that can be combined with the MG30 codes - for instance, concerning the anatomical location of pain. Third, to enrich the description of the clinical concept at hand, it is possible to create clusters of stem codes. These three options are briefly discussed. We conclude that the full potential of the MG30 category can be better exploited in registries such as SQRP if foundational codes, extension codes, and/or clustering of stem codes are used to enhance diagnostic specificity.
Collapse
Affiliation(s)
- Emmanuel Bäckryd
- Pain and Rehabilitation Center, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Mehmed Novo
- Department of Community Medicine and Rehabilitation, Rehabilitation Medicine, Umeå University, Umeå, Sweden
| | | | | | - Marcelo Rivano Fischer
- Department of Neurosurgery and Pain Rehabilitation, Skåne University Hospital, Lund, Sweden
- Department of Health Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Björn Gerdle
- Pain and Rehabilitation Center, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Department of Neurosurgery and Pain Rehabilitation, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
7
|
Hu J, Fu J, Cai Y, Chen S, Qu M, Zhang L, Fan W, Wang Z, Zeng Q, Zou J. Bioinformatics and systems biology approach to identify the pathogenetic link of neurological pain and major depressive disorder. Exp Biol Med (Maywood) 2024; 249:10129. [PMID: 38993198 PMCID: PMC11236560 DOI: 10.3389/ebm.2024.10129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/12/2024] [Indexed: 07/13/2024] Open
Abstract
Neurological pain (NP) is always accompanied by symptoms of depression, which seriously affects physical and mental health. In this study, we identified the common hub genes (Co-hub genes) and related immune cells of NP and major depressive disorder (MDD) to determine whether they have common pathological and molecular mechanisms. NP and MDD expression data was downloaded from the Gene Expression Omnibus (GEO) database. Common differentially expressed genes (Co-DEGs) for NP and MDD were extracted and the hub genes and hub nodes were mined. Co-DEGs, hub genes, and hub nodes were analyzed for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment. Finally, the hub nodes, and genes were analyzed to obtain Co-hub genes. We plotted Receiver operating characteristic (ROC) curves to evaluate the diagnostic impact of the Co-hub genes on MDD and NP. We also identified the immune-infiltrating cell component by ssGSEA and analyzed the relationship. For the GO and KEGG enrichment analyses, 93 Co-DEGs were associated with biological processes (BP), such as fibrinolysis, cell composition (CC), such as tertiary granules, and pathways, such as complement, and coagulation cascades. A differential gene expression analysis revealed significant differences between the Co-hub genes ANGPT2, MMP9, PLAU, and TIMP2. There was some accuracy in the diagnosis of NP based on the expression of ANGPT2 and MMP9. Analysis of differences in the immune cell components indicated an abundance of activated dendritic cells, effector memory CD8+ T cells, memory B cells, and regulatory T cells in both groups, which were statistically significant. In summary, we identified 6 Co-hub genes and 4 immune cell types related to NP and MDD. Further studies are needed to determine the role of these genes and immune cells as potential diagnostic markers or therapeutic targets in NP and MDD.
Collapse
Affiliation(s)
- Jinjing Hu
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
| | - Jia Fu
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Yuxin Cai
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
| | - Shuping Chen
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
| | - Mengjian Qu
- Department of Rehabilitation, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Rehabilitation Laboratory, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Lisha Zhang
- Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Department of Clinical Medicine, Suzhou Vocational Health College, Suzhou, China
| | - Weichao Fan
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ziyi Wang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Qing Zeng
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
| | - Jihua Zou
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
- Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| |
Collapse
|
8
|
Barakat A, Munro G, Heegaard AM. Finding new analgesics: Computational pharmacology faces drug discovery challenges. Biochem Pharmacol 2024; 222:116091. [PMID: 38412924 DOI: 10.1016/j.bcp.2024.116091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/10/2024] [Accepted: 02/23/2024] [Indexed: 02/29/2024]
Abstract
Despite the worldwide prevalence and huge burden of pain, pain is an undertreated phenomenon. Currently used analgesics have several limitations regarding their efficacy and safety. The discovery of analgesics possessing a novel mechanism of action has faced multiple challenges, including a limited understanding of biological processes underpinning pain and analgesia and poor animal-to-human translation. Computational pharmacology is currently employed to face these challenges. In this review, we discuss the theory, methods, and applications of computational pharmacology in pain research. Computational pharmacology encompasses a wide variety of theoretical concepts and practical methodological approaches, with the overall aim of gaining biological insight through data acquisition and analysis. Data are acquired from patients or animal models with pain or analgesic treatment, at different levels of biological organization (molecular, cellular, physiological, and behavioral). Distinct methodological algorithms can then be used to analyze and integrate data. This helps to facilitate the identification of biological molecules and processes associated with pain phenotype, build quantitative models of pain signaling, and extract translatable features between humans and animals. However, computational pharmacology has several limitations, and its predictions can provide false positive and negative findings. Therefore, computational predictions are required to be validated experimentally before drawing solid conclusions. In this review, we discuss several case study examples of combining and integrating computational tools with experimental pain research tools to meet drug discovery challenges.
