1
|
Durydivka O, Kuchar M, Blahos J. SGIP1 Deletion in Mice Attenuates Mechanical Hypersensitivity Elicited by Inflammation. Cannabis Cannabinoid Res 2025; 10:247-257. [PMID: 38979622 DOI: 10.1089/can.2024.0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024] Open
Abstract
Background: Activation of cannabinoid receptor 1 (CB1R) in the nervous system modulates the processing of acute and chronic pain. CB1R activity is regulated by desensitization and internalization. SH3-containing GRB2-like protein 3-interacting protein 1 (SGIP1) inhibits the internalization of CB1R. This causes increased and prolonged association of the desensitized receptor with G protein-coupled receptor kinase 3 (GRK3) and beta-arrestin on the cell membrane and results in decreased activation of extracellular signal-regulated kinase 1/2 (ERK1/2) pathway. Genetic deletion of SGIP1 in mice leads to altered CB1R-related functions, such as decreased anxiety-like behaviors, modified cannabinoid tetrad behaviors, reduced acute nociception, and increased sensitivity to analgesics. In this work, we asked if deletion of SGIP1 affects chronic nociception and analgesic effect of Δ9-tetrahydrocannabinol (THC) and WIN 55,212-2 (WIN) in mice. Methods: We measured tactile responses of hind paws to increasing pressure in wild-type and SGIP1 knock-out mice. Inflammation in the paw was induced by local injection of carrageenan. To determine the mechanical sensitivity, the paw withdrawal threshold (PWT) was measured using an electronic von Frey instrument with the progression of the applied force. Results: The responses to mechanical stimuli varied depending on the sex, genotype, and treatment. SGIP1 knock-out male mice exhibited lower PWT than wild-type males. On the contrary, the female mice exhibited comparable PWT. Following THC or WIN treatment in male mice, SGIP1 knock-out males exhibited PWT lower than wild-type males. THC treatment in SGIP1 knock-out females resulted in PWT higher than after THC treatment of wild-type females. However, SGIP1 knock-out and wild-type female mice exhibited similar PWT after WIN treatment. Conclusions: We provide evidence that SGIP1, possibly by interacting with CB1R, is involved in processing the responses to chronic pain. The absence of SGIP1 results in enhanced sensitivity to mechanical stimuli in males, but not females. The antinociceptive effect of THC is superior to that of WIN in SGIP1 knock-out mice in the carrageenan-induced model of chronic pain.
Collapse
Affiliation(s)
- Oleh Durydivka
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Kuchar
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Forensic Laboratory of Biologically Active Substances, Prague, Czech Republic
- Psychedelic Research Center, National Institute of Mental Health, Klecany, Czech Republic
| | - Jaroslav Blahos
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
2
|
Rangari VA, O'Brien ES, Powers AS, Slivicki RA, Bertels Z, Appourchaux K, Aydin D, Ramos-Gonzalez N, Mwirigi J, Lin L, Mangutov E, Sobecks BL, Awad-Agbaria Y, Uphade MB, Aguilar J, Peddada TN, Shiimura Y, Huang XP, Folarin-Hines J, Payne M, Kalathil A, Varga BR, Kobilka BK, Pradhan AA, Cameron MD, Kumar KK, Dror RO, Gereau RW, Majumdar S. A cryptic pocket in CB1 drives peripheral and functional selectivity. Nature 2025; 640:265-273. [PMID: 40044849 PMCID: PMC11977287 DOI: 10.1038/s41586-025-08618-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 01/09/2025] [Indexed: 03/16/2025]
Abstract
The current opioid overdose epidemic highlights the urgent need to develop safer and more effective treatments for chronic pain1. Cannabinoid receptor type 1 (CB1) is a promising non-opioid target for pain relief, but its clinical use has been limited by centrally mediated psychoactivity and tolerance. We overcame both issues by designing peripherally restricted CB1 agonists that minimize arrestin recruitment. We achieved these goals by computationally designing positively charged derivatives of the potent CB1 agonist MDMB-Fubinaca2. We designed these ligands to occupy a cryptic pocket identified through molecular dynamics simulations-an extended binding pocket that opens rarely and leads to the conserved signalling residue D2.50 (ref. 3). We used structure determination, pharmacological assays and molecular dynamics simulations to verify the binding modes of these ligands and to determine the molecular mechanism by which they achieve this dampening of arrestin recruitment. Our lead ligand, VIP36, is highly peripherally restricted and demonstrates notable efficacy in three mouse pain models, with 100-fold dose separation between analgesic efficacy and centrally mediated side effects. VIP36 exerts analgesic efficacy through peripheral CB1 receptors and shows limited analgesic tolerance. These results show how targeting a cryptic pocket in a G-protein-coupled receptor can lead to enhanced peripheral selectivity, biased signalling, desired in vivo pharmacology and reduced adverse effects. This has substantial implications for chronic pain treatment but could also revolutionize the design of drugs targeting other G-protein-coupled receptors.
