1
|
Ramer R, Hinz B. Effect of cannabinoids on the efficacy and side effects of anticancer therapeutic strategies - Current status of preclinical and clinical research. Pharmacol Ther 2025; 270:108851. [PMID: 40221102 DOI: 10.1016/j.pharmthera.2025.108851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/14/2025] [Accepted: 04/04/2025] [Indexed: 04/14/2025]
Abstract
Cannabinoids have attracted increasing attention in cancer research in recent decades. A major focus of current preclinical and clinical studies is on the interactions and potential risks when combined with chemotherapeutic agents, targeted therapies and other anticancer strategies. Given the extensive preclinical data on additive, synergistic and, in some cases, antagonistic tumor cell killing effects of chemotherapeutic agents and cannabinoids when co-administered, a critical analysis of these data seems essential. The available data mainly relate to combination treatments for glioblastoma, hematological malignancies and breast cancer, but also for other cancer types. Such an analysis also appears necessary because cannabinoids are used as an option to treat nausea and vomiting caused by chemotherapy, as well as tumor-related pain, and cancer patients sometimes take cannabinoids without a medical prescription. In addition, numerous recent preclinical studies also suggest cannabinoid-mediated relief of other chemotherapy-related side effects such as peripheral neuropathy, nephrotoxicity, cardiotoxicity, cystitis, bladder complications and mucositis. To summarize, the data available to date raise the prospect that cannabinoids may increase the efficacy of chemotherapeutic agents while reducing their side effects. However, preclinical studies on anticancer interactions are mostly limited to cytotoxicity analyses. An equally thorough investigation of the effects of such combinations on the immune system and on the tumorigenic levels of angiogenesis, invasion and metastasis is still pending. On this basis, a comprehensive understanding for the evaluation of a targeted additional treatment of various cancers with cannabinoids could be established.
Collapse
Affiliation(s)
- Robert Ramer
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Schillingallee 70, 18057 Rostock, Germany
| | - Burkhard Hinz
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Schillingallee 70, 18057 Rostock, Germany.
| |
Collapse
|
2
|
Guenther KG, Wirt JL, Oliva I, Saberi SA, Crystal JD, Hohmann AG. The cannabinoid CB 2 agonist LY2828360 suppresses neuropathic pain behavior and attenuates morphine tolerance and conditioned place preference in rats. Neuropharmacology 2025; 265:110257. [PMID: 39644993 PMCID: PMC11729772 DOI: 10.1016/j.neuropharm.2024.110257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/06/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Cannabinoid CB2 agonists show promise as analgesics because they lack unwanted side effects associated with direct activation of CB1 receptors. CB2 receptor activation suppresses pathological pain in animal models, but the types of pain that best respond to CB2 agonists are incompletely understood. This gap in knowledge may contribute to failures in clinical translation. We previously showed that the G protein-biased CB2 receptor agonist LY2828360 attenuated the maintenance of neuropathic pain behavior in mouse models of inflammatory and neuropathic pain. Whether this finding generalizes to neuropathic pain induced by traumatic nerve injury or occurs in multiple rodent species remains unknown. Here we show that LY2828360 (3 and 10 mg/kg i.p.), administered acutely, reversed paclitaxel-induced mechanical hypersensitivity in male rats. By contrast, LY2828360 (10 mg/kg i.p.), administered acutely, attenuated mechanical hypersensitivity in a spared nerve injury (SNI) rat model, whereas the low dose (3 mg/kg i.p.) was ineffective. In both models, efficacy of LY2828360 was sustained following 10 days of repeated dosing. LY2828360 (3 mg/kg i.p.) also prevented development of tolerance to the opioid analgesic morphine (6 mg/kg i.p.) in rats with SNI when co-administered. LY2828360 (3 mg/kg i.p.) did not produce preference or aversion in the conditioned place preference (CPP) test in rats when administered alone but blocked CPP to morphine (6 mg/kg i.p.). Lastly, LY2828360 (3 mg/kg i.p.) did not alter the acquisition of i.v. morphine self-administration under fixed ratio 1 (FR1) and 3 (FR3) or motivation to work for morphine under a progressive ratio (PR) schedule of reinforcement.
Collapse
Affiliation(s)
- Kelsey G Guenther
- Program in Neuroscience, Indiana University, Bloomington, IN, USA; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Jonah L Wirt
- Program in Neuroscience, Indiana University, Bloomington, IN, USA; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Idaira Oliva
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA; Gill Institute for Neuroscience, Indiana University, Bloomington, IN, USA
| | - Shahin A Saberi
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Jonathon D Crystal
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA; Gill Institute for Neuroscience, Indiana University, Bloomington, IN, USA
| | - Andrea G Hohmann
- Program in Neuroscience, Indiana University, Bloomington, IN, USA; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA; Gill Institute for Neuroscience, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
3
|
Warren WG, Osborn M, David‐Pereira A, Tsantoulas C, Xue W, Yates A, OSullivan SE. ART26.12, a novel fatty acid-binding protein 5 inhibitor, shows efficacy in multiple preclinical neuropathy models. Eur J Pain 2025; 29:e4718. [PMID: 39188040 PMCID: PMC11671339 DOI: 10.1002/ejp.4718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/27/2024] [Accepted: 08/01/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Painful neuropathy is a pathological condition caused by numerous factors including diabetes, chemotherapy or cancer. ART26.12 is a novel fatty acid-binding protein 5 inhibitor, which our group showed could prevent and treat persistent pain in a preclinical model of oxaliplatin-induced peripheral neuropathy. METHODS In the current study, the efficacy of orally dosed ART26.12 was tested in multiple neuropathy models of different aetiology. Paw withdrawal threshold to von Frey monofilaments and latency to escape a cold plate were used as measurements of mechanical and cold sensitivity. RESULTS ART26.12 (25 and 50 mg/kg BID), dosed prior to the induction of paclitaxel-induced peripheral neuropathy (PIPN), reversed mechanical allodynia induced by paclitaxel in both male and female rats, and ART26.12 (50 mg/kg BID) prevented the induction of PIPN in female rats. ART26.12 (50 mg/kg BID) also had a protective effect on body weight in the PIPN model. ART26.12 (25 and 100 mg/kg BID) reversed mechanical allodynia when treating established streptozotocin-induced diabetic neuropathy in male rats. In a model of breast cancer-induced bone pain in female rats, ART26.12 (100 mg/kg BID) reversed mechanical allodynia within 1 h of dosing. In the same model, ART26.12 (25 mg/kg BID) reversed mechanical allodynia from day 4 of treatment. CONCLUSION Overall, these preclinical data suggest that ART26.12 is a safe and efficacious therapeutic drug for continued development towards the prevention and treatment of peripheral neuropathy. SIGNIFICANCE STATEMENT This work now shows that ART26.12, a novel and selective inhibitor of FABP5, can prevent and treat multiple preclinical models of peripheral neuropathy. Given its excellent safety profile, further work is warranted to develop ART26.12 as a potential therapeutic tool for pain management.