Collapse
Affiliation(s)
- Ahmed Barakat
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Assiut University, Assiut, Egypt.
| | | | - Anne-Marie Heegaard
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Giordano R, Ghafouri B, Arendt-Nielsen L, Petersen KKS. Inflammatory biomarkers in patients with painful knee osteoarthritis: exploring the potential link to chronic postoperative pain after total knee arthroplasty-a secondary analysis. Pain 2024; 165:337-346. [PMID: 37703399 DOI: 10.1097/j.pain.0000000000003042] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/19/2023] [Indexed: 09/15/2023]
Abstract
ABSTRACT Total knee arthroplasty (TKA) is the end-stage treatment of knee osteoarthritis (OA), and approximately 20% of patients experience chronic postoperative pain. Studies indicate that inflammatory biomarkers might be associated with pain in OA and potentially linked to the development of chronic postoperative pain after TKA. This study aimed to (1) evaluate preoperative serum levels of inflammatory biomarkers in patients with OA and healthy control subjects, (2) investigate preoperative differences of inflammatory biomarker profiles in subgroups of patients, and (3) compare subgroups of patients with and without postoperative pain 12 months after surgery. Serum samples from patients with OA scheduled for TKA (n = 127) and healthy participants (n = 39) were analyzed. Patients completed the Knee-injury-and-Osteoarthritis-Outcome-Score (KOOS) questionnaire and rated their clinical pain intensity using a visual analog scale (VAS) before and 12 months after TKA. Hierarchical cluster analysis and Orthogonal Partial Least Squares Discriminant Analysis were used to compare groups (patients vs control subjects) and to identify subgroups of patients in relation to postoperative outcomes. Difference in preoperative and postoperative VAS and KOOS scores were compared across subgroups. Twelve inflammatory markers were differentially expressed in patients when compared with control subjects. Cluster analysis identified 2 subgroups of patients with 23 proteins being significantly different ( P < 0.01). The 12-months postoperative VAS and KOOS scores were significantly different between subgroups of patients ( P < 0.05). This study identified differences in specific inflammatory biomarker profiles when comparing patients with OA and control subjects. Cluster analysis identified 2 subgroups of patients with OA, with one subgroup demonstrating comparatively worse 12-month postoperative pain intensity and function scores.
