1
|
Barroso J, Branco P, Apkarian AV. The causal role of brain circuits in osteoarthritis pain. Nat Rev Rheumatol 2025; 21:261-274. [PMID: 40164779 DOI: 10.1038/s41584-025-01234-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2025] [Indexed: 04/02/2025]
Abstract
Osteoarthritis (OA) is a leading cause of chronic pain worldwide, resulting in substantial disability and placing a substantial burden on patients and society. The hallmark symptom of OA is joint pain. Despite extensive research, new treatments for OA pain remain limited, partly owing to a lack of understanding of underlying pain mechanisms. For a long time, OA pain was seen as a reflection of nociceptive activity at the joint level, and the brain has been viewed as a passive recipient of such information. In this Review, we challenge these concepts and discuss how, over time, the activation of peripheral nociceptors leads to adaptations in the brain that dictate the properties and experience of OA pain. These adaptations are further influenced by the inherent properties of the brain. We review general concepts that distinguish pain from nociception, present evidence on the incongruity between joint injury and experience of OA pain, and review brain circuits that are crucial in the perception of OA pain. Finally, we propose a model that integrates nociception, spinal-cord mechanisms, and central nervous system dynamics, each contributing uniquely to pain perception. This framework has the potential to inform the development of personalized treatment strategies.
Collapse
Affiliation(s)
- Joana Barroso
- Department of Anaesthesiology and Center for Translational Pain Research, Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - Paulo Branco
- Department of Anaesthesiology and Center for Translational Pain Research, Feinberg School of Medicine, Northwestern University, Evanston, IL, USA.
| | - A Vania Apkarian
- Department of Anaesthesiology and Center for Translational Pain Research, Feinberg School of Medicine, Northwestern University, Evanston, IL, USA.
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Evanston, IL, USA.
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
2
|
Smith JA, Tain R, Chrisman I, Sharp KG, Glynn LM, Van Dillen LR, Jacobs JV, Cramer SC. Gray matter morphology and pain-related disability in young adults with low back pain. Neuroimage 2025; 312:121227. [PMID: 40252873 DOI: 10.1016/j.neuroimage.2025.121227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 04/13/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025] Open
Abstract
Structural neuroplasticity in the brain may contribute to the persistence of low back pain (LBP) symptoms and the disability associated with them. It is not known if structural adaptations are evident early in the lifespan in young adults with LBP. This study compared gray matter in cortical sensorimotor regions in young adults with and without persistent LBP and identified gray matter and clinical predictors of pain-related disability. Eighty-two individuals with and without a history of LBP participated. Peak and average gray matter density in cortical sensorimotor regions of interest was quantified using voxel-based morphometry. Pain-related disability, pain intensity, pain duration, and pain-related fear were also assessed. Multiple linear regression was used to determine independent predictors of pain-related disability. We document significantly greater peak gray matter density in individuals with LBP in the primary somatosensory cortex, angular gyrus, and the midcingulate cortex. Pain-related disability positively correlated with average gray matter density in the posterior cingulate cortex. The most robust predictors of disability were average gray matter in the posterior cingulate, pain intensity, and pain-related fear. We demonstrate that in young adults, persistent LBP, and pain-related disability, are linked with structural differences in regions forming part of the brain network termed the pain matrix. In contrast with studies of LBP in older adults, our findings of increased rather than decreased gray matter in young adults with LBP suggest that gray matter may increase initially in response to nociceptive pain.
Collapse
Affiliation(s)
| | - Rongwen Tain
- Campus Center for Neuroimaging, University of California, Irvine, USA
| | | | - Kelli G Sharp
- Department of Dance, School of Arts, Department of Physical Medicine and Rehabilitation, University of California, Irvine, USA
| | | | - Linda R Van Dillen
- Program in Physical Therapy, Orthopaedic Surgery, Washington University School of Medicine in St. Louis, USA
| | - Jesse V Jacobs
- Rehabilitation and Movement Science, University of Vermont, USA
| | - Steven C Cramer
- Dept. Neurology, University of California, Los Angeles and California Rehabilitation Institute, Los Angeles, CA, USA
| |
Collapse
|
3
|
Fan X, Dong L, Li H, Wang K, Zhou J. Coordinates-based meta-analysis for vestibular migraine and the underlying mechanisms behind it. Front Neurol 2025; 16:1495423. [PMID: 40271114 PMCID: PMC12014765 DOI: 10.3389/fneur.2025.1495423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 03/07/2025] [Indexed: 04/25/2025] Open
Abstract
Background Vestibular migraine (VM) is a leading cause of recurrent vertigo episodes. Voxel-based morphometry (VBM) is a reliable technique to analyze structural changes, particularly in gray matter (GM) volume, across various neurological conditions. Despite the growing amount of neuroimaging data in recent decades, a comprehensive review of GM alterations in VM remains lacking. Methods We conducted a systematic review of three English-language databases (PubMed, Embase, and Web of Science) and two Chinese-language databases (China National Knowledge Infrastructure and Wanfang) to evaluate existing neuroimaging data on GM volume in VM patients. A coordinate-based meta-analysis (CBMA) was performed using the latest algorithm, seed-based d mapping with permutation of subject images (SDM-PSI), to identify brain alterations across individual studies. Results Five studies (103 VM patients, 107 HCs) were included. The CBMA demonstrated a significant reduction in GM volume in VM patients compared to HCs, with peak convergence in the left rolandic operculum (SDM-Z = -3.68, p-corrected = 0.004, voxels = 629; Brodmann area 48), extending to the posterior insula. Heterogeneity across studies was low (I2 = 19.35%), and no publication bias was detected (Egger's test: p = 0.826). Conclusion This meta-analysis confirms reliable GM volume alterations in the posterior insula-operculum region of VM patients. Longitudinal studies with standardized imaging protocols are needed to clarify whether these changes are causes or consequences of VM. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42021277684.
