1
|
Zhang M, Ni Z, Ma J, Liu A, Liu Y, Lou Q, Dong WY, Zhang Z, Li J, Cao P. A neural circuit for sex-dependent conditioned pain hypersensitivity in mice. Nat Commun 2025; 16:3639. [PMID: 40240334 PMCID: PMC12003881 DOI: 10.1038/s41467-025-58851-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 04/01/2025] [Indexed: 04/18/2025] Open
Abstract
The neural mechanisms underlying sex-specific pain, in which males and females exhibit distinct responses to pain, remain poorly understood. Here we show that in a mouse model of male-specific pain hypersensitivity response to pain conditioning environments (contextual pain hypersensitivity model), elevated free-testosterone leads to hyperactivity of glutamatergic neurons in the medial preoptic area (GlumPOA) through activation of androgen receptor signaling, which in turn induces contextual pain hypersensitivity in male mice. Although not observed in naïve female mice, this pain phenotype could be induced in females via chronic administration of testosterone propionate. In addition, GlumPOA neurons send excitatory inputs to GABAergic neurons in the ventrolateral periaqueductal gray (GABAvlPAG) that are required for contextual pain hypersensitivity. Our study thus demonstrates that testosterone/androgen receptor signaling enhances GlumPOA → GABAvlPAG pathway activity, which drives a male-specific contextual pain hypersensitivity, providing insight into the basis of sexually dimorphic pain response.
Collapse
Affiliation(s)
- Mingjun Zhang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Ziyun Ni
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Jun Ma
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - An Liu
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230022, China
| | - Ying Liu
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Qianqian Lou
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Wan-Ying Dong
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Zhi Zhang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230022, China.
- Department of Biophysics and Neurobiology, CAS Key laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, 230026, China.
| | - Juan Li
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
| | - Peng Cao
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
- Department of Biophysics and Neurobiology, CAS Key laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
2
|
Waliszewska-Prosół M, Grandi G, Ornello R, Raffaelli B, Straburzyński M, Tana C, Martelletti P. Menopause, Perimenopause, and Migraine: Understanding the Intersections and Implications for Treatment. Neurol Ther 2025:10.1007/s40120-025-00720-2. [PMID: 40085393 DOI: 10.1007/s40120-025-00720-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/19/2025] [Indexed: 03/16/2025] Open
Abstract
Migraine affects women three times more often than it does men, and various mechanisms may explain this incidence, including the key role of female sex hormones. Fluctuations in the levels of these hormones and their feedback control regulate the menstrual cycle, pregnancy, puerperium, perimenopause, and menopause. They can influence the occurrence and severity of migraine throughout the reproductive period. Of particular importance seems to be the perimenopausal period, which is associated with an increase in migraine, especially menstrual migraine, which is considered more disabling and less amenable to treatment than non-menstrual attacks. This article reviews the available evidence documenting the relationship between perimenopause, menopause, and migraine and diagnostic considerations in an attempt to determine the management of these periods of a woman's life. Special considerations, future directions, and unmet needs for perimenopausal and menopausal migraine are also discussed.
Collapse
Affiliation(s)
- Marta Waliszewska-Prosół
- Department of Neurology, Wroclaw Medical University, Borowska 213 Str., 50-556, Wrocław, Poland.