Collapse
Affiliation(s)
- Vipin Ashok Rangari
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy and Washington University School of Medicine, St. Louis, MO, USA
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Evan S O'Brien
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alexander S Powers
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Richard A Slivicki
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Zachariah Bertels
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Kevin Appourchaux
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy and Washington University School of Medicine, St. Louis, MO, USA
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Deniz Aydin
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Nokomis Ramos-Gonzalez
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy and Washington University School of Medicine, St. Louis, MO, USA
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Juliet Mwirigi
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Li Lin
- Department of Molecular Medicine, UF Scripps Biomedical Research, Jupiter, FL, USA
| | - Elizaveta Mangutov
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy and Washington University School of Medicine, St. Louis, MO, USA
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Briana L Sobecks
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Yaseen Awad-Agbaria
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy and Washington University School of Medicine, St. Louis, MO, USA
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Manoj B Uphade
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy and Washington University School of Medicine, St. Louis, MO, USA
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Jhoan Aguilar
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy and Washington University School of Medicine, St. Louis, MO, USA
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Teja Nikhil Peddada
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yuki Shiimura
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Division of Molecular Genetics, Institute of Life Science, Kurume University, Fukuoka, Japan
| | - Xi-Ping Huang
- Department of Pharmacology School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jakayla Folarin-Hines
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Maria Payne
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Anirudh Kalathil
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy and Washington University School of Medicine, St. Louis, MO, USA
| | - Balazs R Varga
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy and Washington University School of Medicine, St. Louis, MO, USA
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Brian K Kobilka
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Amynah A Pradhan
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy and Washington University School of Medicine, St. Louis, MO, USA
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael D Cameron
- Department of Molecular Medicine, UF Scripps Biomedical Research, Jupiter, FL, USA
| | | | - Ron O Dror
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Computer Science, Stanford University, Stanford, CA, USA.
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA.
| | - Robert W Gereau
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy and Washington University School of Medicine, St. Louis, MO, USA.
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA.
| | - Susruta Majumdar
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy and Washington University School of Medicine, St. Louis, MO, USA.
