1
|
Mascagni I, Bossi P. New trends in supportive care of head and neck cancers. Curr Opin Oncol 2025; 37:194-202. [PMID: 40071473 DOI: 10.1097/cco.0000000000001135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
PURPOSE OF REVIEW Supportive care plays a vital role in the management of head and neck cancer (HNC) patients, as the disease often affects a frail and older population that is treated with multiple strategies and is associated with severe symptoms. We will focus on mucositis, dermatitis, dysphagia, pain, cachexia, and infections, as they are among the most common and challenging symptoms encountered. RECENT FINDINGS Efforts have focused on multiomics approaches to decipher the complex biological pathways that drive symptom onset and treatment-related toxicities, with the aim of developing novel therapeutic strategies. A notable example is ponsegromab, a monoclonal antibody designed to target cancer cachexia. Other promising areas of research, such as machine-learning models and the role of oral and gut microbiota on cachexia and mucositis, are actively being explored; however, their impact to date remains limited. SUMMARY In recent years, new knowledge has emerged regarding the underlying causes and predictive models for the supportive care of HNC patients. Unfortunately, this expanding body of knowledge primarily adds to complexity without translating into practical applications or substantial improvements for patients. Future efforts should prioritize the standardization of therapeutic algorithms, and the generation of robust evidence based on existing preclinical models.
Collapse
Affiliation(s)
- Ilaria Mascagni
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Paolo Bossi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, Italy
| |
Collapse
|
2
|
Martel Matos AA, Scheff NN. Sensory neurotransmission and pain in solid tumor progression. Trends Cancer 2025; 11:309-320. [PMID: 39884880 DOI: 10.1016/j.trecan.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/17/2024] [Accepted: 01/06/2025] [Indexed: 02/01/2025]
Abstract
Sensory nerves form a crucial component of the tumor microenvironment (TME) that relays vital information to the central nervous system and modulates tumor progression via immunosurveillance. Afferent activity processed by the brain can sensitize brain circuitry and influence host behaviors. Peripheral sensory signaling (e.g., release of neuropeptides in the TME) can drive phenotypic changes in the tumor immune response, such as increased exhaustion markers and inhibited effector cell activity, which promote cancer progression. In this review we highlight the most recent evidence demonstrating the pivotal role of the sensory nervous system in cancer, with a focus on primary tumor pain, and we discuss the extent to which pain can influence cancer progression and treatment response, including immunotherapeutic strategies.
Collapse
Affiliation(s)
- Andre A Martel Matos
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA; Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Nicole N Scheff
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA; Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| |
Collapse
|
3
|
Casaril AM, Gaffney CM, Shepherd AJ. Animal models of neuropathic pain. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 179:339-401. [PMID: 39580217 DOI: 10.1016/bs.irn.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
Animal models continue to be crucial to developing our understanding of the molecular, cellular, and neurophysiological mechanisms that lead to neuropathic pain. The overwhelming majority of animal studies use rodent models, ranging from surgical and trauma-induced models to those induced by metabolic diseases, genetic mutations, viruses, neurotoxic drugs, and cancer. We discuss the clinical relevance of the available models and the pain behavior tests commonly used as outcome measures. Finally, we summarize the refinements that have been proposed to improve the ability of animal model studies to predict clinical efficacy.
Collapse
Affiliation(s)
- Angela M Casaril
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Caitlyn M Gaffney
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Andrew J Shepherd
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.
| |
Collapse
|
4
|
Fan H, Liang X, Tang Y. Neuroscience in peripheral cancers: tumors hijacking nerves and neuroimmune crosstalk. MedComm (Beijing) 2024; 5:e784. [PMID: 39492832 PMCID: PMC11527832 DOI: 10.1002/mco2.784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 11/05/2024] Open
Abstract
Cancer neuroscience is an emerging field that investigates the intricate relationship between the nervous system and cancer, gaining increasing recognition for its importance. The central nervous system governs the development of the nervous system and directly affects brain tumors, and the peripheral nervous system (PNS) shapes the tumor microenvironment (TME) of peripheral tumors. Both systems are crucial in cancer initiation and progression, with recent studies revealing a more intricate role of the PNS within the TME. Tumors not only invade nerves but also persuade them through remodeling to further promote malignancy, creating a bidirectional interaction between nerves and cancers. Notably, immune cells also contribute to this communication, forming a triangular relationship that influences protumor inflammation and the effectiveness of immunotherapy. This review delves into the intricate mechanisms connecting the PNS and tumors, focusing on how various immune cell types influence nerve‒tumor interactions, emphasizing the clinical relevance of nerve‒tumor and nerve‒immune dynamics. By deepening our understanding of the interplay between nerves, cancer, and immune cells, this review has the potential to reshape tumor biology insights, inspire innovative therapies, and improve clinical outcomes for cancer patients.