Collapse
Affiliation(s)
- Xiaoping Fan
- Phase I Clinical Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liang Dong
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hui Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kuiyun Wang
- Department of Neurology, Jintang First People's Hospital, West China Hospital, Sichuan University, Chengdu, China
| | - Jiying Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
4
|
Neumann N, Domin M, Lotze M. Gray matter volume of limbic brain structures during the development of chronic back pain: a longitudinal cohort study. Pain 2025; 166:438-447. [PMID: 39167465 DOI: 10.1097/j.pain.0000000000003351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 06/25/2024] [Indexed: 08/23/2024]
Abstract
ABSTRACT This study set out to investigate in a population-based longitudinal cohort, whether chronification of back pain (BP) is related to structural gray matter changes in corticolimbic brain structures. Gray matter volume (GMV) was measured in participants with chronic BP (CBP, n = 168) and controls without chronic pain (n = 323) at 2 time points with an interval of 7 years (baseline t1, follow-up t2). Over this time period, participants with CBP showed an increase of GMV in the left ventral striatum, whereas controls showed a decrease. By contrast, participants with CBP had a GMV decrease in the left parahippocampal gyrus. Within the CBP group, pain duration was negatively associated with GMV in the left caudate. Those with emerging CBP had less GMV in the right entorhinal area, right amygdala, and left medial frontal cortex. Additional variables differing between those who had BP at t1 and later developed CBP or not were pain intensity, body mass index, and depression score. In sum, these findings are in accordance with the notion that limbic brain properties are both predisposing risk factors and drivers of brain reorganization during the development of CBP.
Collapse
Affiliation(s)
- Nicola Neumann
- Institute of Diagnostic Radiology and Neuroradiology, Functional Imaging Unit, University Medicine Greifswald, Greifswald, Germany
| | | | | |
Collapse
|
5
|
Bautin P, Fortier MA, Sean M, Little G, Martel M, Descoteaux M, Léonard G, Tétreault P. What has brain diffusion magnetic resonance imaging taught us about chronic primary pain: a narrative review. Pain 2025; 166:243-261. [PMID: 39793098 PMCID: PMC11726505 DOI: 10.1097/j.pain.0000000000003345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 08/24/2024]
Abstract
ABSTRACT Chronic pain is a pervasive and debilitating condition with increasing implications for public health, affecting millions of individuals worldwide. Despite its high prevalence, the underlying neural mechanisms and pathophysiology remain only partly understood. Since its introduction 35 years ago, brain diffusion magnetic resonance imaging (MRI) has emerged as a powerful tool to investigate changes in white matter microstructure and connectivity associated with chronic pain. This review synthesizes findings from 58 articles that constitute the current research landscape, covering methods and key discoveries. We discuss the evidence supporting the role of altered white matter microstructure and connectivity in chronic primary pain conditions, highlighting the importance of studying multiple chronic pain syndromes to identify common neurobiological pathways. We also explore the prospective clinical utility of diffusion MRI, such as its role in identifying diagnostic, prognostic, and therapeutic biomarkers. Furthermore, we address shortcomings and challenges associated with brain diffusion MRI in chronic primary pain studies, emphasizing the need for the harmonization of data acquisition and analysis methods. We conclude by highlighting emerging approaches and prospective avenues in the field that may provide new insights into the pathophysiology of chronic pain and potential new therapeutic targets. Because of the limited current body of research and unidentified targeted therapeutic strategies, we are forced to conclude that further research is required. However, we believe that brain diffusion MRI presents a promising opportunity for enhancing our understanding of chronic pain and improving clinical outcomes.