Collapse
Affiliation(s)
- W. G. Warren
- Artelo Biosciences Ltd., Alderley ParkAlderley EdgeCheshireUK
| | - M. Osborn
- Artelo Biosciences Ltd., Alderley ParkAlderley EdgeCheshireUK
| | - A. David‐Pereira
- Transpharmation Ltd.The London Bioscience Innovation CentreLondonUK
| | - C. Tsantoulas
- Transpharmation Ltd.The London Bioscience Innovation CentreLondonUK
| | - Wenwen Xue
- Pharmaron Inc.BeijingPeople's Republic of China
| | - A. Yates
- Artelo Biosciences Ltd., Alderley ParkAlderley EdgeCheshireUK
| | - S. E. OSullivan
- Artelo Biosciences Ltd., Alderley ParkAlderley EdgeCheshireUK
| |
Collapse
|
4
|
Boals AG, Collier DM, Romero JR, Hillard CJ, Park F. Lack of Cannabinoid Type 2 Promoter Activity in Normal or Injured Kidneys Using a Cnr2-GFP Reporter Mouse. Cannabis Cannabinoid Res 2024. [PMID: 39381839 DOI: 10.1089/can.2024.0142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
Introduction: Although cannabinoid type 2 (CB2) receptor activity is known to promote diverse biological functions in the kidney, published data regarding CB2 receptor protein levels and cellular distribution within the kidney is inconsistent. The goal of the present study was to investigate the changes of CB2 in the kidney obtained from mice exposed to various forms of kidney injury using a genetic mouse model expressing green fluorescent protein (GFP) driven by the endogenous cannabinoid receptor 2 (Cnr2) promoter. Materials and Methods: Kidney injury was established in a genetic mouse model expressing green fluorescent protein (GFP) driven by the endogenous Cnr2 promoter. Kidney injury was initiated by either treatment with different chemicals [cisplatin or lipopolysaccharide (LPS)] or by unilateral ureteral obstruction (UUO). Changes in the detection of GFP were used as a proxy for CB2 levels and localization. Histological changes due to the injury stimuli were observed by time-related, morphological changes in kidney cytoarchitecture and blood parameters, such as serum creatinine levels. Cnr2 mRNA levels were detected by reverse transcription coupled to polymerase chain reaction (RT-PCR) while protein changes in the tissue lysates were measured by Western blot analysis. Cellular localization of GFP was detected by fluorescent microscopy. Results: Our data demonstrated that there was no band or a minimally detectable band for GFP using kidney lysates from vehicle- or cisplatin-treated mice. A similar lack of GFP was detected in the UUO kidney versus the contralateral control kidney. This is consistent with the low, albeit detectable levels of Cnr2 mRNA in the kidney samples from control or cisplatin treatment. In frozen kidney sections from vehicle and cisplatin-treated mice, GFP fluorescence was not detectable in tubular epithelia, glomeruli or blood vessels in the cortex. Instead, GFP was detected in rare cells within the interstitial space. A second chemical injury model using LPS found a similar lack of GFP protein levels and an absence of legitimate GFP fluorescence in the main cell types within the kidney. Conclusion: These findings suggest that Cnr2 promoter activity is minimally active in normal or injured kidneys, and that pharmacological manipulation of CB2 receptors may be associated with receptors being expressed in cells recruited to the kidney.
Collapse
Affiliation(s)
- Avery G Boals
- University of Tennessee Health Science Center, College of Pharmacy, Memphis, Tennessee, USA
| | - Daniel M Collier
- University of Tennessee Health Science Center, College of Pharmacy, Memphis, Tennessee, USA
| | - Julian R Romero
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Spain
| | | | - Frank Park
- University of Tennessee Health Science Center, College of Pharmacy, Memphis, Tennessee, USA
| |
Collapse
|
5
|
Mattar M, Umutoni F, Hassan MA, Wamburu MW, Turner R, Patton JS, Chen X, Lei W. Chemotherapy-Induced Peripheral Neuropathy: A Recent Update on Pathophysiology and Treatment. Life (Basel) 2024; 14:991. [PMID: 39202733 PMCID: PMC11355765 DOI: 10.3390/life14080991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/29/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a major long-lasting side effect of some chemotherapy drugs, which threatens cancer survival rate. CIPN mostly affects sensory neurons and occasionally motor neurons, causing numbness, tingling, discomfort, and burning pain in the upper and lower extremities. The pathophysiology of CIPN is not completely understood; however, it is believed that chemotherapies induce peripheral neuropathy via directly damaging mitochondria, impairing the function of ion channels, triggering immunological mechanisms, and disrupting microtubules. The treatment of CIPN is a medical challenge, and there are no approved pharmacological options. Currently, duloxetine and other antidepressants, antioxidant, anti-inflammatory, and ion-channel targeted therapies are commonly used in clinics to relieve the symptoms of CIPN. Several other types of drugs, such as cannabinoids, sigma-1 receptor antagonists, and nicotinamides ribose, are being evaluated in preclinical and clinical studies. This paper summarizes the information related to the physiology of CIPN and medicines that could be used for treating this condition.
Collapse
Affiliation(s)
- Marina Mattar
- Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, Clinton, SC 29325, USA; (M.M.); (M.A.H.)
| | - Florence Umutoni
- Department of Pharmaceutical and Graduate Life Sciences, College of Health Sciences, Nursing, and Pharmacy, Manchester University, Fort Wayne, IN 46845, USA; (F.U.); (J.S.P.)
| | - Marwa A. Hassan
- Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, Clinton, SC 29325, USA; (M.M.); (M.A.H.)
| | - M. Wambui Wamburu
- Department of Pharmacy Practice, College of Health Sciences, Nursing, and Pharmacy, Manchester University, Fort Wayne, IN 46845, USA;
| | - Reagan Turner
- Department of Biology, Presbyterian College, Clinton, SC 29325, USA;
| | - James S. Patton
- Department of Pharmaceutical and Graduate Life Sciences, College of Health Sciences, Nursing, and Pharmacy, Manchester University, Fort Wayne, IN 46845, USA; (F.U.); (J.S.P.)
| | - Xin Chen
- Department of Pharmaceutical and Clinical Sciences, College of Pharmacy and Health Sciences, Campbell University, Buies Creek, NC 27506, USA;
| | - Wei Lei
- Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, Clinton, SC 29325, USA; (M.M.); (M.A.H.)
