1
|
Alstrup M, Cesca F, Krawczun-Rygmaczewska A, López-Menéndez C, Pose-Utrilla J, Castberg FC, Bjerager MO, Finnila C, Kruer MC, Bakhtiari S, Padilla-Lopez S, Manwaring L, Keren B, Afenjar A, Galatolo D, Scalise R, Santorelli FM, Shillington A, Vezain M, Martinovic J, Stevens C, Gowda VK, Srinivasan VM, Thiffault I, Pastinen T, Baranano K, Lee A, Granadillo J, Glassford MR, Keegan CE, Matthews N, Saugier-Veber P, Iglesias T, Østergaard E. Refining the phenotype of SINO syndrome: A comprehensive cohort report of 14 novel cases. Genet Med 2024; 26:101219. [PMID: 39033379 DOI: 10.1016/j.gim.2024.101219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024] Open
Abstract
PURPOSE Spastic paraplegia, intellectual disability, nystagmus, and obesity syndrome (SINO) is a rare autosomal dominant condition caused by heterozygous variants in KIDINS220. A total of 12 individuals are reported, comprising 8 with SINO and 4 with an autosomal recessive condition attributed to biallelic KIDINS220 variants. METHODS In our international cohort, we have included 14 individuals, carrying 13 novel pathogenic KIDINS220 variants in heterozygous form. We assessed the clinical and molecular data of our cohort and previously reported individuals and, based on functional experiments, reached a better understanding of the pathogenesis behind the KIDINS220-related disease. RESULTS Using fetal tissue and in vitro assays, we demonstrate that the variants generate KIDINS220 truncated forms that mislocalize in punctate intracellular structures, with decreased levels of the full-length protein, suggesting a trans-dominant negative effect. A total of 92% had their diagnosis within 3 years, with symptoms of developmental delay, spasticity, hypotonia, lack of eye contact, and nystagmus. We identified a KIDINS220 variant associated with fetal hydrocephalus and show that 58% of examined individuals present brain ventricular dilatation. We extend the phenotypic spectrum of SINO syndrome to behavioral manifestations not previously highlighted. CONCLUSION Our study provides further insights into the clinical spectrum, etiology, and predicted functional impact of KIDINS220 variants.
Collapse
Affiliation(s)
- Morten Alstrup
- Department of Clinical Genetics, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| | - Fabrizia Cesca
- Department of Life Sciences, University of Trieste, Trieste, Italy; IIT Center for Synaptic Neuroscience and Technology, Genova, Italy.
| | - Alicja Krawczun-Rygmaczewska
- Department of Life Sciences, University of Trieste, Trieste, Italy; IIT Center for Synaptic Neuroscience and Technology, Genova, Italy
| | - Celia López-Menéndez
- Instituto de Investigaciones Biomédicas Sols-Morreale. Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III. Madrid, Spain
| | - Julia Pose-Utrilla
- Instituto de Investigaciones Biomédicas Sols-Morreale. Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III. Madrid, Spain
| | - Filip Christian Castberg
- Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Department of Pediatrics, North Zealand Hospital, Hilleroed, Denmark
| | | | | | - Michael C Kruer
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ; Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ
| | - Somayeh Bakhtiari
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ; Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ
| | - Sergio Padilla-Lopez
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ; Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ
| | - Linda Manwaring
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Boris Keren
- Département de génétique, AP-HP.Sorbonne Université, Hôpital Pitié-Salpêtrière, Paris, France
| | - Alexandra Afenjar
- APHP. Sorbonne Université, Centre de Référence Malformations et maladies congénitales du cervelet et déficiences intellectuelles de causes rares, UF de génétique clinique, Hôpital Trousseau, Paris, France
| | - Daniele Galatolo
- Molecular Medicine and Neurogenetics, IRCCS Stella Maris Foundation, Calambrone, Pisa, Italy
| | - Roberta Scalise
- Molecular Medicine and Neurogenetics, IRCCS Stella Maris Foundation, Calambrone, Pisa, Italy
| | - Fillippo M Santorelli
- Molecular Medicine and Neurogenetics, IRCCS Stella Maris Foundation, Calambrone, Pisa, Italy
| | - Amelle Shillington
- Department of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Pediatrics, University of Cincinnati, Cincinnati, OH
| | - Myriam Vezain