Collapse
Affiliation(s)
- Rocco Giordano
- Center for Neuroplasticity and Pain (CNAP), SMI, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Gistrup, Denmark
- Department of Oral and Maxillofacial Surgery, Aalborg University Hospital, Aalborg, Denmark
| | - Bijar Ghafouri
- Pain and Rehabilitation Centre, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Lars Arendt-Nielsen
- Center for Neuroplasticity and Pain (CNAP), SMI, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Gistrup, Denmark
- Center for Mathematical Modeling of Knee Osteoarthritis (MathKOA), Department of Material and Production, Faculty of Engineering and Science, Aalborg University, Aalborg, Denmark
- Department of Gastroenterology & Hepatology, Mech-Sense, Aalborg University Hospital, Aalborg, Denmark
- Steno Diabetes Center North Denmark, Clinical Institute, Aalborg University Hospital, Aalborg, Denmark
| | - Kristian Kjær-Staal Petersen
- Center for Neuroplasticity and Pain (CNAP), SMI, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Gistrup, Denmark
- Center for Mathematical Modeling of Knee Osteoarthritis (MathKOA), Department of Material and Production, Faculty of Engineering and Science, Aalborg University, Aalborg, Denmark
| |
Collapse
|
10
|
Bäckryd E, Themistocleous A, Stensson N, Rice ASC, Tesfaye S, Bennett DL, Gerdle B, Ghafouri B. Serum levels of endocannabinoids and related lipids in painful vs painless diabetic neuropathy: results from the Pain in Neuropathy Study. Pain 2024; 165:225-232. [PMID: 37578507 PMCID: PMC10723642 DOI: 10.1097/j.pain.0000000000003015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 08/15/2023]
Abstract
ABSTRACT N-arachidonoylethanolamine (also known as anandamide) and 2-arachidonoylglycerol are activators of the cannabinoid receptors. The endocannabinoid system also includes structurally and functionally related lipid mediators that do not target cannabinoid receptors, such as oleoylethanolamide, palmitoylethanolamide, and stearoylethanolamide. These bioactive lipids are involved in various physiological processes, including regulation of pain. The primary aim of the study was to analyze associations between serum levels of these lipids and pain in participants in the Pain in Neuropathy Study, an observational, cross-sectional, multicentre, research project in which diabetic patients with painless or painful neuropathy underwent deep phenotyping. Our hypothesis was that painful neuropathy would be associated with higher levels of the 5 lipids compared with painless neuropathy. Secondary aims were to analyze other patient-reported outcome measures and clinical data in relationship to lipid levels. The lipid mediators were analyzed in serum samples using liquid chromatography tandem mass spectrometry (LC-MS/MS). Serum levels of anandamide were significantly higher in the painful group, but the effect size was small (Cohen d = 0.31). Using cluster analysis of lipid data, patients were dichotomized into a "high-level" endocannabinoid group and a "low-level" group. In the high-level group, 61% of patients had painful neuropathy, compared with 45% in the low-level group ( P = 0.039). This work is of a correlative nature only, and the relevance of these findings to the search for analgesics targeting the endocannabinoid system needs to be determined in future studies.
Collapse
Affiliation(s)
- Emmanuel Bäckryd
- Pain and Rehabilitation Center, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | | | - Niclas Stensson
- Pain and Rehabilitation Center, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Andrew S. C. Rice
- Pain Research, Department Surgery and Cancer, Faculty of Medicine, Imperial College London, United Kingdom
| | - Solomon Tesfaye
- Diabetes Research Unit, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - David L. Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Björn Gerdle
- Pain and Rehabilitation Center, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Bijar Ghafouri
- Pain and Rehabilitation Center, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
11
|
Ye AL, Sudek EW, Magdaleno D, Roldan CJ. Diagnostic and therapeutic value of intracellular biomarker testing in chronic pain. Pain Manag 2024; 14:21-27. [PMID: 38193288 DOI: 10.2217/pmt-2023-0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024] Open
Abstract
Aim: Micronutrient and metabolic compound supplementation as a method of treating chronic pain is not well understood. Case: A 58 year-old woman presented with refractory painful neuropathy. She did not respond to conservative treatment and was seeking spinal cord stimulator implantation. She underwent a biomarker panel that revealed low intracellular levels of multiple compounds. As she supplemented her deficiencies, her symptoms fully resolved, and the implant was no longer indicated. Discussion: Micronutrient and metabolic compound testing could potentially expand non-invasive treatment options for patients with refractory chronic pain. Caution should be exercised given limited regulatory oversight in the supplement industry and actively ongoing nutritional research. Conclusion: Biomarker testing panels may be a useful adjunct in the management of refractory neuropathic pain.