Collapse
Affiliation(s)
- Paul Bautin
- Department of Anesthesiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Marc-Antoine Fortier
- Department of Anesthesiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Monica Sean
- Department of Anesthesiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Graham Little
- Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science Department, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Marylie Martel
- Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science Department, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Guillaume Léonard
- School of Rehabilitation, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Research Centre on Aging du Centre intégré universitaire de santé et de services sociaux de l’Estrie—Centre hospitalier universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Pascal Tétreault
- Department of Anesthesiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Sherbrooke, QC, Canada
- Department of Medical Imaging and Radiation Sciences, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
6
|
Filimonova E, Pashkov A, Moysak G, Martirosyan A, Rzaev J. Hippocampal Subfield Abnormalities in Patients With Primary Trigeminal Neuralgia. J Neuroimaging 2025; 35:e70026. [PMID: 39966338 DOI: 10.1111/jon.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/11/2025] [Accepted: 02/08/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND AND PURPOSE Primary trigeminal neuralgia (PTN) is a prevalent chronic pain disorder whose pathogenesis is not solely confined to the trigeminal system. Although substantial progress has been made in understanding the underlying mechanisms, comprehensive and consistent data concerning the involvement of the hippocampal formation in this process are lacking. The aim of this study was to evaluate structural changes in hippocampal subfields in patients with PTN. METHODS Fifty-nine individuals who were diagnosed with PTN and 28 healthy controls matched for age and sex underwent high-resolution 3 Tesla MRI. HippUnfold software was used for the segmentation of hippocampal subfields and the extraction of features. Covariance analyses were performed to analyze changes in the volume, thickness, and gyrification index of different subfields in patients with PTN compared to controls. Furthermore, the relationships between MR morphometry data and the severity of nerve root compression, as well as the intensity and duration of pain, were examined in patients with PTN. RESULTS Our analysis demonstrated a decrease in the volume of the right cornu ammonis subfield 1 (CA1)-CA3 and left CA2 hippocampal subfields in patients with PTN compared to healthy controls (adjusted p < 0.05 for all comparisons). No statistically significant associations were found between hippocampal MR morphometry data and clinical metrics. CONCLUSIONS Our results suggest the existence of bilateral structural abnormalities in the hippocampal subfields in individuals with PTN, which could contribute to the development and progression of this condition.
Collapse
Affiliation(s)
- Elena Filimonova
- FSBI "Federal Center of Neurosurgery", Novosibirsk, Russia
- Department of Neurosurgery, Novosibirsk State Medical University, Novosibirsk, Russia
| | - Anton Pashkov
- FSBI "Federal Center of Neurosurgery", Novosibirsk, Russia
- Department of Neurosurgery, Novosibirsk State Medical University, Novosibirsk, Russia
- Department of Data Collection and Processing Systems, Novosibirsk State Technical University, Novosibirsk, Russia
| | - Galina Moysak
- FSBI "Federal Center of Neurosurgery", Novosibirsk, Russia
- Department of Neurosurgery, Novosibirsk State Medical University, Novosibirsk, Russia
- Department of Neuroscience, Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| | | | - Jamil Rzaev
- FSBI "Federal Center of Neurosurgery", Novosibirsk, Russia
- Department of Neurosurgery, Novosibirsk State Medical University, Novosibirsk, Russia
- Department of Neuroscience, Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
7
|
Maulitz L, Nehls S, Stickeler E, Ignatov A, Kupec T, Henn AT, Chechko N, Tchaikovski SN. Psychological characteristics and structural brain changes in women with endometriosis and endometriosis-independent chronic pelvic pain. Hum Reprod 2024; 39:2473-2484. [PMID: 39241806 DOI: 10.1093/humrep/deae207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/12/2024] [Indexed: 09/09/2024] Open
Abstract
STUDY QUESTION Are there neurobiological changes induced by endometriosis? SUMMARY ANSWER Women with endometriosis demonstrate specific neurobiological changes distinct from those in patients with chronic pelvic pain (CPP) in the absence of endometriosis. WHAT IS KNOWN ALREADY Endometriosis is a chronic disease affecting women of reproductive age that presents with pain and infertility often accompanied by comorbid mental disorders. Only one study with a number of limitations has investigated changes in gray matter volumes and functional connectivity in a small group of patients with endometriosis. STUDY DESIGN, SIZE, DURATION This prospective study recruited 53 women undergoing a laparoscopy due to suspicion of symptomatic endometriosis and 25 healthy, pain-free women. Clinical and psychological characteristics, thermal pain perception, and voxel- and surface-based morphology were assessed in all study participants. Thereafter, the patients underwent a laparoscopy, where endometriosis was either histologically confirmed and removed, or ruled out. Correspondingly, patients were assigned into the group with endometriosis (n = 27) or with