| | - Giovanni Grandi
- Department of Medical and Surgical Sciences for Mother, Child and Adult, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria of Modena, Modena, Italy
| | - Raffaele Ornello
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Bianca Raffaelli
- Department of Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- Clinician Scientist Program, Berlin Institute of Health at Charité (BIH), Berlin, Germany
| | - Marcin Straburzyński
- Department of Family Medicine and Infectious Diseases, University of Warmia and Mazury, Olsztyn, Poland
| | - Claudio Tana
- Center of Excellence on Headache and Geriatrics Clinic, SS Annunziata Hospital of Chieti, Chieti, Italy
| | | |
Collapse
|
3
|
Zhao H, Yu F, Wu W. The Mechanism by Which Estrogen Level Affects Knee Osteoarthritis Pain in Perimenopause and Non-Pharmacological Measures. Int J Mol Sci 2025; 26:2391. [PMID: 40141035 PMCID: PMC11942494 DOI: 10.3390/ijms26062391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 02/25/2025] [Accepted: 03/03/2025] [Indexed: 03/28/2025] Open
Abstract
Perimenopausal women have fluctuating estrogen levels, which often trigger a range of symptoms of perimenopausal syndromes as estrogen levels decrease. Changes in perimenopausal estrogen levels are closely related to pain in knee osteoarthritis (KOA), which has long been a research area of great interest in perimenopausal women. In recent years, it has been found that perimenopausal estrogen levels have an important role in KOA pain, namely, that estrogen can affect KOA pain through the regulation of inflammatory responses, inhibition of cellular senescence and apoptosis, and modulation of neurotransmitters, which may provide new ideas for KOA treatment. This study aims to describe the mechanism of estrogen level on knee osteoarthritis pain in perimenopause and related non-pharmacological measures, such as physical therapy, physical factor therapy, traditional Chinese medicine, and diet, which can provide a reference for the study and treatment of pain in perimenopausal women with KOA.
Collapse
Affiliation(s)
- Huiying Zhao
- School of Exercise and Health, Shanghai University of Sports, Shanghai 200438, China; (H.Z.); (F.Y.)
| | - Fan Yu
- School of Exercise and Health, Shanghai University of Sports, Shanghai 200438, China; (H.Z.); (F.Y.)
| | - Wei Wu
- School of Athletic Performance, Shanghai University of Sports, Shanghai 200438, China
| |
Collapse
|
4
|
Bautista-Abad Á, García-Magro N, Pinto-Benito D, Cáceres-Pajuelo JE, Alises CV, Ganchala D, Lagunas N, Negredo P, García-Segura LM, Arevalo MA, Grassi D. Aging is associated with sex-specific alteration in the expression of genes encoding for neuroestradiol synthesis and signaling proteins in the mouse trigeminal somatosensory input. GeroScience 2024; 46:6459-6472. [PMID: 38954130 PMCID: PMC11493896 DOI: 10.1007/s11357-024-01268-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/25/2024] [Indexed: 07/04/2024] Open
Abstract
Pain perception is influenced by sex and aging, with previous studies indicating the involvement of aromatase, the estradiol synthase enzyme, in regulating pain perception. Previous research has established the presence of aromatase in dorsal root ganglia sensory neurons and its role in modulating pain perception. The present study aims to explore the implications of aging and sex on the expression of aromatase and estrogen receptors in the trigeminal ganglion. The study examined mRNA levels of aromatase, ERs, and the androgen receptor (AR) in the trigeminal ganglion of 3-month-old and 27-month-old male and female mice, as well as 3-month-old mice from the four-core genotype (FCG) transgenic model. The latter facilitates the assessment of gonadal hormone and sex chromosome implications for sex-specific traits. Aromatase localization in the ganglion was further assessed through immunohistochemistry. Aromatase immunoreactivity was observed for the first time in sensory neurons within the trigeminal ganglion. Trigeminal ganglion gene expressions were detected for aromatase, ERs, and AR in both sexes. Aromatase, ERβ, and GPER gene expressions were higher in young males versus young females. Analyses of the FCG model indicated that sex differences depended solely on gonadal sex. The aging process induced an enhancement in the expression of aromatase, ERs, and AR genes across both sexes, culminating in a reversal of the previously observed gender-based differences. the potential impact of estrogen synthesis and signaling in the trigeminal ganglion on age and sex differences warrants consideration, particularly in relation to trigeminal sensory functions and pain perception.