Collapse
Affiliation(s)
- Alice L Ye
- Department of Pain Medicine, The University of Texas MD Anderson Texas Center, Houston, TX 77030, USA
| | - Emily W Sudek
- Department of Pain Medicine, The University of Texas MD Anderson Texas Center, Houston, TX 77030, USA
| | - Daniela Magdaleno
- Department of Pain Medicine, The University of Texas MD Anderson Texas Center, Houston, TX 77030, USA
| | - Carlos J Roldan
- Department of Pain Medicine, The University of Texas MD Anderson Texas Center, Houston, TX 77030, USA
- McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA
| |
Collapse
|
12
|
Inflammatory Blood Signature Related to Common Psychological Comorbidity in Chronic Pain. Biomedicines 2023; 11:biomedicines11030713. [PMID: 36979692 PMCID: PMC10045222 DOI: 10.3390/biomedicines11030713] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/09/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
Chronic pain is characterized by high psychological comorbidity, and diagnoses are symptom-based due to a lack of clear pathophysiological factors and valid biomarkers. We investigate if inflammatory blood biomarker signatures are associated with pain intensity and psychological comorbidity in a mixed chronic pain population. Eighty-one patients (72% women) with chronic pain (>6 months) were included. Patient reported outcomes were collected, and blood was analyzed with the Proseek Multiplex Olink Inflammation Panel (Bioscience Uppsala, Uppsala, Sweden), resulting in 77 inflammatory markers included for multivariate data analysis. Three subgroups of chronic pain patients were identified using an unsupervised principal component analysis. No difference between the subgroups was seen in pain intensity, but differences were seen in mental health and inflammatory profiles. Ten inflammatory proteins were significantly associated with anxiety and depression (using the Generalized Anxiety Disorder 7-item scale (GAD-7) and the Patient Health Questionnaire (PHQ-9): STAMBP, SIRT2, AXIN1, CASP-8, ADA, IL-7, CD40, CXCL1, CXCL5, and CD244. No markers were related to pain intensity. Fifteen proteins could differentiate between patients with moderate/high (GAD-7/PHQ-9 > 10) or mild/no (GAD-7/PHQ-9 < 10) psychological comorbidity. This study further contributes to the increasing knowledge of the importance of inflammation in chronic pain conditions and indicates that specific inflammatory proteins may be related to psychological comorbidity.
Collapse
|
13
|
Unbiased proteomic analysis detects painful systemic inflammatory profile in the serum of nerve-injured mice. Pain 2023; 164:e77-e90. [PMID: 35587992 PMCID: PMC9833115 DOI: 10.1097/j.pain.0000000000002695] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/10/2022] [Indexed: 02/06/2023]
Abstract
ABSTRACT Neuropathic pain is a complex, debilitating disease that results from injury to the somatosensory nervous system. The presence of systemic chronic inflammation has been observed in patients with chronic pain but whether it plays a causative role remains unclear. This study aims to determine the perturbation of systemic homeostasis by an injury to peripheral nerve and its involvement in neuropathic pain. We assessed the proteomic profile in the serum of mice at 1 day and 1 month after partial sciatic nerve injury (PSNL) or sham surgery. We also assessed mouse mechanical and cold sensitivity in naïve mice after receiving intravenous administration of serum from PSNL or sham mice. Mass spectrometry-based proteomic analysis revealed that PSNL resulted in a long-lasting alteration of serum proteome, where most of the differentially expressed proteins were in inflammation-related pathways, involving cytokines and chemokines, autoantibodies, and complement factors. Although transferring sham serum to naïve mice did not change their pain sensitivity, PSNL serum significantly lowered mechanical thresholds and induced cold hypersensitivity in naïve mice. With broad anti-inflammatory properties, bone marrow cell extracts not only partially restored serum proteomic homeostasis but also significantly ameliorated PSNL-induced mechanical allodynia, and serum from bone marrow cell extracts-treated PSNL mice no longer induced hypersensitivity in naïve mice. These findings clearly demonstrate that nerve injury has a long-lasting impact on systemic homeostasis, and nerve injury-associated systemic inflammation contributes to the development of neuropathic pain.