endometriosis-independent CPP (n = 26) and compared to the pain-free controls. PARTICIPANTS/MATERIALS, SETTING, METHODS The study groups were generally representative for the population of women with endometriosis. Sociodemographic, medical, clinical, and psychological characteristics were collected using various questionnaires and a structured clinical interview. Thermal pain perception and voxel- and surface-based morphometry were assessed using thermode and MRI, respectively. MAIN RESULTS AND THE ROLE OF CHANCE Despite comparable pain intensity and burden of mental disorders, both patient groups demonstrated distinct neurobiological patterns. Women with endometriosis exhibited increased gray matter volume (GMV) in the left cerebellum, lingual gyrus and calcarine gyrus, compared to those with endometriosis-independent CPP. Patients with CPP had decreased GMV in the right cerebellum as compared to controls. Dysmenorrhoea severity correlated positively with GMV in the left inferior parietal lobule, whereas depressive symptoms were associated with decreased GMV in the right superior medial gyrus across patient groups. Dyspareunia correlated negatively with cortical thickness in the left inferior temporal gyrus and left middle temporal gyrus. LIMITATIONS, REASONS FOR CAUTION The study groups differed in a few baseline-characteristics, including educational levels, smoking and BMI. While measuring pain perception thresholds, we did not attempt to mimic CPP by placement of the thermode on the abdominal wall. WIDER IMPLICATIONS OF THE FINDINGS Changes in gray matter volume associated with endometriosis differ from those observed in women with endometriosis-independent CPP. Our results underline an involvement of the cerebellum in pain perception and the pathogenesis of pain associated with endometriosis. STUDY FUNDING/COMPETING INTEREST(S) This work was funded by the START Program of the Faculty of Medicine, RWTH Aachen, Germany, and supported by the International Research Training Group (IRTG 2150) of the German Research Foundation (DFG)-269953372/GRK2150, Germany. S.T. was supported by postdoctoral fellowship of the Faculty of Medicine, RWTH Aachen, Germany. There are no conflicts of interest. TRIAL REGISTRATION NUMBER DRKS00021236.
Collapse
Affiliation(s)
- L Maulitz
- University Clinic for Gynaecology and Obstetrics, RWTH Aachen, Aachen, Germany
- Department for Medical Education, University Clinic Bonn, Bonn, Germany
| | - S Nehls
- Department for Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen, Aachen, Germany
- Institute of Neuroscience and Medicine, Research Center Jülich, Jülich, Germany
| | - E Stickeler
- University Clinic for Gynaecology and Obstetrics, RWTH Aachen, Aachen, Germany
| | - A Ignatov
- University Clinic for Gynaecology, Obstetrics and Reproductive Medicine, Otto-von-Guericke University, Magdeburg, Germany
| | - T Kupec
- University Clinic for Gynaecology and Obstetrics, RWTH Aachen, Aachen, Germany
| | - A T Henn
- Department for Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen, Aachen, Germany
| | - N Chechko
- Department for Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen, Aachen, Germany
- Institute of Neuroscience and Medicine, Research Center Jülich, Jülich, Germany
| | - S N Tchaikovski
- University Clinic for Gynaecology and Obstetrics, RWTH Aachen, Aachen, Germany
- University Clinic for Gynaecology, Obstetrics and Reproductive Medicine, Otto-von-Guericke University, Magdeburg, Germany
- University Clinic for Gynaecology and Obstetrics, Brandenburg Medical School, Brandenburg, Germany
| |
Collapse
|
8
|
Jiang H, Liu A, Ying Z. Identification of texture MRI brain abnormalities on Fibromyalgia syndrome using interpretable machine learning models. Sci Rep 2024; 14:23525. [PMID: 39384824 PMCID: PMC11464731 DOI: 10.1038/s41598-024-74418-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 09/25/2024] [Indexed: 10/11/2024] Open
Abstract
To provide objective diagnostic markers for fibromyalgia symptoms (FMS) diagnosis, we have created interpretable extreme gradient boosting (XGBoost) models using radiomics to aid in the diagnosis of chronic pain (CP) and to develop nomogram models for diagnosing subgroups of FMS. A group of 54 patients with CP and 71 healthy controls was randomly separated into training and validation groups, using a 7:3 ratio. Radiomics features were extracted from grey-matter and white-matter in the filtered mwp0* image. The Mann-Whitney U test, Spearman's rank correlation test, and least absolute shrinkage and selection operator (LASSO) were utilized to select features. An XGBoost model was created based on these features, and Shapley Additive exPlanations (SHAP) was used for personalization and visual interpretation. A nomogram was developed for the diagnosis of FMS subgroups, utilizing radiomics scores and clinical predictors. The efficacy of the nomogram was evaluated using the area under the receiver operating characteristic curve, while decision curve analysis was employed to evaluate its clinical efficacy. The XGBoost model displays stability in the training validation group, indicating lower overfitting of CP model. The nomogram model combined with the rad-score has a greater ability to distinguish between typical and sub-clinical than the clinical factor model alone. We developed and validated a CP diagnosis model by XGBoost and realized model visualization through SHAP. The rad-score obtained by machine learning was used to build a nomogram model that combines clinical scales to distinguish patients with typical and sub-clinical fibromyalgia.