Collapse
Affiliation(s)
- Hua‐Yang Fan
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial SurgeryWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Xin‐Hua Liang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial SurgeryWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Ya‐Ling Tang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral PathologyWest China Hospital of StomatologySichuan UniversityChengduChina
| |
Collapse
|
5
|
Islam S, Gleber-Netto FO, Mulcahy CF, Glaun MDE, Srivastava S, Hunt PJ, Williams MD, Barbon CE, Spiotto M, Zhao W, Adebayo A, Akhter S, Xie T, Debnath KC, Sathishkumar HN, Myers B, Lothumalla S, Yaman I, Burks JK, Gomez J, Rao X, Wang J, Woodman K, Mansour J, Arenkiel B, Osman KL, Haxton C, Lever TE, Hutcheson KA, Amit M. Neural landscape is associated with functional outcomes in irradiated patients with oropharyngeal squamous cell carcinoma. Sci Transl Med 2024; 16:eabq5585. [PMID: 39083586 DOI: 10.1126/scitranslmed.abq5585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 01/02/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024]
Abstract
The incidence of human papilloma virus-mediated oropharyngeal squamous cell carcinoma (OPSCC) has increased over the past 40 years, particularly among young individuals with a favorable prognosis; however, current therapy often leads to unfortunate side effects, such as dysphagia. Despite the emphasis on dysphagia in previous studies, there is an important research gap in understanding the correlation between neuronal changes and patient-reported and functional outcomes in patients with OPSCC. To address this issue, we examined pathologic tissue samples from patients with OPSCC using multiplex immunofluorescence staining and machine learning to correlate tumor-associated neuronal changes with prospectively collected patient-reported and functional outcomes. We found that tumor enrichment of adrenergic (TH+) and CGRP+ sensory-afferent nerves correlated with poorer swallowing outcomes. Functional electromyography recordings showed correlations between growing (GAP43+) and immature cholinergic (ChAT+DCX+) nerves and denervation patterns in survivors of OPSCC. A murine model of radiation-induced dysphagia further confirmed that immature cholinergic and CGRP+ nerves were correlated with impaired swallowing. Preclinical interventional studies also supported the independent contributions of CGRP+ and cholinergic (ChAT+) nerves to dysphagia in treated mouse models of OPSCC. Our results suggest that CGRP+ and ChAT+ neuronal signaling play distinct roles in tumor- and radiation-induced dysphagia in OPSCC and offer a comprehensive dataset on the neural landscape of OPSCC. These insights may guide early interventions for swallow preservation and the repurposing of neurology-related drugs, such as CGRP blockers, in clinical oncology and survivorship.
Collapse
Affiliation(s)
- Shajedul Islam
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Frederico O Gleber-Netto
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Collin F Mulcahy
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mica D E Glaun
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Snigdha Srivastava
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Patrick J Hunt
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michelle D Williams
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Carly E Barbon
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michael Spiotto
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Weilu Zhao
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Biostatistics and Data Science, University of Texas Health Science Center at Houston (UTHealth Houston) School of Public Health, Houston, TX 77030, USA
| | - Adewale Adebayo
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shamima Akhter
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tongxin Xie
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kala Chand Debnath
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hinduja Naidu Sathishkumar
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Blake Myers
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Sahana Lothumalla
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ismail Yaman
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jared K Burks
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Leukemia and Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Javier Gomez
- Department of Leukemia and Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiayu Rao
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Karin Woodman
- Department of Neuro-Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jobran Mansour
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Otolaryngology-Head and Neck Surgery, Louisiana State University Shreveport Medical Center, Shreveport, LA 71103, USA
| | - Benjamin Arenkiel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kate L Osman
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Chandler Haxton
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Teresa E Lever
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Katherine A Hutcheson
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Moran Amit
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
6
|
Mardelle U, Bretaud N, Daher C, Feuillet V. From pain to tumor immunity: influence of peripheral sensory neurons in cancer. Front Immunol 2024; 15:1335387. [PMID: 38433844 PMCID: PMC10905387 DOI: 10.3389/fimmu.2024.1335387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/29/2024] [Indexed: 03/05/2024] Open
Abstract
The nervous and immune systems are the primary sensory interfaces of the body, allowing it to recognize, process, and respond to various stimuli from both the external and internal environment. These systems work in concert through various mechanisms of neuro-immune crosstalk to detect threats, provide defense against pathogens, and maintain or restore homeostasis, but can also contribute to the development of diseases. Among peripheral sensory neurons (PSNs), nociceptive PSNs are of particular interest. They possess a remarkable capability to detect noxious stimuli in the periphery and transmit this information to the brain, resulting in the perception of pain and the activation of adaptive responses. Pain is an early symptom of cancer, often leading to its diagnosis, but it is also a major source of distress for patients as the disease progresses. In this review, we aim to provide an overview of the mechanisms within tumors that are likely to induce cancer pain, exploring a range of factors from etiological elements to cellular and molecular mediators. In addition to transmitting sensory information to the central nervous system, PSNs are also capable, when activated, to produce and release neuropeptides (e.g., CGRP and SP) from their peripheral terminals. These neuropeptides have been shown to modulate immunity in cases of inflammation, infection, and cancer. PSNs, often found within solid tumors, are likely to play a significant role in the tumor microenvironment, potentially influencing both tumor growth and anti-tumor immune responses. In this review, we discuss the current state of knowledge about the degree of sensory innervation in tumors. We also seek to understand whether and how PSNs may influence the tumor growth and associated anti-tumor immunity in different mouse models of cancer. Finally, we discuss the extent to which the tumor is able to influence the development and functions of the PSNs that innervate it.