Collapse
|
14
|
Miclescu AA, Granlund P, Butler S, Gordh T. Association between systemic inflammation and experimental pain sensitivity in subjects with pain and painless neuropathy after traumatic nerve injuries. Scand J Pain 2023; 23:184-199. [PMID: 35531763 DOI: 10.1515/sjpain-2021-0195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 04/05/2022] [Indexed: 01/17/2023]
Abstract
OBJECTIVES Peripheral neuropathies that occur secondary to nerve injuries may be painful or painless, and including a low-grade inflammation and pro-inflammatory cytokines associated with both regeneration and damage of peripheral nerve cells and fibers. Currently, there are no validated methods that can distinguished between neuropathic pain and painless neuropathy. The aim of this study was to search for proinflammatory and anti-inflammatory proteins associated with pain and experimental pain sensitivity in subjects with surgeon-verified nerve injuries in the upper extremities. METHODS One hundred and thirty-one subjects [69 with neuropathic pain, NP; 62 with painless neuropathy, nP] underwent a conditioned pain modulation (CPM) test that included a cold pressor task (CPT) conducted with the non-injured hand submerged in cold water (4 °C) until pain was intolerable. CPM was assessed by pain ratings to pressure stimuli before and after applying the CPT. Efficient CPM effect was defined as the ability of the individual's CS to inhibit at least 29% of pain (eCPM). The subjects were assigned to one of two subgroups: pain sensitive (PS) and pain tolerant (PT) after the time they could tolerate their hand in cold water (PS<40 s and PT=60 s) . Plasma samples were analyzed for 92 proteins incorporated in the inflammation panel using multiplex Protein Extension Array Technology (PEA). Differentially expressed proteins were investigated using both univariate and multivariate analysis (principal component analysis-PCA and orthogonal partial least-squares discriminant analysis-OPLS-DA). RESULTS Significant differences in all protein levels were found between PS and PT subgroups (CV-ANOVA p<0.001), but not between NP and nP groups (p=0.09) or between inefficient CPM (iCPM) and eCPM (p=0.53) subgroups. Several top proteins associated with NP could be detected using multivariate regression analysis such as stromelysin 2 (MMPs), interleukin-2 receptor subunit beta (IL2RB), chemokine (C-X-C motif) ligand 3 (CXCL3), fibroblast growth factor 5 (FGF5), chemokine (C-C motif) ligand 28 (CCL28), CCL25, CCL11, hepatocyte growth factor (HGF), interleukin 4 (IL4), IL13. After adjusting for multiple testing, none of these proteins correlated significantly with pain. Higher levels of CCL20 (p=0.049) and CUB domain-containing protein (CDCP-1; p=0.047) were found to correlate significantly with cold pain sensitivity. CDCP-1 was highly associated with both PS and iCPM (p=0.042). CONCLUSIONS No significant alterations in systemic proteins were found comparing subjects with neuropathic pain and painless neuropathy. An expression of predominant proinflammatory proteins was associated with experimental cold pain sensitivity in both subjects with pain and painless neuropathy. One these proteins, CDC-1 acted as "molecular fingerprint" overlapping both CPM and CPT. This observation might have implications for the study of pain in general and should be addressed in more detail in future experiments.
Collapse
Affiliation(s)
| | - Pontus Granlund
- Department Surgical Science, Uppsala University, Uppsala, Sweden
| | - Stephen Butler
- Department Surgical Science, Uppsala University, Uppsala, Sweden
| | - Torsten Gordh
- Department Surgical Science, Uppsala University, Uppsala, Sweden
| |
Collapse
|
15
|
Mázala-de-Oliveira T, Jannini de Sá YAP, Carvalho VDF. Impact of gut-peripheral nervous system axis on the development of diabetic neuropathy. Mem Inst Oswaldo Cruz 2023; 118:e220197. [PMID: 36946851 PMCID: PMC10027071 DOI: 10.1590/0074-02760220197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 02/14/2023] [Indexed: 03/22/2023] Open
Abstract
Diabetes is a chronic metabolic disease caused by a reduction in the production and/or action of insulin, with consequent development of hyperglycemia. Diabetic patients, especially those who develop neuropathy, presented dysbiosis, with an increase in the proportion of pathogenic bacteria and a decrease in the butyrate-producing bacteria. Due to this dysbiosis, diabetic patients presented a weakness of the intestinal permeability barrier and high bacterial product translocation to the bloodstream, in parallel to a high circulating levels of pro-inflammatory cytokines such as TNF-α. In this context, we propose here that dysbiosis-induced increased systemic levels of bacterial products, like lipopolysaccharide (LPS), leads to an increase in the production of pro-inflammatory cytokines, including TNF-α, by Schwann cells and spinal cord of diabetics, being crucial for the development of neuropathy.