Collapse
Affiliation(s)
- Hongyang Jiang
- Medical College of Soochow University, Suzhou, China
- Center for Rehabilitation Medicine, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Aihui Liu
- Center for General Practice Medicine, Department of Rheumatology and Immunology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zhenhua Ying
- Medical College of Soochow University, Suzhou, China.
- Center for General Practice Medicine, Department of Rheumatology and Immunology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
9
|
Jiang X, Tang L, Zhang Y, Bai Y, Luo H, Wang R, Bi X, Chen R, Wang X. Does sedentary time and physical activity predict chronic back pain and morphological brain changes? A UK biobank cohort study in 33,402 participants. BMC Public Health 2024; 24:2685. [PMID: 39354455 PMCID: PMC11446088 DOI: 10.1186/s12889-024-20188-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 09/25/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND The relationship between sedentary time, physical activity, and chronic back pain remains unclear. The study aims to investigate whether sedentary time and physical activity predict chronic back pain and morphological brain changes. METHODS This cohort study recruited adults aged 37-73 years enrolled between 2006 and 2010, with follow-up until 2014. The total cohort comprised 33,402 participants (mean age: 54.53). Data were collected on daily sedentary time, physical activity, lifestyle factors, and health outcomes. RESULTS After nearly 8-year follow-up, 3,006 individuals (9.00%) reported chronic back pain in total. Individuals with daily sedentary time exceeding 6 h had a 33% higher risk of chronic back pain compared to those with sedentary time of 2 h or less (RR, 1.33, 95%CI, 1.17-1.52). Sedentary time was also associated with decreased grey matter volume in several brain regions, including bilateral primary somatosensory cortex (S1), secondary somatosensory cortex, putamen, primary motor cortex (M1), insula, hippocampus, amygdala, as well as right supplementary motor area, left medial frontal cortex, and right anterior cingulate cortex (FDR-corrected p-value < 0.05). Compared to individuals who sat for more than 6 h with light physical activity, those engaging in moderate physical activity with sedentary time of 2 h or less (RR, 0.71, 95%CI, 0.52-0.99) exhibited a significant decrease in chronic back pain risk. In addition, replacing sedentary time with equivalent amount of physical activity also demonstrated a reduction in the risk of chronic back pain (RR, 0.87, 95%CI, 0.77-0.99) and increased the reginal grey matter volumes including the amygdala, insula, M1, putamen and S1. CONCLUSIONS Prolonged sedentary time is associated with heightened risks of chronic back pain and deterioration in brain health.
Collapse
Affiliation(s)
- Xue Jiang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Le Tang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Yonghui Zhang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Yiwen Bai
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Huihuan Luo
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Rui Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Xia Bi
- Department of Rehabilitation Medicine, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China.
| | - Xueqiang Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China.
- Rehabilitation Medicine Center, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
10
|
Kaplan CM, Kelleher E, Irani A, Schrepf A, Clauw DJ, Harte SE. Deciphering nociplastic pain: clinical features, risk factors and potential mechanisms. Nat Rev Neurol 2024; 20:347-363. [PMID: 38755449 DOI: 10.1038/s41582-024-00966-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 05/18/2024]
Abstract
Nociplastic pain is a mechanistic term used to describe pain that arises or is sustained by altered nociception, despite the absence of tissue damage. Although nociplastic pain has distinct pathophysiology from nociceptive and neuropathic pain, these pain mechanisms often coincide within individuals, which contributes to the intractability of chronic pain. Key symptoms of nociplastic pain include pain in multiple body regions, fatigue, sleep disturbances, cognitive dysfunction, depression and anxiety. Individuals with nociplastic pain are often diffusely tender - indicative of hyperalgesia and/or allodynia - and are often more sensitive than others to non-painful sensory stimuli such as lights, odours and noises. This Review summarizes the risk factors, clinical presentation and treatment of nociplastic pain, and describes how alterations in brain function and structure, immune processing and peripheral factors might contribute to the nociplastic pain phenotype. This article concludes with a discussion of two proposed subtypes of nociplastic pain that reflect distinct neurobiological features and treatment responsivity.