Collapse
MESH Headings
- Animals
- Female
- Aromatase/genetics
- Aromatase/metabolism
- Male
- Trigeminal Ganglion/metabolism
- Aging/genetics
- Aging/metabolism
- Aging/physiology
- Mice
- Estradiol/metabolism
- Mice, Transgenic
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Receptors, Estrogen/metabolism
- Receptors, Estrogen/genetics
- Sex Factors
- Pain Perception/physiology
- Signal Transduction/genetics
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Sensory Receptor Cells/metabolism
- RNA, Messenger/metabolism
- RNA, Messenger/genetics
- Mice, Inbred C57BL
- Estrogen Receptor beta/genetics
- Estrogen Receptor beta/metabolism
Collapse
Affiliation(s)
- Álvaro Bautista-Abad
- Department of Anatomy, Histology and Neuroscience, Autonoma University of Madrid, Calle Arzobispo Morcillo 4, Madrid, Spain
| | - Nuria García-Magro
- Department of Anatomy, Histology and Neuroscience, Autonoma University of Madrid, Calle Arzobispo Morcillo 4, Madrid, Spain
- Facultad de Ciencias de la Salud, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda Km 1,800, Pozuelo de Alarcón, Madrid, Spain
| | - Daniel Pinto-Benito
- Neuroactive Steroids Lab, Cajal Institute, CSIC, Avenida Doctor Arce 37, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Julio Eduardo Cáceres-Pajuelo
- Department of Anatomy, Histology and Neuroscience, Autonoma University of Madrid, Calle Arzobispo Morcillo 4, Madrid, Spain
| | - Carlos Vicente Alises
- Department of Anatomy, Histology and Neuroscience, Autonoma University of Madrid, Calle Arzobispo Morcillo 4, Madrid, Spain
| | - Danny Ganchala
- Neuroactive Steroids Lab, Cajal Institute, CSIC, Avenida Doctor Arce 37, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Natalia Lagunas
- Department of Legal Medicine, Psychiatry and Pathology, School of Medicine, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Madrid, Spain
| | - Pilar Negredo
- Department of Anatomy, Histology and Neuroscience, Autonoma University of Madrid, Calle Arzobispo Morcillo 4, Madrid, Spain
| | - Luis Miguel García-Segura
- Neuroactive Steroids Lab, Cajal Institute, CSIC, Avenida Doctor Arce 37, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Maria-Angeles Arevalo
- Neuroactive Steroids Lab, Cajal Institute, CSIC, Avenida Doctor Arce 37, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain.
| | - Daniela Grassi
- Department of Anatomy, Histology and Neuroscience, Autonoma University of Madrid, Calle Arzobispo Morcillo 4, Madrid, Spain.
- Neuroactive Steroids Lab, Cajal Institute, CSIC, Avenida Doctor Arce 37, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
5
|
Plumb AN, Lesnak JB, Kolling LJ, Marcinkiewcz CA, Sluka KA. Local Synthesis of Estradiol in the Rostral Ventromedial Medulla Protects against Widespread Muscle Pain in Male Mice. eNeuro 2024; 11:ENEURO.0332-24.2024. [PMID: 39111835 PMCID: PMC11360981 DOI: 10.1523/eneuro.0332-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/30/2024] Open
Abstract
Animal studies consistently demonstrate that testosterone is protective against pain in multiple models, including an animal model of activity-induced muscle pain. In this model, females develop widespread muscle hyperalgesia, and reducing testosterone levels in males results in widespread muscle hyperalgesia. Widespread pain is believed to be mediated by changes in the central nervous system, including the rostral ventromedial medulla (RVM). The enzyme that converts testosterone to estradiol, aromatase, is highly expressed in the RVM. Therefore, we hypothesized that testosterone is converted by aromatase to estradiol locally in the RVM to prevent development of widespread muscle hyperalgesia in male mice. This was tested through pharmacological inhibition of estrogen receptors (ERs), aromatase, or ER-α in the RVM which resulted in contralateral hyperalgesia in male mice (C57BL/6J). ER inhibition in the RVM had no effect on hyperalgesia in female mice. As prior studies show modulation of estradiol signaling alters GABA receptor and transporter expression, we examined if removal of testosterone in males would decrease mRNA expression of GABA receptor subunits and vesicular GABA transporter (VGAT). However, there were no differences in mRNA expression of GABA receptor subunits of VGAT between gonadectomized and sham control males. Lastly, we used RNAscope to determine expression of ER-α in the RVM and show expression in inhibitory (VGAT+), serotonergic (tryptophan hydroxylase 2+), and μ-opioid receptor expressing (MOR+) cells. In conclusion, testosterone protects males from development of widespread hyperalgesia through aromatization to estradiol and activation of ER-α which is widely expressed in multiple cell types in the RVM.