- Department of Pharmaceutical and Graduate Life Sciences, College of Health Sciences, Nursing, and Pharmacy, Manchester University, Fort Wayne, IN 46845, USA; (F.U.); (J.S.P.)
| |
Collapse
|
6
|
Guenther KG, Lin X, Xu Z, Makriyannis A, Romero J, Hillard CJ, Mackie K, Hohmann AG. Cannabinoid CB 2 receptors in primary sensory neurons are implicated in CB 2 agonist-mediated suppression of paclitaxel-induced neuropathic nociception and sexually-dimorphic sparing of morphine tolerance. Biomed Pharmacother 2024; 176:116879. [PMID: 38850666 PMCID: PMC11209786 DOI: 10.1016/j.biopha.2024.116879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/25/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
Cannabinoid CB2 agonists show therapeutic efficacy without unwanted CB1-mediated side effects. The G protein-biased CB2 receptor agonist LY2828360 attenuates the maintenance of chemotherapy-induced neuropathic nociception in male mice and blocks development of morphine tolerance in this model. However, the cell types involved in this phenomenon are unknown and whether this therapeutic profile is observed in female mice has never been investigated. We used conditional deletion of CB2 receptors to determine the cell population(s) mediating the anti-allodynic and morphine-sparing effects of CB2 agonists. Anti-allodynic effects of structurally distinct CB2 agonists (LY2828360 and AM1710) were present in paclitaxel-treated CB2f/f mice and in mice lacking CB2 receptors in CX3CR1 expressing microglia/macrophages (CX3CR1CRE/+; CB2f/f), but were absent in mice lacking CB2 receptors in peripheral sensory neurons (AdvillinCRE/+; CB2f/f). The morphine-sparing effect of LY28282360 occurred in a sexually-dimorphic manner, being present in male, but not female, mice. LY2828360 treatment (3 mg/kg per day i.p. x 12 days) blocked the development of morphine tolerance in male CB2f/f and CX3CR1CRE/+; CB2f/f mice with established paclitaxel-induced neuropathy but was absent in male (or female) AdvillinCRE/+; CB2f/f mice. Co-administration of morphine with a low dose of LY2828360 (0.1 mg/kg per day i.p. x 6 days) reversed morphine tolerance in paclitaxel-treated male CB2f/f mice, but not AdvillinCRE/+; CB2f/f mice of either sex. LY2828360 (3 mg/kg per day i.p. x 8 days) delayed, but did not prevent, the development of paclitaxel-induced mechanical or cold allodynia in either CB2f/f or CX3CR1CRE/+; CB2f/f mice of either sex. Our findings have potential clinical implications.
Collapse
Affiliation(s)
- Kelsey G Guenther
- Program in Neuroscience, Indiana University, Bloomington, IN, United States; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | - Xiaoyan Lin
- Program in Neuroscience, Indiana University, Bloomington, IN, United States; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | - Zhili Xu
- Program in Neuroscience, Indiana University, Bloomington, IN, United States; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | | | - Julian Romero
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Cecilia J Hillard
- Department of Pharmacology and Toxicology, Med. Col. Of Wisconsin, Milwaukee, WI, United States
| | - Ken Mackie
- Program in Neuroscience, Indiana University, Bloomington, IN, United States; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States; Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, United States
| | - Andrea G Hohmann
- Program in Neuroscience, Indiana University, Bloomington, IN, United States; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States; Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, United States.
| |
Collapse
|
7
|
Wilcox NC, Taheri G, Halievski K, Talbot S, Silva JR, Ghasemlou N. Interactions between skin-resident dendritic and Langerhans cells and pain-sensing neurons. J Allergy Clin Immunol 2024; 154:11-19. [PMID: 38492673 DOI: 10.1016/j.jaci.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/13/2024] [Accepted: 03/05/2024] [Indexed: 03/18/2024]
Abstract
Various immune cells in the skin contribute to its function as a first line of defense against infection and disease, and the skin's dense innervation by pain-sensing sensory neurons protects the host against injury or damage signals. Dendritic cells (DCs) are a heterogeneous population of cells that link the innate immune response to the adaptive response by capturing, processing, and presenting antigens to promote T-cell differentiation and activation. DCs are abundant across peripheral tissues, including the skin, where they are found in the dermis and epidermis. Langerhans cells (LCs) are a DC subset located only in the epidermis; both populations of cells can migrate to lymph nodes to contribute to broad immune responses. Dermal DCs and LCs are found in close apposition with sensory nerve fibers in the skin and express neurotransmitter receptors, allowing them to communicate directly with the peripheral nervous system. Thus, neuroimmune signaling between DCs and/or LCs and sensory neurons can modulate physiologic and pathophysiologic pathways, including immune cell regulation, host defense, allergic response, homeostasis, and wound repair. Here, we summarize the latest discoveries on DC- and LC-neuron interaction with neurons while providing an overview of gaps and areas not previously explored. Understanding the interactions between these 2 defence systems may provide key insight into developing therapeutic targets for treating diseases such as psoriasis, neuropathic pain, and lupus.
Collapse
Affiliation(s)
- Natalie C Wilcox
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Golnar Taheri
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Katherine Halievski
- Department of Anesthesiology and Perioperative Medicine, Queen's University, Kingston, Ontario, Canada
| | - Sebastien Talbot
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Jaqueline R Silva
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada; Department of Anesthesiology and Perioperative Medicine, Queen's University, Kingston, Ontario, Canada; Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Nader Ghasemlou
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada; Department of Anesthesiology and Perioperative Medicine, Queen's University, Kingston, Ontario, Canada; Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
8
|
Cunha M, Tavares I, Costa-Pereira JT. Centralizing the Knowledge and Interpretation of Pain in Chemotherapy-Induced Peripheral Neuropathy: A Paradigm Shift towards Brain-Centric Approaches. Brain Sci 2024; 14:659. [PMID: 39061400 PMCID: PMC11274822 DOI: 10.3390/brainsci14070659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a side effect of cancer treatment, often linked with pain complaints. Patients report mechanical and thermal hypersensitivity that may emerge during chemotherapy treatment and may persist after cancer remission. Whereas the latter situation disturbs the quality of life, life itself may be endangered by the appearance of CIPN during cancer treatment. The causes of CIPN have almost entirely been ascribed to the neurotoxicity of chemotherapeutic drugs in the peripheral nervous system. However, the central consequences of peripheral neuropathy are starting to be unraveled, namely in the supraspinal pain modulatory system. Based on our interests and experience in the field, we undertook a review of the brain-centered alterations that may underpin pain in CIPN. The changes in the descending pain modulation in CIPN models along with the functional and connectivity abnormalities in the brain of CIPN patients are analyzed. A translational analysis of preclinical findings about descending pain regulation during CIPN is reviewed considering the main neurochemical systems (serotoninergic and noradrenergic) targeted in CIPN management in patients, namely by antidepressants. In conclusion, this review highlights the importance of studying supraspinal areas involved in descending pain modulation to understand the pathophysiology of CIPN, which will probably allow a more personalized and effective CIPN treatment in the future.
Collapse
Affiliation(s)
- Mário Cunha
- Department of Biomedicine, Unit of Experimental Biology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (M.C.); (J.T.C.-P.)
| | - Isaura Tavares
- Department of Biomedicine, Unit of Experimental Biology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (M.C.); (J.T.C.-P.)