Collapse
Affiliation(s)
| | | | - Vinicius de Frias Carvalho
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
- Instituto Nacional de Ciência e Tecnologia em Neuroimunomodulação, Rio de Janeiro, RJ, Brasil
- + Corresponding author:
| |
Collapse
|
16
|
Ghafouri B, Ernberg M, Andréll P, Bäckryd E, Fisher MR, Freund-Levi Y, Grelz H, Gräbel O, Karlsten R, Kosek E, Löfgren M, Ringqvist Å, Rudling K, Stålnacke BM, Sörlén N, Uhlin K, Westergren H, Gerdle B. Swedish Chronic Pain Biobank: protocol for a multicentre registry and biomarker project. BMJ Open 2022; 12:e066834. [PMID: 36450421 PMCID: PMC9717004 DOI: 10.1136/bmjopen-2022-066834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
INTRODUCTION About 20% of the adult population have chronic pain, often associated with psychological distress, sick leave and poor health. There are large variations in the clinical picture. A biopsychosocial approach is used in investigation and treatment. The concept of personalised medicine, that is, optimising medication types and dosages for individual patients based on biomarkers and other patient-related factors, has received increasing attention in different diseases but used less in chronic pain. This cooperative project from all Swedish University Hospitals will investigate whether there are changes in inflammation and metabolism patterns in saliva and blood in chronic pain patients and whether the changes correlate with clinical characteristics and rehabilitation outcomes. METHODS AND ANALYSIS Patients at multidisciplinary pain centres at University Hospitals in Sweden who have chosen to participate in the Swedish Quality Registry for Pain Rehabilitation and healthy sex-matched and age-matched individuals will be included in the study. Saliva and blood samples will be collected in addition to questionnaire data obtained from the register. From the samples, proteins, lipids, metabolites and micro-RNA will be analysed in relation to, for example, diagnosis, pain characteristics, psychological distress, body weight, pharmacological treatment and clinical rehabilitation results using advanced multivariate data analysis and bioinformatics. ETHICS AND DISSEMINATION The study is approved by the Swedish Ethical Review Authority (Dnr 2021-04929) and will be conducted in accordance with the declaration of Helsinki.The results will be published in open access scientific journals and in popular scientific relevant journals such as those from patient organisations. Data will be also presented in scientific meetings, meeting with healthcare organisations and disseminated in different lecturers at the clinics and universities.
Collapse
Affiliation(s)
- Bijar Ghafouri
- Pain and Rehabilitation Centre, and Department of Health, Medicine and Caring Sciences, Linköping University, Linkoping, Sweden
| | - Malin Ernberg
- Department of Dental Medicine, Karolinska Institutet, and the Scandinavian Center for Orofacial Neurosciences (SCON), Karolinska Institute, Stockholm, Sweden
| | - Paulin Andréll
- Region Västra Götaland, Sahlgrenska University Hospital, Östra, department of Anaesthesiology and Intensive Care Medicine, Pain Centre, Sahlgrenska Academy, Gothenburg, Sweden
- Department of Anaesthesiology and Intensive Care Medicine, Institute of Clinical Sciences at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Emmanuel Bäckryd
- Pain and Rehabilitation Centre, and Department of Health, Medicine and Caring Sciences, Linköping University, Linkoping, Sweden
| | - Marcelo Rivano Fisher
- Department of Neurosurgery and Pain Rehabilitation at Skåne University Hospital and Faculty of Medicine Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Rehabilitation Medicine Research Group, Department of Health Sciences, Lund University, Lund, Sweden
| | - Yvonne Freund-Levi
- School of Medical Sciences, Örebro University and department of Geriatrics, University Hospital Örebro, Örebro, Sweden
- Department of geriatrics, Södertälje Hospital, Södertälje, Sweden
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Henrik Grelz