Collapse
Affiliation(s)
- Ugo Mardelle
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Ninon Bretaud
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Clara Daher
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Vincent Feuillet
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| |
Collapse
|
7
|
Tram M, Ibrahim T, Hovhannisyan A, Akopian A, Ruparel S. Lingual innervation in male and female marmosets. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 14:100134. [PMID: 38099285 PMCID: PMC10719518 DOI: 10.1016/j.ynpai.2023.100134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 12/17/2023]
Abstract
Several gaps in knowledge exists in our understanding of orofacial pain. Some of these include type of peripheral sensory innervation in specific tissues, differences in innervation between sexes and validation of rodent studies in higher order species. The current study addresses these gaps by validating mouse studies for sensory innervation of tongue tissue in non-human primates as well as assesses sex-specific differences. Tongue and trigeminal ganglia were collected from naïve male and female marmosets and tested for nerve fibers using specific markers by immunohistochemistry and number of fibers quantified. We also tested whether specific subgroups of nerve fibers belonged to myelinating or non-myelinating axons. We observed that similar to findings in mice, marmoset tongue was innervated with nerve filaments expressing nociceptor markers like CGRP and TRPV1 as well as non-nociceptor markers like TrkB, parvalbumin (PV) and tyrosine hydroxylase (TH). Furthermore, we found that while portion of TrkB and PV may be sensory fibers, TH-positive fibers were primarily sympathetic nerve fibers. Moreover, number of CGRP, TrkB and TH-positive nerve fibers were similar in both sexes. However, we observed a higher proportion of myelinated TRPV1 positive fibers in females than in males as well as increased number of PV + fibers in females. Taken together, the study for the first time characterizes sensory innervation in non-human primates as well as evaluates sex-differences in innervation of tongue tissue, thereby laying the foundation for future orofacial pain research with new world smaller NHPs like the common marmoset.
Collapse
Affiliation(s)
- Meilinn Tram
- Department of Endodontics, School of Dentistry, University of Texas Health San Antonio, USA
| | - Tarek Ibrahim
- Department of Endodontics, School of Dentistry, University of Texas Health San Antonio, USA
| | - Anahit Hovhannisyan
- Department of Endodontics, School of Dentistry, University of Texas Health San Antonio, USA
| | - Armen Akopian
- Department of Endodontics, School of Dentistry, University of Texas Health San Antonio, USA
| | - Shivani Ruparel
- Department of Endodontics, School of Dentistry, University of Texas Health San Antonio, USA
| |
Collapse
|
8
|
Xu Y, Li J, Luo Y, Ma J, Huang P, Chen Y, He Z. Carvedilol exhibits anti-acute T lymphoblastic leukemia effect in vitro and in vivo via inhibiting β-ARs signaling pathway. Biochem Biophys Res Commun 2023; 639:150-160. [PMID: 36495764 DOI: 10.1016/j.bbrc.2022.11.093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022]
Abstract
An increasing number of studies have focus upon β-adrenergic receptor blockers and their anti-tumor effects. However, the use of Carvedilol (CVD), the third generation β-AR blocker, has not been explored for use against T-ALL. In this study, the level of β-ARs was explored in pediatric T-ALL patients. Moreover, the antitumor effects of CVD against T-ALL were assessed in vitro and in vivo, and the underlying mechanisms were investigated. The viability of T-ALL cells following CVD treatment was detected using a CCK-8 assay, and the apoptotic and cell cycle effects were measured using flow cytometry. The protein levels of β-ARs, cAMP, Epac, JAK2, STAT3, p-STAT3, PI3K, p-PI3K, AKT, p-AKT, mTOR, cyclin D1, PCNA, and cleaved caspase-3 were assessed by Western blotting. In vivo experiments were used to investigate the effect of CVD on T-ALL growth in mice. The results indicated that β-ARs were highly expressed in the newly diagnosed T-ALL cells when compared to those in the control group (P < 0.05). In vitro, CVD significantly inhibited T-ALL cell viability, promoted apoptosis and blocked the G0/G1 phase of cell cycle. After CVD treatment, the protein levels of β-ARs, cAMP, Epac, PI3K, p-PI3K, AKT, p-AKT, mTOR, JAK2, STAT3, p-STAT3, cyclin D1 and PCNA were significantly downregulated (P < 0.05); whereas cleaved caspase-3 was significantly upregulated (P < 0.05). In vivo, the volume and weight of the xenograft tumors were significantly decreased in the CVD group (P < 0.05). CVD promoted xenograft tumor apoptosis and reduced the proportion of CEM-C1 cells in murine peripheral blood and bone marrow (P < 0.05). Our results demonstrate that β-ARs are expressed in T-ALL. CVD has a strong antitumor effect against T-ALL and inhibits β-AR associated signaling pathways. Therefore, CVD may provide a potential therapy for T-ALL.