Collapse
Affiliation(s)
- Ashley N Plumb
- Departments of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, Iowa, 52242
| | - Joseph B Lesnak
- Departments of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, Iowa, 52242
| | - Louis J Kolling
- Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa, 52242
| | | | - Kathleen A Sluka
- Departments of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, Iowa, 52242
- Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa, 52242
| |
Collapse
|
6
|
Lisboa MRP, Pereira AF, Alves BWDF, Dias DBS, Alves LCV, da Silva CMP, Lima-Júnior RCP, Gondim DV, Vale ML. Blockage of the fractalkine pathway reduces hyperalgesia and prevents morphological glial alterations-Comparison between inflammatory and neuropathic orofacial pain in male rats. J Neurosci Res 2024; 102:e25269. [PMID: 38284851 DOI: 10.1002/jnr.25269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 10/09/2023] [Accepted: 10/22/2023] [Indexed: 01/30/2024]
Abstract
This study aimed to evaluate the effects of inhibitors of the fractalkine pathway in hyperalgesia in inflammatory and neuropathic orofacial pain in male rats and the morphological changes in microglia and satellite glial cells (SGCs). Rats were submitted to zymosan-induced arthritis of the temporomandibular joint or infraorbital nerve constriction, and treated intrathecally with a P2 X7 antagonist, a cathepsin S inhibitor or a p-38 mitogen-activated protein kinase (MAPK) inhibitor. Mechanical hyperalgesia was evaluated 4 and 6 h following arthritis induction or 7 and 14 days following nerve ligation. The expression of the receptor CX3 CR1 , phospho-p-38 MAPK, ionized calcium-binding adapter molecule-1 (Iba-1), and glutamine synthetase and the morphological changes in microglia and SGCs were evaluated by confocal microscopy. In both inflammatory and neuropathic models, untreated animals presented a higher expression of CX3 CR1 and developed hyperalgesia and up-regulation of phospho-p-38 MAPK, which was prevented by all drugs (p < .05). The number of microglial processes endpoints and the total branch length were lower in the untreated animals, but the overall immunolabeling of Iba-1 was altered only in neuropathic rats (p < .05). The mean area of SGCs per neuron was significantly altered only in the inflammatory model (p < .05). All morphological alterations were reverted by modulating the fractalkine pathway (p < .05). In conclusion, the blockage of the fractalkine pathway seemed to be a possible therapeutic strategy for inflammatory and neuropathic orofacial pain, reducing mechanical hyperalgesia by impairing the phosphorylation of p-38 MAPK and reverting morphological alterations in microglia and SGCs.