- Department of Neurosurgery and Pain Rehabilitation at Skåne University Hospital and Faculty of Medicine Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Olaf Gräbel
- Region Västra Götaland, Sahlgrenska University Hospital, Östra, department of Anaesthesiology and Intensive Care Medicine, Pain Centre, Sahlgrenska Academy, Gothenburg, Sweden
| | - Rolf Karlsten
- Department of Surgical Sciences, Anaesthesiology and Intensive Care, Uppsala University Hospital, Uppsala, Sweden
| | - Eva Kosek
- Department Surgical Sciences, Uppsala University, Uppsala, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Monika Löfgren
- Department of Clinical Sciences, Karolinska Institutet, and Department of Rehabilitation Medicine, Danderyd Hospital, Stockholm, Sweden
| | - Åsa Ringqvist
- Department of Neurosurgery and Pain Rehabilitation at Skåne University Hospital and Faculty of Medicine Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Karin Rudling
- Department of rehabilitation medicine, University hospital Örebro, Örebro, Sweden
| | - Britt-Marie Stålnacke
- Department of Clinical Sciences, Karolinska Institutet, and Department of Rehabilitation Medicine, Danderyd Hospital, Stockholm, Sweden
- Department of Community Medicine and Rehabilitation, Rehabilitation Medicine, Umeå University, Umeå, Sweden
| | - Niklas Sörlén
- Department of Clinical Science, Neurosciences, Umeå University, Umeå, Sweden
| | - Karin Uhlin
- Department of Clinical Sciences, Karolinska Institutet, and Department of Rehabilitation Medicine, Danderyd Hospital, Stockholm, Sweden
| | - Hans Westergren
- Department of Neurosurgery and Pain Rehabilitation at Skåne University Hospital and Faculty of Medicine Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Rehabilitation Medicine Research Group, Department of Health Sciences, Lund University, Lund, Sweden
| | - Björn Gerdle
- Pain and Rehabilitation Centre, and Department of Health, Medicine and Caring Sciences, Linköping University, Linkoping, Sweden
| |
Collapse
|
17
|
Ang L, Mizokami-Stout K, Eid SA, Elafros M, Callaghan B, Feldman EL, Pop-Busui R. The conundrum of diabetic neuropathies-Past, present, and future. J Diabetes Complications 2022; 36:108334. [PMID: 36306721 PMCID: PMC10202025 DOI: 10.1016/j.jdiacomp.2022.108334] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/01/2022] [Accepted: 10/01/2022] [Indexed: 10/31/2022]
Abstract
Diabetic neuropathy (DN) remains arguably the most prevalent chronic complication in people with both type 1 and type 2 diabetes, including in youth, despite changes in the current standards of clinical care. Additionally, emerging evidence demonstrates that neuropathy affects a large proportion of people with undiagnosed diabetes and/or prediabetes, as well as those with obesity. Here we summarize the latest epidemiology of DN, recent findings regarding the pathophysiology of the disease, as well as current outcome measures for screening and diagnosis, in research and clinical settings. The authors discuss novel perspectives on the impact of social determinants of health in DN development and management, and the latest evidence on effective therapies, including pharmacological and nonpharmacological therapies for neuropathic pain. Throughout the publication, we identify knowledge gaps and the need for future funding to address these gaps, as well as needs to advocate for a personalized care approach to reduce the burden of DN and optimize quality of life for all affected individuals.
Collapse
Affiliation(s)
- Lynn Ang
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, United States of America
| | - Kara Mizokami-Stout
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, United States of America; Ann Arbor Veteran Affairs Hospital, Ann Arbor, MI, United States of America
| | - Stephanie A Eid
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America
| | - Melissa Elafros
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America
| | - Brian Callaghan
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America
| | - Rodica Pop-Busui
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, United States of America.