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
3
|
Yi J, Yang L, Widman AJ, Toliver A, Bertels Z, Del Rosario JS, Slivicki RA, Payne M, Dourson AJ, Li JN, Kumar R, Gupta P, Mwirigi JM, Chamessian A, Lemen J, Copits BA, Gereau RW. Human sensory neurons exhibit cell-type-specific, pain-associated differences in intrinsic excitability and expression of SCN9A and SCN10A. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.25.645367. [PMID: 40196681 PMCID: PMC11974934 DOI: 10.1101/2025.03.25.645367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Despite the prevalence of chronic pain, the approval of novel, non-opioid therapeutics has been slow. A major translational challenge in analgesic development is the difference in gene expression and functional properties between human and rodent dorsal root ganglia (DRG) sensory neurons. Extensive work in rodents suggests that sensitization of nociceptors in the DRG is essential for the pathogenesis and persistence of pain; however, direct evidence demonstrating similar physiological sensitization in humans is limited. Here, we examine whether pain history is associated with nociceptor hyperexcitability in human DRG (hDRG). We identified three electrophysiologically distinct clusters (E-types) of hDRG neurons based on firing properties and membrane excitability. Combining electrophysiological recordings and single-cell RNA-sequencing ("Patch-seq"), we linked these E-types to specific transcriptionally defined nociceptor subpopulations. Comparing hDRG neurons from donors with and without evident pain history revealed cluster-specific, pain history-associated differences in hDRG excitability. Finally, we found that hDRG from donors with pain history express higher levels of transcripts encoding voltage-gated sodium channel 1.7 (NaV1.7) and 1.8 (NaV1.8) which specifically regulate nociceptor excitability. These findings suggest that donors with pain history exhibit distinct hDRG electrophysiological profiles compared to those without pain history and further validate NaV1.7 and 1.8 as targets for analgesic development.
Collapse
Affiliation(s)
- Jiwon Yi
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
- Neuroscience Graduate Program, Division of Biology & Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, United States
| | - Lite Yang
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
- Neuroscience Graduate Program, Division of Biology & Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, United States
| | - Allie J. Widman
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Alexa Toliver
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Zachariah Bertels
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - John Smith Del Rosario
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Richard A. Slivicki
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Maria Payne
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Adam J. Dourson
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Jun-Nan Li
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Rakesh Kumar
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Prashant Gupta
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Juliet M. Mwirigi
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Alexander Chamessian
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - John Lemen
- Mid-America Transplant, St. Louis, MO, United States
| | - Bryan A. Copits
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Robert W. Gereau
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
- Department of Neuroscience, Washington University, St. Louis, MO, United States
| |
Collapse
|
4
|
Limerick G, Uniyal A, Ford N, He S, Grenald SA, Zhang C, Cui X, Sivanesan E, Dong X, Guan Y, Raja SN. Peripherally restricted cannabinoid and mu-opioid receptor agonists synergistically attenuate neuropathic mechanical hypersensitivity in mice. Pain 2024; 165:2563-2577. [PMID: 38815196 PMCID: PMC11511654 DOI: 10.1097/j.pain.0000000000003278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/02/2024] [Indexed: 06/01/2024]
Abstract
ABSTRACT Many medications commonly used to treat neuropathic pain are associated with significant, dose-limiting adverse effects, including sedation, dizziness, and fatigue. These adverse effects are due to the activity of these medications within the central nervous system. The objective of this work was to investigate the interactions between peripherally restricted cannabinoid receptor and mu-opioid receptor (MOR) agonists on ongoing and evoked neuropathic pain behaviors in mouse models. RNAscope analysis of cannabinoid receptor type 1 (CB1R) and MOR mRNA demonstrated that the mRNA of both receptors is colocalized in both mouse and human dorsal root ganglion. Single-cell RNAseq of dorsal root ganglion from chronic constriction injury mice showed that the mRNA of both receptors ( Cnr1 and Oprm1 ) is coexpressed across different neuron clusters. Myc-CB1R and FLAG-MOR were cotransfected into immortalized HEK-293T cells and were found to interact at a subcellular level. We also find that CB-13 (a peripherally restricted dual CB1R and cannabinoid receptor type 2 agonist) and DALDA (a peripherally restricted MOR agonist) both attenuate mechanical hypersensitivity in a murine model of neuropathic pain. Using isobolographic analysis, we demonstrate that when coadministered, these agents synergistically attenuate mechanical hypersensitivity. Importantly, combination dosing of these agents does not cause any detectable preferential behaviors or motor impairment. However, repeated dosing of these agents is associated with the development of tolerance to these drugs. Collectively, these findings suggest that leveraging synergistic pain inhibition between cannabinoid receptor and MOR agonists in peripheral sensory neurons may be worth examining in patients with neuropathic pain.