Collapse
Affiliation(s)
- Chelsea M Kaplan
- Chronic Pain and Fatigue Research Center, Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Eoin Kelleher
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Anushka Irani
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- Division of Rheumatology, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Andrew Schrepf
- Chronic Pain and Fatigue Research Center, Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Daniel J Clauw
- Chronic Pain and Fatigue Research Center, Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Steven E Harte
- Chronic Pain and Fatigue Research Center, Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
11
|
Murillo C, López-Sola M, Cagnie B, Suñol M, Smeets RJEM, Coppieters I, Cnockaert E, Meeus M, Timmers I. Gray Matter Adaptations to Chronic Pain in People with Whiplash-Associated Disorders are Partially Reversed After Treatment: A Voxel-based Morphometry Study. THE JOURNAL OF PAIN 2024; 25:104471. [PMID: 38232862 DOI: 10.1016/j.jpain.2024.01.336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/04/2023] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
Gray matter (GM) changes are often observed in people with chronic spinal pain, including those with chronic whiplash-associated disorders (CWAD). These GM adaptations may be reversed with treatment, at least partially. Pain neuroscience education combined with exercise (PNE+Exercise) is an effective treatment, but its neural underlying mechanisms still remain unexplored in CWAD. Here, we performed both cross-sectional and longitudinal voxel-based morphometry to 1) identify potential GM alterations in people with CWAD (n = 63) compared to age- and sex-matched pain-free controls (n = 32), and 2) determine whether these GM alterations might be reversed following PNE+Exercise (compared to conventional physiotherapy). The cross-sectional whole-brain analysis revealed that individuals with CWAD had less GM volume in the right and left dorsolateral prefrontal cortex and left inferior temporal gyrus which was, in turn, associated with higher pain vigilance. Fifty individuals with CWAD and 29 pain-free controls were retained in the longitudinal analysis. GM in the right dorsolateral prefrontal cortex increased after treatment in people with CWAD. Moreover, the longitudinal whole-brain analysis revealed that individuals with CWAD had decreases in GM volumes of the left and right central operculum and supramarginal after treatment. These changes were not specific to treatment modality and some were not observed in pain-free controls over time. Herewith, we provide the first evidence on how GM adaptations to CWAD respond to treatment. PERSPECTIVE: This article presents which gray matter adaptations are present in people with chronic pain after whiplash injuries. Then, we examine the treatment effect on these alterations as well as whether other neuroplastic effects on GM following treatment occur.
Collapse
Affiliation(s)
- Carlos Murillo
- Department of Rehabilitation Sciences, Faculty of Health Sciences and Medicine, Ghent University, Belgium
| | - Marina López-Sola
- Department of Medicine, School of Medicine and Health Sciences, University of Barcelona, Spain
| | - Barbara Cagnie
- Department of Rehabilitation Sciences, Faculty of Health Sciences and Medicine, Ghent University, Belgium
| | - María Suñol
- Department of Medicine, School of Medicine and Health Sciences, University of Barcelona, Spain
| | - Rob J E M Smeets
- Department of Rehabilitation Medicine, Faculty of Health, Medicine and Life Science, Maastricht University, the Netherlands
| | - Iris Coppieters
- Laboratory for Brain-Gut Axis Studies (LaBGAS), Department of chronic diseases and metabolism, Faculty of Medicine, KU Leuven, Belgium; Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Belgium
| | - Elise Cnockaert
- Department of Rehabilitation Sciences, Faculty of Health Sciences and Medicine, Ghent University, Belgium
| | - Mira Meeus
- Department of Rehabilitation Sciences, Faculty of Health Sciences and Medicine, Ghent University, Belgium; MOVANT research group, Department of Rehabilitation Sciences and Physiotherapy, Faculty of Health Sciences and Medicine, University of Antwerp, Belgium
| | - Inge Timmers
- Department of Rehabilitation Sciences, Faculty of Health Sciences and Medicine, Ghent University, Belgium; Department of Rehabilitation Medicine, Faculty of Health, Medicine and Life Science, Maastricht University, the Netherlands; Department of Medical and Clinical Psychology, Tilburg University, the Netherlands
| |
Collapse
|
12
|
Wei X, Lai Y, Lan X, Tan Y, Zhang J, Liu J, Chen J, Wang C, Zhou X, Tang Y, Liu D, Zhang J. Uncovering brain functional connectivity disruption patterns of lung cancer-related pain. Brain Imaging Behav 2024; 18:576-587. [PMID: 38316730 DOI: 10.1007/s11682-023-00836-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2023] [Indexed: 02/07/2024]
Abstract