- I3S—Institute of Investigation and Innovation in Health, University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - José Tiago Costa-Pereira
- Department of Biomedicine, Unit of Experimental Biology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (M.C.); (J.T.C.-P.)
- I3S—Institute of Investigation and Innovation in Health, University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Faculty of Nutrition and Food Sciences, University of Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| |
Collapse
|
9
|
Albrecht PJ, Liu Y, Houk G, Ruggiero B, Banov D, Dockum M, Day A, Rice FL, Bassani G. Cutaneous targets for topical pain medications in patients with neuropathic pain: individual differential expression of biomarkers supports the need for personalized medicine. Pain Rep 2024; 9:e1119. [PMID: 38375092 PMCID: PMC10876238 DOI: 10.1097/pr9.0000000000001121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/30/2023] [Accepted: 11/07/2023] [Indexed: 02/21/2024] Open
Abstract
Introduction Numerous potential cutaneous targets exist for treating chronic pain with topically applied active pharmaceutical ingredients. This preliminary human skin tissue investigation was undertaken to characterize several key biomarkers in keratinocytes and provide proof-of-principle data to support clinical development of topical compounded formulations for peripheral neuropathic pain syndromes, such as postherpetic neuralgia (PHN). Objectives The study intended to identify objective biomarkers in PHN skin on a patient-by-patient personalized medicine platform. The totality of biopsy biomarker data can provide a tissue basis for directing individualized compounded topical preparations to optimize treatment efficacy. Methods Referencing 5 of the most common actives used in topical pain relief formulations (ketamine, gabapentin, clonidine, baclofen, and lidocaine), and 3 well-established cutaneous mediators (ie, neuropeptides, cannabinoids, and vanilloids), comprehensive immunolabeling was used to quantify receptor biomarkers in skin biopsy samples taken from ipsilateral (pain) and contralateral (nonpain) dermatomes of patients with PHN. Results Epidermal keratinocyte labeling patterns were significantly different among the cohort for each biomarker, consistent with potential mechanisms of action among keratinocytes. Importantly, the total biomarker panel indicates that the enriched PHN cohort contains distinct subgroups. Conclusion The heterogeneity of the cohort differences may explain studies that have not shown statistical group benefit from topically administered compounded therapies. Rather, the essential need for individual tissue biomarker evaluations is evident, particularly as a means to direct a more accurately targeted topical personalized medicine approach and generate positive clinical results.
Collapse
Affiliation(s)
| | - Yi Liu
- Professional Compounding Centers of America (PCCA), Houston, TX, USA
| | - George Houk
- Integrated Tissue Dynamics, LLC (INTiDYN), Rensselaer, NY, USA
| | - Beth Ruggiero
- Integrated Tissue Dynamics, LLC (INTiDYN), Rensselaer, NY, USA
| | - Daniel Banov
- Professional Compounding Centers of America (PCCA), Houston, TX, USA
| | - Marilyn Dockum
- Integrated Tissue Dynamics, LLC (INTiDYN), Rensselaer, NY, USA
| | - A.J. Day
- Professional Compounding Centers of America (PCCA), Houston, TX, USA
| | - Frank L. Rice
- Integrated Tissue Dynamics, LLC (INTiDYN), Rensselaer, NY, USA
| | - Gus Bassani
- Professional Compounding Centers of America (PCCA), Houston, TX, USA
| |
Collapse
|
10
|
Guenther KG, Lin X, Xu Z, Makriyannis A, Romero J, Hillard CJ, Mackie K, Hohmann AG. Cannabinoid CB 2 receptors in primary sensory neurons are implicated in CB 2 agonist-mediated suppression of paclitaxel-induced neuropathic nociception and sexually-dimorphic sparing of morphine tolerance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.05.583426. [PMID: 38496640 PMCID: PMC10942397 DOI: 10.1101/2024.03.05.583426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Cannabinoid CB 2 agonists show therapeutic efficacy without the unwanted side effects commonly associated with direct activation of CB 1 receptors. The G protein-biased CB 2 receptor agonist LY2828360 attenuates the maintenance of chemotherapy-induced neuropathic nociception in male mice and blocks the development of morphine tolerance in this model. However, the specific cell types involved in this phenomenon have never been investigated and whether this therapeutic profile is observed in female mice remains poorly understood. We used conditional deletion of CB 2 receptors from specific cell populations to determine the population(s) mediating the anti-allodynic and morphine-sparing effects of CB 2 agonists. Anti-allodynic effects of structurally distinct CB 2 agonists (LY2828360 and AM1710) were present in paclitaxel-treated CB 2 f/f mice of either sex. The anti-allodynic effect of the CB 2 agonists were absent in conditional knockout (KO) mice lacking CB 2 receptors in peripheral sensory neurons (Advillin CRE/+ ; CB 2 f/f ) but preserved in mice lacking CB 2 receptors in CX3CR1 expressing microglia/macrophages (CX3CR1 CRE/+ ; CB 2 f/f ). The morphine-sparing effect of LY28282360 occurred in a sexually-dimorphic manner, being present in male mice but absent in female mice of any genotype. In mice with established paclitaxel-induced neuropathy, prior LY2828360 treatment (3 mg/kg per day i.p. x 12 days) blocked the subsequent development of morphine tolerance in male CB 2 f/f mice but was absent in male (or female) Advillin CRE/+ ; CB 2 f/f mice. LY2828360-induced sparing of morphine tolerance was preserved in male CX3CR1 CRE/+ ; CB 2 f/f mice, but this effect was not observed in female CX3CR1 CRE/+ ; CB 2 f/f mice. Similarly, co-administration of morphine with a low dose of LY2828360 (0.1 mg/kg per day i.p. x 6 days) reversed tolerance to the anti-allodynic efficacy of morphine in paclitaxel-treated male CB 2 f/f mice, but this effect was absent in female CB 2 f/f mice and Advillin CRE/+ ; CB 2 f/f mice of either sex. Additionally, LY2828360 (3 mg/kg per day i.p. x 8 days) delayed, but did not prevent, the development of paclitaxel-induced mechanical and cold allodynia in either CB 2 f/f or CX3CR1 CRE/+ ; CB 2 f/f mice of either sex. Our studies reveal that CB 2 receptors in primary sensory neurons are required for the anti-allodynic effects of CB 2 agonists in a mouse model of paclitaxel-induced neuropathic nociception. We also find that CB 2 agonists acting on primary sensory neurons produce a sexually-dimorphic sparing of morphine tolerance in males, but not female, paclitaxel-treated mice.