Collapse
MESH Headings
- Animals
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/metabolism
- Receptors, Opioid, mu/genetics
- Neuralgia/drug therapy
- Neuralgia/metabolism
- Mice
- Ganglia, Spinal/metabolism
- Ganglia, Spinal/drug effects
- Humans
- Male
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB1/genetics
- Hyperalgesia/drug therapy
- Hyperalgesia/metabolism
- HEK293 Cells
- Drug Synergism
- Mice, Inbred C57BL
- Cannabinoid Receptor Agonists/pharmacology
- Cannabinoid Receptor Agonists/therapeutic use
- Disease Models, Animal
- Analgesics, Opioid/pharmacology
Collapse
Affiliation(s)
- Gerard Limerick
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, The Johns Hopkins University, 733 North Broadway, Baltimore, MD 21205
| | - Ankit Uniyal
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, The Johns Hopkins University, 733 North Broadway, Baltimore, MD 21205
| | - Neil Ford
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, The Johns Hopkins University, 733 North Broadway, Baltimore, MD 21205
| | - ShaoQiu He
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, The Johns Hopkins University, 733 North Broadway, Baltimore, MD 21205
| | - Shaness A. Grenald
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, The Johns Hopkins University, 733 North Broadway, Baltimore, MD 21205
| | - Chi Zhang
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, The Johns Hopkins University, 733 North Broadway, Baltimore, MD 21205
| | - Xiang Cui
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, The Johns Hopkins University, 733 North Broadway, Baltimore, MD 21205
| | - Eellan Sivanesan
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, The Johns Hopkins University, 733 North Broadway, Baltimore, MD 21205
| | - Xinzhong Dong
- Department of Neuroscience, School of Medicine, The Johns Hopkins University, 725 North Wolfe Street, Baltimore, MD 21205
- Department of Neurology and Neurosurgery, School of Medicine, The Johns Hopkins University, 733 North Broadway, Baltimore, MD 21205
- Department of Dermatology, School of Medicine, The Johns Hopkins University, 1501 Jefferson Street, Baltimore, MD 21205
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, The Johns Hopkins University, 733 North Broadway, Baltimore, MD 21205
- Department of Neurology and Neurosurgery, School of Medicine, The Johns Hopkins University, 733 North Broadway, Baltimore, MD 21205
| | - Srinivasa N. Raja
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, The Johns Hopkins University, 733 North Broadway, Baltimore, MD 21205
- Department of Neurology and Neurosurgery, School of Medicine, The Johns Hopkins University, 733 North Broadway, Baltimore, MD 21205
| |
Collapse
|
5
|
Slivicki RA, Wang JG, Nhat VTT, Kravitz AV, Creed MC, Gereau RW. Impact of Δ 9-Tetrahydrocannabinol and oxycodone co-administration on measures of antinociception, dependence, circadian activity, and reward in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.04.569809. [PMID: 38105953 PMCID: PMC10723318 DOI: 10.1101/2023.12.04.569809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Oxycodone is commonly prescribed for moderate to severe pain disorders. While efficacious, long-term use can result in tolerance, physical dependence, and the development of opioid use disorder. Cannabis and its derivatives such as Δ9-Tetrahydrocannabinol (Δ9-THC) have been reported to enhance oxycodone analgesia in animal models and in humans. However, it remains unclear if Δ9-THC may facilitate unwanted aspects of oxycodone intake, such as tolerance, dependence, and reward at analgesic doses. This study sought to evaluate the impact of co-administration of Δ9-THC and oxycodone across behavioral measures related to antinociception, dependence, circadian activity, and reward in both male and female mice. Oxycodone and Δ9-THC produced dose-dependent antinociceptive effects in the hotplate assay that were similar between sexes. Repeated treatment (twice daily for 5 days) resulted in antinociceptive tolerance. Combination treatment of oxycodone and Δ9-THC produced a greater antinociceptive effect than either administered alone, and delayed the development of antinociceptive tolerance. Repeated treatment with oxycodone produced physical dependence and alterations in circadian activity, neither of which were exacerbated by co-treatment with Δ9-THC. Combination treatment of oxycodone and Δ9-THC produced CPP when co-administered at doses that did not produce preference when administered alone. These data indicate that Δ9-THC may facilitate oxycodone-induced antinociception without augmenting certain unwanted features of opioid intake (e.g. dependence, circadian rhythm alterations). However, our findings also indicate that Δ9-THC may facilitate rewarding properties of oxycodone at therapeutically relevant doses which warrant consideration when evaluating this combination for its potential therapeutic utility.