Collapse
Affiliation(s)
- Mario Roberto Pontes Lisboa
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
- Graduation in Dentistry, Christus University Center, Fortaleza, Brazil
| | - Anamaria Falcão Pereira
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | | | - Diego Bernarde Souza Dias
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | | | | | - Roberto César Pereira Lima-Júnior
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
- Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Delane Viana Gondim
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
- Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Mariana Lima Vale
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
- Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
7
|
Song XX, Jin LY, Li Q, Li XF, Luo Y. Estrogen receptor β/substance P signaling in spinal cord mediates antinociceptive effect in a mouse model of discogenic low back pain. Front Cell Neurosci 2023; 16:1071012. [PMID: 36756381 PMCID: PMC9899865 DOI: 10.3389/fncel.2022.1071012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/29/2022] [Indexed: 01/24/2023] Open
Abstract
Introduction Discogenic low back pain (DLBP) is the most commonly described form of back pain. Our previous studies indicated that estrogen-dependent DLBP mechanism was mediated by estrogen receptors (ERs) in the intervertebral disc (IVD) tissue, and the IVD degeneration degree is accompanied by downregulation of ERs, particularly ERβ. However, the neuropathological mechanisms underlying ERs modulation of DLBP are still not well understood. In this study, we investigated the antinociceptive effects of selective ERβ agonists on DLBP-related behavior by regulating substance P in spinal cord and dorsal root ganglia. Methods Two weeks after ovariectomies, 18-week-old female mice were randomly separated into four groups: control group; DLBP sham surgery plus vehicle group; DLBP plus vehicle group; DLBP plus ERβ-specific agonist diarylpropionitrile (DPN) group. Behavioral data was collected including behavioral measures of axial back pain (grip force and tail suspension tests) and radiating hypersensitivity (mechanical sensitivity and cold sensitivity test). Dual label scanning confocal immunofluorescence microscopy was used to observe spatial colocalization of ERβ and substance P in spinal cord. Substance P changes in spinal cord and dorsal root ganglia were measured by immunohistochemistry and real-time PCR. Results ERβ activation could improve both axial and radiating behavioral disorders of DLBP. DPN facilitated the decrease of the amount of time in immobility 1 week after agonist administration. At the time point of 3 weeks, DPN group spent significantly less time in immobility than the vehicle group. In the grip strength tests, starting from postoperative week 1-week 3, DPN injection DLBP mice showed more resistance to stretch than the vehicle injection DLBP mice. Significant differences of cold withdrawal latency time were observed between the DLBP plus DPN injection and DLBP vehicle injection groups at 2- and 3-week injection time point. DPN significantly reversed the paw withdrawal threshold of DLBP mice at the time point of 1, 2, and 3 weeks. Substance P colocalized with ERβ in spinal dorsal horn, mainly in laminae I and II, a connection site of pain transmission. Substance P levels in dorsal horn and dorsal root ganglia of DLBP group were distinctly increased compared with that of control and DLBP sham group. DPN therapy could decrease substance P content in the dorsal horn and the dorsal root ganglia of DLBP mice compared with that of vehicle-treated DLBP mice. Discussion Activation of ERβ is antinociceptive in the DLBP model by controlling substance P in spinal cord and dorsal root ganglia, which might provide a therapeutic target to manage DLBP in the clinic.
Collapse
Affiliation(s)
- Xiao-Xing Song
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin-Yu Jin
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiang Li
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin-Feng Li
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Xin-Feng Li,
| | - Yan Luo
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Yan Luo,
| |
Collapse
|
8
|
Neural Regulations in Tooth Development and Tooth-Periodontium Complex Homeostasis: A Literature Review. Int J Mol Sci 2022; 23:ijms232214150. [PMID: 36430624 PMCID: PMC9698398 DOI: 10.3390/ijms232214150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
The tooth-periodontium complex and its nerves have active reciprocal regulation during development and homeostasis. These effects are predominantly mediated by a range of molecules secreted from either the nervous system or the tooth-periodontium complex. Different strategies mimicking tooth development or physiological reparation have been applied to tooth regeneration studies, where the application of these nerve- or tooth-derived molecules has been proven effective. However, to date, basic studies in this field leave many vacancies to be filled. This literature review summarizes the recent advances in the basic studies on neural responses and regulation during tooth-periodontium development and homeostasis and points out some research gaps to instruct future studies. Deepening our understanding of the underlying mechanisms of tooth development and diseases will provide more clues for tooth regeneration.
Collapse
|