Collapse
|
11
|
Bacalhau C, Costa-Pereira JT, Tavares I. Preclinical research in paclitaxel-induced neuropathic pain: a systematic review. Front Vet Sci 2023; 10:1264668. [PMID: 38188718 PMCID: PMC10766764 DOI: 10.3389/fvets.2023.1264668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/21/2023] [Indexed: 01/09/2024] Open
Abstract
Introduction Chemotherapy-induced peripheral neuropathy (CIPN) is a common consequence of cancer treatment and pain is a frequent complaint of the patients. Paclitaxel, a cytostatic drug, generates a well-described peripheral nerve injury and neuroinflammation, which may be experimentally mimicked in animal models. We conducted a systematic review analyzing the experimental design, reporting and mechanisms underlying paclitaxel-induced neuropathy in the included studies to establish the perspectives of translation of the current literature in models of CIPN. Methods We elected studies published in Pubmed and Scopus between 1 January 2018 and 3 December 2022. Results According to a defined mesh of keywords searched, and after applying exclusion and inclusion criteria, 70 original studies were included and analyzed in detail. Most studies used male Sprague-Dawley rats to induce paclitaxel-induced neuropathy, used low doses of paclitaxel, and the analyzed studies mainly focused at 14-28 days of CIPN. Mechanical nociceptive tests were preferred in the behavioral evaluation. The mechanisms under study were mainly neuroinflammation of peripheral nerves. The overall methodological quality was considered moderate, and the risk of bias was unclear. Discussion Despite the ample preclinical research in paclitaxel-induced neuropathy, this systematic review alerts to some flaws in the experimental design along with limitations in reporting, e.g., lack of representation of both sexes in experimental work and the lack of reporting of the ARRIVE guidelines. This may limit the reproducibility of preclinical studies in CIPN. In addition, the clinical features of CIPN should be considered when designing animal experiments, such as sex and age of the CIPN patients. In this way the experimental studies aiming to establish the mechanisms of CIPN may allow the development of new drugs to treat CIPN and translation in the research of CIPN could be improved.
Collapse
Affiliation(s)
- Carolina Bacalhau
- Department of Biomedicine, Unit of Experimental Biology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - José Tiago Costa-Pereira
- Department of Biomedicine, Unit of Experimental Biology, Faculty of Medicine, University of Porto, Porto, Portugal
- I3S-Institute of Investigation and Innovation in Health, University of Porto, Porto, Portugal
- Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
| | - Isaura Tavares
- Department of Biomedicine, Unit of Experimental Biology, Faculty of Medicine, University of Porto, Porto, Portugal
- I3S-Institute of Investigation and Innovation in Health, University of Porto, Porto, Portugal
| |
Collapse
|
12
|
Jiang M, Huizenga MCW, Wirt JL, Paloczi J, Amedi A, van den Berg RJBHN, Benz J, Collin L, Deng H, Di X, Driever WF, Florea BI, Grether U, Janssen APA, Hankemeier T, Heitman LH, Lam TW, Mohr F, Pavlovic A, Ruf I, van den Hurk H, Stevens AF, van der Vliet D, van der Wel T, Wittwer MB, van Boeckel CAA, Pacher P, Hohmann AG, van der Stelt M. A monoacylglycerol lipase inhibitor showing therapeutic efficacy in mice without central side effects or dependence. Nat Commun 2023; 14:8039. [PMID: 38052772 PMCID: PMC10698032 DOI: 10.1038/s41467-023-43606-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 11/15/2023] [Indexed: 12/07/2023] Open
Abstract
Monoacylglycerol lipase (MAGL) regulates endocannabinoid 2-arachidonoylglycerol (2-AG) and eicosanoid signalling. MAGL inhibition provides therapeutic opportunities but clinical potential is limited by central nervous system (CNS)-mediated side effects. Here, we report the discovery of LEI-515, a peripherally restricted, reversible MAGL inhibitor, using high throughput screening and a medicinal chemistry programme. LEI-515 increased 2-AG levels in peripheral organs, but not mouse brain. LEI-515 attenuated liver necrosis, oxidative stress and inflammation in a CCl4-induced acute liver injury model. LEI-515 suppressed chemotherapy-induced neuropathic nociception in mice without inducing cardinal signs of CB1 activation. Antinociceptive efficacy of LEI-515 was blocked by CB2, but not CB1, antagonists. The CB1 antagonist rimonabant precipitated signs of physical dependence in mice treated chronically with a global MAGL inhibitor (JZL184), and an orthosteric cannabinoid agonist (WIN55,212-2), but not with LEI-515. Our data support targeting peripheral MAGL as a promising therapeutic strategy for developing safe and effective anti-inflammatory and analgesic agents.
Collapse
Affiliation(s)
- Ming Jiang
- Department of Molecular Physiology, Leiden University & Oncode Institute, Leiden, Netherlands
| | - Mirjam C W Huizenga
- Department of Molecular Physiology, Leiden University & Oncode Institute, Leiden, Netherlands
| | - Jonah L Wirt
- Department of Psychological and Brain Sciences, Program in Neuroscience, Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, USA
| | - Janos Paloczi
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute of Health/NIAAA, Rockville, MD, USA
| | - Avand Amedi
- Department of Molecular Physiology, Leiden University & Oncode Institute, Leiden, Netherlands
| | | | - Joerg Benz
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Ludovic Collin
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Hui Deng
- Department of Molecular Physiology, Leiden University & Oncode Institute, Leiden, Netherlands
| | - Xinyu Di
- Metabolomics and analytics center, Leiden University, Leiden, Netherlands
| | - Wouter F Driever
- Department of Molecular Physiology, Leiden University & Oncode Institute, Leiden, Netherlands
| | - Bogdan I Florea
- Department of Bio-organic Synthesis, Leiden University, Leiden, Netherlands
| | - Uwe Grether
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Antonius P A Janssen
- Department of Molecular Physiology, Leiden University & Oncode Institute, Leiden, Netherlands
| | - Thomas Hankemeier
- Metabolomics and analytics center, Leiden University, Leiden, Netherlands
| | - Laura H Heitman
- Division of Drug Discovery and Safety, Leiden University & Oncode Institute, Leiden, Netherlands
| | | | - Florian Mohr
- Department of Molecular Physiology, Leiden University & Oncode Institute, Leiden, Netherlands
| | - Anto Pavlovic
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Iris Ruf
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | | | - Anna F Stevens
- Department of Molecular Physiology, Leiden University & Oncode Institute, Leiden, Netherlands
| | - Daan van der Vliet
- Department of Molecular Physiology, Leiden University & Oncode Institute, Leiden, Netherlands
| | - Tom van der Wel
- Department of Molecular Physiology, Leiden University & Oncode Institute, Leiden, Netherlands
| | - Matthias B Wittwer
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | | | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute of Health/NIAAA, Rockville, MD, USA
| | - Andrea G Hohmann
- Department of Psychological and Brain Sciences, Program in Neuroscience, Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, USA.