| |
Collapse
|
18
|
Sun Q, Hu T, Zhang Y, Wang X, Liu J, Chen W, Wei C, Liu D, Wu W, Lan T, Ding Y, Luo Z, Liu M, Shen D, Xiao Z, Hu L, Pang M, Ma Y, Shi L, Wang P, Zhang J, Li Q, Yang F. IRG1/itaconate increases IL-10 release to alleviate mechanical and thermal hypersensitivity in mice after nerve injury. Front Immunol 2022; 13:1012442. [PMID: 36311727 PMCID: PMC9612919 DOI: 10.3389/fimmu.2022.1012442] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/28/2022] [Indexed: 09/19/2023] Open
Abstract
Inflammation plays an important role in the occurrence and development of neuropathic pain. Immune-responsive gene 1 (IRG1) decarboxylates cis-aconitate to produce itaconate in the mitochondria. Itaconate serves as an immunomodulator of macrophages and represses inflammation in infectious diseases. Recently, a study showed that an itaconate derivative inhibits neuroinflammation and reduces chronic pain in mice. However, the function and molecular mechanisms of endogenous itaconate in neuropathic pain have not been fullyelucidated. In this study, the content of itaconate in the ipsilateral spinal cord after nerve-injured mice was detected with mass spectrometry. The Irg1-/- mouse was constructed to determine the role of endogenous itaconate in the chronic constriction nerve injury (CCI) model. The analgesic effect of exogenous itaconate was assessed with intraperitoneal and intrathecal administration in both male and female CCI mice. The spinal application of 4-OI also reduced the evoked responses of wide dynamic range neurons in CCI mice. The potential analgesic mechanism of itaconate was explored through molecular biology experiments and verified in Interleukin (IL)-10-/- mice. We found the levels of itaconate and IRG1 in the spinal cord significantly increased after CCI. Irg1 deficiency aggravated the mechanical and heat hypersensitivity, while the exogenous administration of the itaconate derivative 4-OI alleviated the neuropathic pain in male and female CCI mice. Mechanistically, the treatment of 4-OI increased the level of IL-10 and activates STAT3/β-endorphin pathway in the spinal cord, and the analgesia effect of itaconate was impaired in IL-10-/- mice. Finally, we showed that the upregulation of IL-10 induced by 4-OI was mainly from spinal neurons through Nrf2 pathway. This study demonstrated the analgesic effect of endogenous and exogenous itaconate in the neuropathic pain model, suggesting that the spinal IL-10/STAT3/β-endorphin pathway might mediate the analgesia effect of itaconate.
Collapse
Affiliation(s)
- Qingyu Sun
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Department of Anesthesiology, Chang Hai Hospital, Naval Military Medical University, Shanghai, China
| | - Tingting Hu
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yurui Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiaotong Wang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jing Liu
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Wen Chen
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Chao Wei
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Dianxin Liu
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Weihua Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ting Lan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yumeng Ding
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zhaoli Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Meng Liu
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Danmin Shen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zhongnan Xiao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Liye Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Miaoyi Pang
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yiran Ma
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Lei Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Peipei Wang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jiannan Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Qian Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
- Key Laboratory of Cancer Invasion and Metastasis Research, Capital Medical University, Beijing, China
| | - Fei Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| |
Collapse
|
19
|
Elafros MA, Andersen H, Bennett DL, Savelieff MG, Viswanathan V, Callaghan BC, Feldman EL. Towards prevention of diabetic peripheral neuropathy: clinical presentation, pathogenesis, and new treatments. Lancet Neurol 2022; 21:922-936. [PMID: 36115364 PMCID: PMC10112836 DOI: 10.1016/s1474-4422(22)00188-0] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/15/2022] [Accepted: 04/29/2022] [Indexed: 12/24/2022]
Abstract
Diabetic peripheral neuropathy (DPN) occurs in up to half of individuals with type 1 or type 2 diabetes. DPN results from the distal-to-proximal loss of peripheral nerve function, leading to physical disability and sometimes pain, with the consequent lowering of quality of life. Early diagnosis improves clinical outcomes, but many patients still develop neuropathy. Hyperglycaemia is a risk factor and glycaemic control prevents DPN development in type 1 diabetes. However, glycaemic control has modest or no benefit in individuals with type 2 diabetes, probably because they usually have comorbidities. Among them, the metabolic syndrome is a major risk factor for DPN. The pathophysiology of DPN is complex, but mechanisms converge on a unifying theme of bioenergetic failure in the peripheral nerves due to their unique anatomy. Current clinical management focuses on controlling diabetes, the metabolic syndrome, and pain, but remains suboptimal for most patients. Thus, research is ongoing to improve early diagnosis and prognosis, to identify molecular mechanisms that could lead to therapeutic targets, and to investigate lifestyle interventions to improve clinical outcomes.
Collapse
Affiliation(s)
| | - Henning Andersen
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - David L Bennett
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK
| | | | - Vijay Viswanathan
- MV Hospital for Diabetes and Prof M Viswanathan Diabetes Research Centre, Royapuram, Chennai, India
| | | | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|