Collapse
Affiliation(s)
- Yanpeng Xu
- Suzhou Medical College of Soochow University, Suzhou, People's Republic of China; Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zun Yi, People's Republic of China; Department of Pediatrics, Guizhou Children's Hospital, Zun Yi, People's Republic of China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, People's Republic of China
| | - Jiahuan Li
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zun Yi, People's Republic of China
| | - Yan Luo
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zun Yi, People's Republic of China; Department of Pediatrics, Guizhou Children's Hospital, Zun Yi, People's Republic of China
| | - Jinhua Ma
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zun Yi, People's Republic of China; Department of Pediatrics, Guizhou Children's Hospital, Zun Yi, People's Republic of China
| | - Pei Huang
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zun Yi, People's Republic of China; Department of Pediatrics, Guizhou Children's Hospital, Zun Yi, People's Republic of China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, People's Republic of China
| | - Yan Chen
- Suzhou Medical College of Soochow University, Suzhou, People's Republic of China; Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zun Yi, People's Republic of China; Department of Pediatrics, Guizhou Children's Hospital, Zun Yi, People's Republic of China.
| | - Zhixu He
- Suzhou Medical College of Soochow University, Suzhou, People's Republic of China; Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zun Yi, People's Republic of China; Department of Pediatrics, Guizhou Children's Hospital, Zun Yi, People's Republic of China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, People's Republic of China.
| |
Collapse
|
9
|
Horan NL, McIlvried LA, Atherton MA, Yuan MM, Dolan JC, Scheff NN. The impact of tumor immunogenicity on cancer pain phenotype using syngeneic oral cancer mouse models. FRONTIERS IN PAIN RESEARCH 2022; 3:991725. [PMID: 36172037 PMCID: PMC9512086 DOI: 10.3389/fpain.2022.991725] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) patients report severe function-induced pain at the site of the primary tumor. The current hypothesis is that oral cancer pain is initiated and maintained in the cancer microenvironment due to secretion of algogenic mediators from tumor cells and surrounding immune cells that sensitize the primary sensory neurons innervating the tumor. Immunogenicity, which is the ability to induce an adaptive immune response, has been widely studied using cancer cell transplantation experiments. However, oral cancer pain studies have primarily used xenograft transplant models in which human-derived tumor cells are inoculated in an athymic mouse lacking an adaptive immune response; the role of inflammation in oral cancer-induced nociception is still unknown. Using syngeneic oral cancer mouse models, we investigated the impact of tumor cell immunogenicity and growth on orofacial nociceptive behavior and oral cancer-induced sensory neuron plasticity. We found that an aggressive, weakly immunogenic mouse oral cancer cell line, MOC2, induced rapid orofacial nociceptive behavior in both male and female C57Bl/6 mice. Additionally, MOC2 tumor growth invoked a substantial injury response in the trigeminal ganglia as defined by a significant upregulation of injury response marker ATF3 in tongue-innervating trigeminal neurons. In contrast, using a highly immunogenic mouse oral cancer cell line, MOC1, we found a much slower onset of orofacial nociceptive behavior in female C57Bl/6 mice only as well as sex-specific differences in the tumor-associated immune landscape and gene regulation in tongue innervating sensory neurons. Together, these data suggest that cancer-induced nociceptive behavior and sensory neuron plasticity can greatly depend on the immunogenic phenotype of the cancer cell line and the associated immune response.
Collapse
Affiliation(s)
- Nicole L. Horan
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Lisa A. McIlvried
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Megan A. Atherton
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Mona M. Yuan
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - John C. Dolan
- College of Dentistry, New York University, New York, NY, United States
| | - Nicole N. Scheff
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| |
Collapse
|