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden University & Oncode Institute, Leiden, Netherlands.
| |
Collapse
|
13
|
Uniyal A, Tiwari V, Tsukamoto T, Dong X, Guan Y, Raja SN. Targeting sensory neuron GPCRs for peripheral neuropathic pain. Trends Pharmacol Sci 2023; 44:1009-1027. [PMID: 37977131 PMCID: PMC10657387 DOI: 10.1016/j.tips.2023.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/29/2023] [Accepted: 10/10/2023] [Indexed: 11/19/2023]
Abstract
Despite the high prevalence of peripheral neuropathic pain (NP) conditions and significant progress in understanding its underlying mechanisms, the management of peripheral NP remains inadequate. Existing pharmacotherapies for NP act primarily on the central nervous system (CNS) and are often associated with CNS-related adverse effects, limiting their clinical effectiveness. Mounting preclinical evidence indicates that reducing the heightened activity in primary sensory neurons by targeting G-protein-coupled receptors (GPCRs), without activating these receptors in the CNS, relieves pain without central adverse effects. In this review, we focus on recent advancements in GPCR-mediated peripheral pain relief and discuss strategies to advance the development of more effective and safer therapies for peripheral NP by shifting from traditional CNS modulatory approaches toward selective targeting of GPCRs on primary sensory neurons.
Collapse
Affiliation(s)
- Ankit Uniyal
- Division of Pain Medicine, Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University, Baltimore, MD, USA
| | - Vinod Tiwari
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (B.H.U), Varanasi, India
| | - Takashi Tsukamoto
- Department of Neurology and Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xinzhong Dong
- Department of Neuroscience, The Johns Hopkins University, Baltimore, MD, USA
| | - Yun Guan
- Division of Pain Medicine, Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University, Baltimore, MD, USA; Department of Neurological Surgery, The Johns Hopkins University, Baltimore, MD, USA
| | - Srinivasa N Raja
- Division of Pain Medicine, Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University, Baltimore, MD, USA; Department of Neurology and Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
14
|
Gambacorta N, Gasperi V, Guzzo T, Di Leva FS, Ciriaco F, Sánchez C, Tullio V, Rozzi D, Marinelli L, Topai A, Nicolotti O, Maccarrone M. Exploring the 1,3-benzoxazine chemotype for cannabinoid receptor 2 as a promising anti-cancer therapeutic. Eur J Med Chem 2023; 259:115647. [PMID: 37478557 DOI: 10.1016/j.ejmech.2023.115647] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/23/2023]
Abstract
The discovery of selective agonists of cannabinoid receptor 2 (CB2) is strongly pursued to successfully tuning endocannabinoid signaling for therapeutic purposes. However, the design of selective CB2 agonists is still challenging because of the high homology with the cannabinoid receptor 1 (CB1) and for the yet unclear molecular basis of the agonist/antagonist switch. Here, the 1,3-benzoxazine scaffold is presented as a versatile chemotype for the design of CB2 agonists from which 25 derivatives were synthesized. Among these, compound 7b5 (CB2 EC50 = 110 nM, CB1 EC50 > 10 μM) demonstrated to impair proliferation of triple negative breast cancer BT549 cells and to attenuate the release of pro-inflammatory cytokines in a CB2-dependent manner. Furthermore, 7b5 abrogated the activation of extracellular signal-regulated kinase (ERK) 1/2, a key pro-inflammatory and oncogenic enzyme. Finally, molecular dynamics studies suggested a new rationale for the in vitro measured selectivity and for the observed agonist behavior.
Collapse
Affiliation(s)
- Nicola Gambacorta
- Department of Pharmacy-Pharmaceutical Sciences, University of the Studies of Bari "Aldo Moro", Via E. Orabona 4, 70125, Bari, Italy
| | - Valeria Gasperi
- Department of Experimental Medicine, Tor Vergata University of Rome, Via Montpellier 1, 00133, Rome, Italy
| | - Tatiana Guzzo
- C4T S.r.l Colosseum Combinatorial Chemistry Centre for Technology, Via Della Ricerca Scientifica Snc, 00133, Rome, Italy
| | | | - Fulvio Ciriaco
- Department of Chemistry, University of the Studies of Bari "Aldo Moro", Via E. Orabona 4, 70125, Bari, Italy
| | - Cristina Sánchez
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University, C/ José Antonio Nováis, 12, 28040, Madrid, Spain
| | - Valentina Tullio
- Department of Experimental Medicine, Tor Vergata University of Rome, Via Montpellier 1, 00133, Rome, Italy
| | - Diego Rozzi
- C4T S.r.l Colosseum Combinatorial Chemistry Centre for Technology, Via Della Ricerca Scientifica Snc, 00133, Rome, Italy
| | - Luciana Marinelli
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy
| | - Alessandra Topai
- C4T S.r.l Colosseum Combinatorial Chemistry Centre for Technology, Via Della Ricerca Scientifica Snc, 00133, Rome, Italy.
| | - Orazio Nicolotti
- Department of Pharmacy-Pharmaceutical Sciences, University of the Studies of Bari "Aldo Moro", Via E. Orabona 4, 70125, Bari, Italy.
| | - Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100, Coppito, L'Aquila, Italy; European Center for Brain Research/Santa Lucia Foundation IRCCS, Via Del Fosso di Fiorano 64, 00143, Rome, Italy.
| |
Collapse
|
15
|
Shahzad H, Lee M, Munjal V, Veliky C, Yu E. Unlocking the Healing Potential: Cannabinoids in Spine Surgery for Pain Relief and Recovery. JBJS Rev 2023; 11:01874474-202311000-00004. [PMID: 37972215 DOI: 10.2106/jbjs.rvw.23.00141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
» Cannabinoids, such as D9-tetrahydrocannabinol and cannabidiol, interact with endocannabinoid receptors in the central nervous system and immune system, potentially offering pain relief. The entourage effect, resulting from the interaction of multiple cannabis components, may enhance therapeutic impact and efficacy, making them promising candidates for exploring pain relief in spine operations, known to be among the most painful operative procedures.» The use of cannabinoids in pain management requires careful consideration of safety, including their cognitive and psychomotor effects, potential cardiovascular risks, risk of dependence, mental health implications, and drug interactions.» Few studies have analyzed cannabinoid use in relation to spine surgery, with variable results reported, indicating possible effects on reoperation rates, mortality, complications, postoperative opioid use, and length of hospital stay.» Current knowledge gaps exist in the understanding of cannabinoid effects on spine surgery, including the exploration of different administration routes, timing, dosage, and specific outcomes. In addition, mechanistic explanations for the observed results are lacking.» Ethical considerations related to informed consent, medical expertise, societal impact, and legal compliance must also be thoroughly addressed when considering the utilization of cannabinoids in spinal pathologies and back pain treatment.