Collapse
Affiliation(s)
- Richard A. Slivicki
- Washington University Pain Center and Department of Anesthesiology, Washington University, St. Louis, MO
| | - Justin G. Wang
- Washington University Pain Center and Department of Anesthesiology, Washington University, St. Louis, MO
- Neuroscience Graduate Program, Division of Biology & Biomedical Sciences, Washington University, St. Louis, MO
| | - Vy Trinh Tran Nhat
- Washington University Pain Center and Department of Anesthesiology, Washington University, St. Louis, MO
| | - Alexxai V. Kravitz
- Washington University Pain Center and Department of Anesthesiology, Washington University, St. Louis, MO
- Department of Psychiatry, Washington University, St. Louis, MO
- Department of Neuroscience, Washington University, St. Louis, MO
| | - Meaghan C. Creed
- Washington University Pain Center and Department of Anesthesiology, Washington University, St. Louis, MO
- Department of Neuroscience, Washington University, St. Louis, MO
| | - Robert W. Gereau
- Washington University Pain Center and Department of Anesthesiology, Washington University, St. Louis, MO
- Department of Neuroscience, Washington University, St. Louis, MO
- Department of Biomedical Engineering, Washington University, St. Louis, MO
| |
Collapse
|
6
|
Jiang M, Huizenga MCW, Wirt JL, Paloczi J, Amedi A, van den Berg RJBHN, Benz J, Collin L, Deng H, Di X, Driever WF, Florea BI, Grether U, Janssen APA, Hankemeier T, Heitman LH, Lam TW, Mohr F, Pavlovic A, Ruf I, van den Hurk H, Stevens AF, van der Vliet D, van der Wel T, Wittwer MB, van Boeckel CAA, Pacher P, Hohmann AG, van der Stelt M. A monoacylglycerol lipase inhibitor showing therapeutic efficacy in mice without central side effects or dependence. Nat Commun 2023; 14:8039. [PMID: 38052772 PMCID: PMC10698032 DOI: 10.1038/s41467-023-43606-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 11/15/2023] [Indexed: 12/07/2023] Open
Abstract
Monoacylglycerol lipase (MAGL) regulates endocannabinoid 2-arachidonoylglycerol (2-AG) and eicosanoid signalling. MAGL inhibition provides therapeutic opportunities but clinical potential is limited by central nervous system (CNS)-mediated side effects. Here, we report the discovery of LEI-515, a peripherally restricted, reversible MAGL inhibitor, using high throughput screening and a medicinal chemistry programme. LEI-515 increased 2-AG levels in peripheral organs, but not mouse brain. LEI-515 attenuated liver necrosis, oxidative stress and inflammation in a CCl4-induced acute liver injury model. LEI-515 suppressed chemotherapy-induced neuropathic nociception in mice without inducing cardinal signs of CB1 activation. Antinociceptive efficacy of LEI-515 was blocked by CB2, but not CB1, antagonists. The CB1 antagonist rimonabant precipitated signs of physical dependence in mice treated chronically with a global MAGL inhibitor (JZL184), and an orthosteric cannabinoid agonist (WIN55,212-2), but not with LEI-515. Our data support targeting peripheral MAGL as a promising therapeutic strategy for developing safe and effective anti-inflammatory and analgesic agents.