Pain is a pervasive symptom in lung cancer patients during the onset of the disease. This study aims to investigate the connectivity disruption patterns of the whole-brain functional network in lung cancer patients with cancer pain (CP+). We constructed individual whole-brain, region of interest (ROI)-level functional connectivity (FC) networks for 50 CP+ patients, 34 lung cancer patients without pain-related complaints (CP-), and 31 matched healthy controls (HC). Then, a ROI-based FC analysis was used to determine the disruptions of FC among the three groups. The relationships between aberrant FCs and clinical parameters were also characterized. The ROI-based FC analysis demonstrated that hypo-connectivity was present both in CP+ and CP- patients compared to HC, which were particularly clustered in the somatomotor and ventral attention, frontoparietal control, and default mode modules. Notably, compared to CP- patients, CP+ patients had hyper-connectivity in several brain regions mainly distributed in the somatomotor and visual modules, suggesting these abnormal FC patterns may be significant for cancer pain. Moreover, CP+ patients also showed increased intramodular and intermodular connectivity strength of the functional network, which could be replicated in cancer stage IV and lung adenocarcinoma. Finally, abnormal FCs within the prefrontal cortex and somatomotor cortex were positively correlated with pain intensity and pain duration, respectively. These findings suggested that lung cancer patients with cancer pain had disrupted connectivity in the intrinsic brain functional network, which may be the underlying neuroimaging mechanisms.
Collapse
Affiliation(s)
- Xiaotong Wei
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Hanyu Road No. 181, Shapingba District, Chongqing, 400030, China
| | - Yong Lai
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Hanyu Road No. 181, Shapingba District, Chongqing, 400030, China
| | - Xiaosong Lan
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Hanyu Road No. 181, Shapingba District, Chongqing, 400030, China
| | - Yong Tan
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Hanyu Road No. 181, Shapingba District, Chongqing, 400030, China
| | - Jing Zhang
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Hanyu Road No. 181, Shapingba District, Chongqing, 400030, China
| | - Jiang Liu
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Hanyu Road No. 181, Shapingba District, Chongqing, 400030, China
| | - Jiao Chen
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Hanyu Road No. 181, Shapingba District, Chongqing, 400030, China
| | - Chengfang Wang
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Hanyu Road No. 181, Shapingba District, Chongqing, 400030, China
| | - Xiaoyu Zhou
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Hanyu Road No. 181, Shapingba District, Chongqing, 400030, China
| | - Yu Tang
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Hanyu Road No. 181, Shapingba District, Chongqing, 400030, China
| | - Daihong Liu
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Hanyu Road No. 181, Shapingba District, Chongqing, 400030, China.
| | - Jiuquan Zhang
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Hanyu Road No. 181, Shapingba District, Chongqing, 400030, China.
| |
Collapse
|
13
|
Scheliga S, Dohrn MF, Habel U, Lampert A, Rolke R, Lischka A, van den Braak N, Spehr M, Jo HG, Kellermann T. Reduced Gray Matter Volume and Cortical Thickness in Patients With Small-Fiber Neuropathy. THE JOURNAL OF PAIN 2024; 25:104457. [PMID: 38211845 DOI: 10.1016/j.jpain.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 12/08/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024]
Abstract
Small-fiber neuropathy (SFN) is defined by degeneration or dysfunction of peripheral sensory nerve endings. Central correlates have been identified on the level of gray matter volume (GMV) and cortical thickness (CT) changes. However, across SFN etiologies knowledge about a common structural brain signature is still lacking. Therefore, we recruited 26 SFN patients and 25 age- and sex-matched healthy controls to conduct voxel-based- and surface-based morphometry. Across all patients, we found reduced GMV in widespread frontal regions, left caudate, insula and superior parietal lobule. Surface-based morphometry analysis revealed reduced CT in the right precentral gyrus of SFN patients. In a region-based approach, patients had reduced GMV in the left caudate. Since pathogenic gain-of-function variants in voltage-gated sodium channels (Nav) have been associated with SFN pathophysiology, we explored brain morphological patterns in a homogenous subsample of patients carrying rare heterozygous missense variants. Whole brain- and region-based approaches revealed GMV reductions in the bilateral caudate for Nav variant carriers. Further research is needed to analyze the specific role of Nav variants for structural brain alterations. Together, we conclude that SFN patients have specific GMV and CT alterations, potentially forming potential new central biomarkers for this condition. Our results might help to better understand underlying or compensatory mechanisms of chronic pain perception in the future. PERSPECTIVE: This study reveals structural brain changes in small-fiber neuropathy (SFN) patients, particularly in frontal regions, caudate, insula, and parietal lobule. Notably, individuals with SFN and specific Nav variants exhibit bilateral caudate abnormalities. These findings may serve as potential central biomarkers for SFN and provide insights into chronic pain perception mechanisms.