Collapse
Affiliation(s)
- Hania Shahzad
- Department of Orthopaedics, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | | | | | | | | |
Collapse
|
16
|
Kouchaeknejad A, Van Der Walt G, De Donato MH, Puighermanal E. Imaging and Genetic Tools for the Investigation of the Endocannabinoid System in the CNS. Int J Mol Sci 2023; 24:15829. [PMID: 37958825 PMCID: PMC10648052 DOI: 10.3390/ijms242115829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
As central nervous system (CNS)-related disorders present an increasing cause of global morbidity, mortality, and high pressure on our healthcare system, there is an urgent need for new insights and treatment options. The endocannabinoid system (ECS) is a critical network of endogenous compounds, receptors, and enzymes that contribute to CNS development and regulation. Given its multifaceted involvement in neurobiology and its significance in various CNS disorders, the ECS as a whole is considered a promising therapeutic target. Despite significant advances in our understanding of the ECS's role in the CNS, its complex architecture and extensive crosstalk with other biological systems present challenges for research and clinical advancements. To bridge these knowledge gaps and unlock the full therapeutic potential of ECS interventions in CNS-related disorders, a plethora of molecular-genetic tools have been developed in recent years. Here, we review some of the most impactful tools for investigating the neurological aspects of the ECS. We first provide a brief introduction to the ECS components, including cannabinoid receptors, endocannabinoids, and metabolic enzymes, emphasizing their complexity. This is followed by an exploration of cutting-edge imaging tools and genetic models aimed at elucidating the roles of these principal ECS components. Special emphasis is placed on their relevance in the context of CNS and its associated disorders.
Collapse
Affiliation(s)
| | | | | | - Emma Puighermanal
- Neuroscience Institute, Autonomous University of Barcelona, 08193 Bellaterra, Spain; (A.K.); (G.V.D.W.); (M.H.D.D.)
| |
Collapse
|
17
|
Guenther KG, Xu Z, Romero J, Hillard CJ, Mackie K, Hohmann AG. Conditional deletion of CB2 cannabinoid receptors from peripheral sensory neurons eliminates CB2-mediated antinociceptive efficacy in a mouse model of carrageenan-induced inflammatory pain. Neuropharmacology 2023; 237:109601. [PMID: 37286073 PMCID: PMC10409300 DOI: 10.1016/j.neuropharm.2023.109601] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 06/09/2023]
Abstract
CB2 cannabinoid receptor agonists suppress pathological pain in animal models and lack unwanted side effects commonly associated with direct activation of CB1 receptors. However, the types of pain most responsive to CB2 agonists are incompletely understood and cell types which underlie CB2-mediated therapeutic efficacy remain largely unknown. We previously reported that the CB2 receptor agonist LY2828360 reduced neuropathic nociception induced by toxic challenge with chemotherapeutic and anti-retroviral agents in mice. Whether these findings generalize to models of inflammatory pain is not known. Here we show that LY2828360 (10 mg/kg i.p.) reversed the maintenance of carrageenan-induced mechanical allodynia in female mice. Anti-allodynic efficacy was fully preserved in global CB1 knock out (KO) mice but absent in CB2 KO mice. The anti-allodynic efficacy of LY2828360 was absent in conditional KO (cKO) mice lacking CB2 receptors in peripheral sensory neurons (AdvillinCRE/+; CB2f/f) and preserved in cKO mice lacking CB2 receptors in microglia/macrophages expressing C-X3-C Motif Chemokine Receptor 1 (CX3CR1CRE/+; CB2f/f). Intraplantar administration of LY2828360 (30 μg i.pl.) reversed carrageenan-induced mechanical allodynia in CB2f/f but not AdvillinCRE/+; CB2f/f mice of both sexes. Thus, CB2 receptors in peripheral sensory neurons likely underlie the therapeutic effects of LY2828360 injection in the paw. Lastly, qRT-PCR analyses revealed that LY2828360 reduced carrageenan-induced increases in IL-1β and IL-10 mRNA in paw skin. Our results suggest that LY2828360 suppresses inflammatory nociception in mice through a neuronal CB2-dependent mechanism that requires peripheral sensory neuron CB2 receptors and suggest that the clinical applications of LY2828360 as an anti-hyperalgesic agent should be re-evaluated.
Collapse
Affiliation(s)
- Kelsey G Guenther
- Program in Neuroscience, Indiana University, Bloomington, IN, USA; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Zhili Xu
- Program in Neuroscience, Indiana University, Bloomington, IN, USA; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Julian Romero
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | - Cecilia J Hillard
- Department of Pharmacology and Toxicology, Med. Col. of Wisconsin, Milwaukee, WI, USA
| | - Ken Mackie
- Program in Neuroscience, Indiana University, Bloomington, IN, USA; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA; Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, USA
| | - Andrea G Hohmann
- Program in Neuroscience, Indiana University, Bloomington, IN, USA; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA; Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
18
|
Yerofeyeva AV, Pinchuk SV, Rjabceva SN, Molchanova AY. The role of cannabinoid CB1 receptors in the antinociceptive and reparative actions of mesenchymal stem cells in rats with peripheral neuropathic pain. IBRAIN 2023; 9:245-257. [PMID: 37786759 PMCID: PMC10527798 DOI: 10.1002/ibra.12129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 10/04/2023]
Abstract
Mesenchymal stem cells (MSCs) can produce antinociceptive and reparative effects. Presumably, the MSCs-induced antinociception may be partly due to the involvement of the endocannabinoid system. The study aimed to evaluate the antinociceptive and reparative effects of adipose-derived MSCs (ADMSCs) upon pharmacological modulation of cannabinoid CB1 receptor in peripheral tissues or on ADMSCs' membranes in a rat model of peripheral neuropathy. ADMSCs were injected into the area of rat sciatic nerve injury (i) with no additional treatments, (ii) at the tissue CB1 receptor activation by endogenous agonist anandamide (AEA) or blockade with a selective AM251 antagonist; and (iii) preincubated with AEA or AM251. The evaluation of CB1 receptor activity involved analyzing nociceptive responses, gait parameters, and histology. Transplantation of ADMSCs upon activation of CB1 receptors, both on AMSCs' membranes or in the area of nerve injury, accelerated the analgesia and recovery of dynamic gait parameters, abolished static gait disturbances, and promoted the fastest nerve regeneration. Only blockade of CB1 receptors on ADMSCs shortened ADMSCs-induced analgesia and decreased the number of preserved nerve fibers. CB1 receptors on ADMSCs significantly contribute to their pain-relieving and tissue-repairing capabilities by stimulating the growth factors secretion and suppressing the release of pro-inflammatory cytokines. Peripheral CB1 receptors do not significantly influence ADMSC-induced antinociception.