Collapse
Affiliation(s)
- Ming Jiang
- Department of Molecular Physiology, Leiden University & Oncode Institute, Leiden, Netherlands
| | - Mirjam C W Huizenga
- Department of Molecular Physiology, Leiden University & Oncode Institute, Leiden, Netherlands
| | - Jonah L Wirt
- Department of Psychological and Brain Sciences, Program in Neuroscience, Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, USA
| | - Janos Paloczi
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute of Health/NIAAA, Rockville, MD, USA
| | - Avand Amedi
- Department of Molecular Physiology, Leiden University & Oncode Institute, Leiden, Netherlands
| | | | - Joerg Benz
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Ludovic Collin
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Hui Deng
- Department of Molecular Physiology, Leiden University & Oncode Institute, Leiden, Netherlands
| | - Xinyu Di
- Metabolomics and analytics center, Leiden University, Leiden, Netherlands
| | - Wouter F Driever
- Department of Molecular Physiology, Leiden University & Oncode Institute, Leiden, Netherlands
| | - Bogdan I Florea
- Department of Bio-organic Synthesis, Leiden University, Leiden, Netherlands
| | - Uwe Grether
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Antonius P A Janssen
- Department of Molecular Physiology, Leiden University & Oncode Institute, Leiden, Netherlands
| | - Thomas Hankemeier
- Metabolomics and analytics center, Leiden University, Leiden, Netherlands
| | - Laura H Heitman
- Division of Drug Discovery and Safety, Leiden University & Oncode Institute, Leiden, Netherlands
| | | | - Florian Mohr
- Department of Molecular Physiology, Leiden University & Oncode Institute, Leiden, Netherlands
| | - Anto Pavlovic
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Iris Ruf
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | | | - Anna F Stevens
- Department of Molecular Physiology, Leiden University & Oncode Institute, Leiden, Netherlands
| | - Daan van der Vliet
- Department of Molecular Physiology, Leiden University & Oncode Institute, Leiden, Netherlands
| | - Tom van der Wel
- Department of Molecular Physiology, Leiden University & Oncode Institute, Leiden, Netherlands
| | - Matthias B Wittwer
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | | | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute of Health/NIAAA, Rockville, MD, USA
| | - Andrea G Hohmann
- Department of Psychological and Brain Sciences, Program in Neuroscience, Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, USA.
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden University & Oncode Institute, Leiden, Netherlands.
| |
Collapse
|
7
|
Opioids alter paw placement during walking, confounding assessment of analgesic efficacy in a postsurgical pain model in mice. Pain Rep 2022; 7:e1035. [PMID: 36034600 PMCID: PMC9416758 DOI: 10.1097/pr9.0000000000001035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 06/08/2022] [Accepted: 07/17/2022] [Indexed: 11/27/2022] Open
Abstract
Introduction: Hind paw–directed assays are commonly used to study the analgesic effects of opioids in mice. However, opioid-induced hyperlocomotion can obscure results of such assays. Objectives: We aimed to overcome this potential confound by using gait analysis to observe hind paw usage during walking in mice. Methods: We measured changes in the paw print area after induction of postsurgical pain (using the paw incision model) and treatment with oxycodone. Results: Paw incision surgery reduced the paw print area of the injured hind paw as mice avoided placing the incised section of the paw on the floor. Surprisingly, oxycodone caused a tiptoe-like gait in mice, reducing the paw print area of both hind paws. Further investigation of this opioid-induced phenotype revealed that analgesic doses of oxycodone or morphine dose-dependently reduced the hind paw print area in uninjured mice. The gait changes were not dependent on opioid-induced increases in the locomotor activity; speed and paw print area had no correlation in opioid-treated mice, and other analgesic compounds that alter locomotor activity did not affect the paw print area. Conclusion: Unfortunately, the opioid-induced “tiptoe” gait phenotype prevented gait analysis from being a viable metric for demonstrating opioid analgesia in injured mice. However, this work reveals an important, previously uncharacterized effect of treatment with analgesic doses of opioids on paw placement. Our characterization of how opioids affect gait has important implications for the use of mice to study opioid pharmacology and suggests that scientists should use caution when using hind paw–directed nociceptive assays to test opioid analgesia in mice.
Collapse
|