Collapse
Affiliation(s)
- Sebastian Scheliga
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty RWTH Aachen University, Aachen, Germany
| | - Maike F Dohrn
- Department of Neurology, Medical Faculty RWTH Aachen University, Aachen, Germany
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty RWTH Aachen University, Aachen, Germany; Institute of Neuroscience and Medicine: JARA-Institute Brain Structure Function Relationship (INM 10), Research Center Jülich, Jülich, Germany
| | - Angelika Lampert
- Institute of Neurophysiology, Medical Faculty RWTH Aachen University, Aachen, Germany
| | - Roman Rolke
- Department of Palliative Medicine, Medical Faculty RWTH Aachen University, Aachen, Germany
| | - Annette Lischka
- Institute for Human Genetics and Genomic Medicine, Medical Faculty RWTH Aachen University, Aachen, Germany
| | | | - Marc Spehr
- Department of Chemosensation, RWTH Aachen University, Institute for Biology II, Aachen, Germany
| | - Han-Gue Jo
- School of Computer Information and Communication Engineering, Kunsan National University, Gunsan, South Korea
| | - Thilo Kellermann
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty RWTH Aachen University, Aachen, Germany; Institute of Neuroscience and Medicine: JARA-Institute Brain Structure Function Relationship (INM 10), Research Center Jülich, Jülich, Germany
| |
Collapse
|
14
|
Wager TD, Zorina-Lichtenwalter K, Friedman NP. A New Look at Gray Matter Decreases in Chronic Pain. Biol Psychiatry 2024; 95:387-388. [PMID: 38325916 PMCID: PMC10882984 DOI: 10.1016/j.biopsych.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 02/09/2024]
Affiliation(s)
- Tor D Wager
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire.
| | | | - Naomi P Friedman
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado
| |
Collapse
|
15
|
Neumann N, Domin M, Schmidt CO, Lotze M. Chronic pain is associated with less grey matter volume in the anterior cingulum, anterior and posterior insula and hippocampus across three different chronic pain conditions. Eur J Pain 2023; 27:1239-1248. [PMID: 37366271 DOI: 10.1002/ejp.2153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/11/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND Chronic pain of different aetiologies and localization has been associated with less grey matter volume (GMV) in several cortical and subcortical brain areas. Recent meta-analyses reported low reproducibility of GMV alterations between studies and pain syndromes. METHODS To investigate GMV in common chronic pain conditions defined by body location (chronic back pain, n = 174; migraine, n = 92; craniomandibular disorder, n = 39) compared to controls (n = 296), we conducted voxel-based morphometry and determined GMV from high-resolution cranial MRIs obtained in an epidemiologic survey. Mediation analyses were performed between the presence of chronic pain and GMV testing the mediators stress and mild depression. The predictability of chronic pain was investigated with binomial logistic regression. RESULTS Whole-brain analyses yielded reduced GMV within the left anterior insula and the anterior cingulate cortex, for a ROI approach additionally the left posterior insula and left hippocampus showing less GMV across all patients with chronic pain. The relationship of pain with GMV in the left hippocampus was mediated by self-reported stressors in the last 12 months. Binomial logistic regression revealed a predictive effect for GMV in the left hippocampus and left anterior insula/temporal pole for the presence of chronic pain. CONCLUSIONS Chronic pain across three different pain conditions was characterized by less GMV in brain regions consistently described for different chronic pain conditions before. Less GMV in the left hippocampus mediated by experienced stress during the last year might be related to altered pain learning mechanisms in chronic pain patients. SIGNIFICANCE Grey matter reorganization could serve as a diagnostic biomarker for chronic pain. In a large cohort, we here replicated findings of less grey matter volume across three pain conditions in the left anterior and posterior insula, anterior cingulate and left hippocampus. Less hippocampal grey matter was mediated by experienced stress.
Collapse
Affiliation(s)
- Nicola Neumann
- Institute of Diagnostic Radiology and Neuroradiology, Functional Imaging Unit, University Medicine Greifswald, Greifswald, Germany
| | - Martin Domin
- Institute of Diagnostic Radiology and Neuroradiology, Functional Imaging Unit, University Medicine Greifswald, Greifswald, Germany
| | - Carsten-Oliver Schmidt
- Institute for Community Medicine- Department SHIP/KEF, University Medicine Greifswald, Greifswald, Germany
| | - Martin Lotze
- Institute of Diagnostic Radiology and Neuroradiology, Functional Imaging Unit, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|