Collapse
Affiliation(s)
| | - Sergey V. Pinchuk
- Institute of Biophysics and Cell EngineeringNational Academy of Sciences of BelarusMinskBelarus
| | | | - Alla Y. Molchanova
- Institute of PhysiologyNational Academy of Sciences of BelarusMinskBelarus
| |
Collapse
|
19
|
Grabon W, Bodennec J, Rheims S, Belmeguenai A, Bezin L. Update on the controversial identity of cells expressing cnr2 gene in the nervous system. CNS Neurosci Ther 2023; 29:760-770. [PMID: 36604187 PMCID: PMC9928557 DOI: 10.1111/cns.13977] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/29/2022] [Accepted: 08/25/2022] [Indexed: 01/07/2023] Open
Abstract
The function of cannabinoid receptor type 2 (CB2R), mainly expressed by leukocytes, has long been limited to its peripheral immunomodulatory role. However, the use of CB2R-specific ligands and the availability of CB2R-Knock Out mice revealed that it could play a functional role in the CNS not only under physiological but also under pathological conditions. A direct effect on the nervous system emerged when CB2R mRNA was detected in neural tissues. However, accurate mapping of CB2R protein expression in the nervous system is still lacking, partly because of the lack of specificity of antibodies available. This review examines the regions and cells of the nervous system where CB2R protein is most likely present by cross-referencing mRNA and protein data published to date. Of the many antibodies developed to target CB2R, only a few have partially passed specificity tests and detected CB2R in the CNS. Efforts must be continued to support the development of more specific and better validated antibodies in each of the species in which CB2R protein is sought or needs to be quantified.
Collapse
Affiliation(s)
- Wanda Grabon
- Lyon Neuroscience Research CenterTIGER TeamBronFrance,Lyon 1 UniversityCNRS UMR 5292, Inserm U1028VilleurbanneFrance,Epilepsy Institute IDEEBronFrance
| | - Jacques Bodennec
- Lyon Neuroscience Research CenterTIGER TeamBronFrance,Lyon 1 UniversityCNRS UMR 5292, Inserm U1028VilleurbanneFrance,Epilepsy Institute IDEEBronFrance
| | - Sylvain Rheims
- Lyon Neuroscience Research CenterTIGER TeamBronFrance,Lyon 1 UniversityCNRS UMR 5292, Inserm U1028VilleurbanneFrance,Epilepsy Institute IDEEBronFrance
| | - Amor Belmeguenai
- Lyon Neuroscience Research CenterTIGER TeamBronFrance,Lyon 1 UniversityCNRS UMR 5292, Inserm U1028VilleurbanneFrance,Epilepsy Institute IDEEBronFrance
| | - Laurent Bezin
- Lyon Neuroscience Research CenterTIGER TeamBronFrance,Lyon 1 UniversityCNRS UMR 5292, Inserm U1028VilleurbanneFrance,Epilepsy Institute IDEEBronFrance
| |
Collapse
|
20
|
Carey LM, Xu Z, Rajic G, Makriyannis A, Romero J, Hillard C, Mackie K, Hohmann AG. Peripheral sensory neuron CB2 cannabinoid receptors are necessary for both CB2-mediated antinociceptive efficacy and sparing of morphine tolerance in a mouse model of anti-retroviral toxic neuropathy. Pharmacol Res 2023; 187:106560. [PMID: 36417942 PMCID: PMC9845180 DOI: 10.1016/j.phrs.2022.106560] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022]
Abstract
Painful peripheral neuropathy is a common neurological complication associated with human immunodeficiency virus (HIV) infection and anti-retroviral therapy. We characterized the impact of two CB2 cannabinoid agonists (AM1710 and LY2828360 - ligands differing in signaling bias and CNS penetration) on neuropathic nociception induced by the antiretroviral agent Zalcitabine (2',3'-dideoxycytidine; ddC). We also used a conditional knockout approach to identify cell types mediating CB2 agonist-induced antinociceptive efficacy and sparing of morphine tolerance. AM1710 and LY2828360 alleviated ddC-induced neuropathic nociception in mice of both sexes. These benefits were absent in global CB2 knockout mice, which exhibited robust morphine antinociception. Like morphine, AM1710 blunted ddC-induced increases in proinflammatory cytokine (IL-1β, TNF-α) and chemokine (CCL2) mRNA expression levels. We generated advillinCre/+;CB2f/f conditional knockout mice to ascertain the role of CB2 localized to primary sensory neurons in CB2-mediated therapeutic effects. Antinociceptive efficacy of both AM1710 and LY2828360, but not reference analgesics, were absent in advillinCre/+;CB2f/f mice, which exhibited robust ddC-induced neuropathy. In ddC-treated CB2f/f mice, LY2828360 suppressed development of morphine tolerance and reversed established morphine tolerance, albeit with greater efficacy in male compared to female mice. LY2828360 failed to block or reverse morphine tolerance in advillinCre/+;CB2f/f mice. The present studies indicate that CB2 activation may alleviate HIV-associated antiretroviral neuropathy and identify a previously unreported mechanism through which CB2 activation produces antinociceptive efficacy. Our results also provide the first evidence that a CB2 agonist can reverse established morphine tolerance and demonstrate that CB2 localized to peripheral sensory neurons mediates the opioid tolerance sparing efficacy of CB2 agonists.
Collapse
Affiliation(s)
- Lawrence M Carey
- Program in Neuroscience, USA; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Zhili Xu
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Gabriela Rajic
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | | | - Julian Romero
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | - Cecilia Hillard
- Department of Pharmacology and Toxicology, Med. Col. of Wisconsin, Milwaukee, WI, USA
| | - Ken Mackie
- Program in Neuroscience, USA; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA; Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, USA
| | - Andrea G Hohmann
- Program in Neuroscience, USA; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA; Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
21
|
Ferranti AS, Foster DJ. Cannabinoid type-2 receptors: An emerging target for regulating schizophrenia-relevant brain circuits. Front Neurosci 2022; 16:925792. [PMID: 36033626 PMCID: PMC9403189 DOI: 10.3389/fnins.2022.925792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Although the cannabinoid type-2 receptor (CB2) is highly expressed in the immune system, emerging evidence points to CB2 playing a key role in regulating neuronal function in the central nervous system. Recent anatomical studies, combined with electrophysiological studies, indicate that CB2 receptors are expressed in specific dopaminergic and glutamatergic brain circuits that are hyperactive in schizophrenia patients. The ability of CB2 receptors to inhibit dopaminergic and hippocampal circuits, combined with the anti-inflammatory effects of CB2 receptor activation, make this receptor an intriguing target for treating schizophrenia, a disease where novel interventions that move beyond dopamine receptor antagonists are desperately needed. The development of new CB2-related pharmacological and genetic tools, including the first small molecule positive allosteric modulator of CB2 receptors, has greatly advanced our understanding of this receptor. While more work is needed to further elucidate the translational value of selectively targeting CB2 receptors with respect to schizophrenia, the studies discussed below could suggest that CB2 receptors are anatomically located in schizophrenia-relevant circuits, where the physiological consequence of CB2 receptor activation could correct circuit-based deficits commonly associated with positive and cognitive deficits.
Collapse
Affiliation(s)
- Anthony S. Ferranti
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, United States
| | - Daniel J. Foster
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| |
Collapse
|