- Univ Rouen Normandie, Inserm U1245, Normandie Univ, Rouen, France
| | - Jelena Martinovic
- Department of Fetal Pathology, AP-HP Antoine Beclere Hospital, University Paris Saclay, Clamart, France
| | - Cathy Stevens
- Department of Pediatrics, University of Tennessee College of Medicine, Chattanooga, TN
| | - Vykuntaraju K Gowda
- Department of Pediatric Neurology, Indira Gandhi institute of child health, Bangalore, India
| | | | - Isabelle Thiffault
- Genomic Medicine Center, Children's Mercy Research Institute, Kansas City, MO; University of Missouri Kansas City School of Medicine, Kansas City, MO; Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, MO
| | - Tomi Pastinen
- Genomic Medicine Center, Children's Mercy Research Institute, Kansas City, MO; University of Missouri Kansas City School of Medicine, Kansas City, MO
| | - Kristin Baranano
- Johns Hopkins University, The Johns Hopkins Hospital, Baltimore, MD
| | - Angela Lee
- Department of Pediatrics, Division of Genetics and Genomics, Washington University, Saint Louis, MO
| | - Jorge Granadillo
- Department of Pediatrics, Division of Genetics and Genomics, Washington University, Saint Louis, MO
| | - Megan R Glassford
- Department of Pediatrics, Division of Genetics, Metabolism, and Genomic Medicine, University of Michigan, Ann Arbor, MI; Department of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Catherine E Keegan
- Department of Pediatrics, Division of Genetics, Metabolism, and Genomic Medicine, University of Michigan, Ann Arbor, MI
| | - Nicole Matthews
- WVU Medicine Children's Hospital, Division of Genetics, Morgantown, WV
| | - Pascale Saugier-Veber
- Univ Rouen Normandie, Inserm U1245, Normandie Univ, Rouen, France; CHU Rouen, Department of Genetics and Reference Center for Developmental Disorders, Rouen, France
| | - Teresa Iglesias
- Instituto de Investigaciones Biomédicas Sols-Morreale. Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III. Madrid, Spain.
| | - Elsebet Østergaard
- Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Albini M, Almacellas-Barbanoj A, Krawczun-Rygmaczewska A, Ciano L, Benfenati F, Michetti C, Cesca F. Alterations in KIDINS220/ARMS Expression Impact Sensory Processing and Social Behavior in Adult Mice. Int J Mol Sci 2024; 25:2334. [PMID: 38397009 PMCID: PMC10889203 DOI: 10.3390/ijms25042334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/11/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Kinase D-interacting substrate of 220 kDa (Kidins220) is a transmembrane protein that participates in neural cell survival, maturation, and plasticity. Mutations in the human KIDINS220 gene are associated with a neurodevelopmental disorder ('SINO' syndrome) characterized by spastic paraplegia, intellectual disability, and in some cases, autism spectrum disorder. To better understand the pathophysiology of KIDINS220-linked pathologies, in this study, we assessed the sensory processing and social behavior of transgenic mouse lines with reduced Kidins220 expression: the CaMKII-driven conditional knockout (cKO) line, lacking Kidins220 in adult forebrain excitatory neurons, and the Kidins220floxed line, expressing constitutively lower protein levels. We show that alterations in Kidins220 expression levels and its splicing pattern cause impaired response to both auditory and olfactory stimuli. Both transgenic lines show impaired startle response to high intensity sounds, with preserved pre-pulsed inhibition, and strongly reduced social odor recognition. In the Kidins220floxed line, olfactory alterations are associated with deficits in social memory and increased aggressive behavior. Our results broaden our knowledge of the SINO syndrome; understanding sensory information processing and its deviations under neuropathological conditions is crucial for devising future therapeutic strategies to enhance the quality of life of affected individuals.
Collapse
Affiliation(s)
- Martina Albini
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, 16132 Genova, Italy; (M.A.); (A.A.-B.); (A.K.-R.); (L.C.); (F.B.)
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy
| | - Amanda Almacellas-Barbanoj
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, 16132 Genova, Italy; (M.A.); (A.A.-B.); (A.K.-R.); (L.C.); (F.B.)
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy
| | - Alicja Krawczun-Rygmaczewska
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, 16132 Genova, Italy; (M.A.); (A.A.-B.); (A.K.-R.); (L.C.); (F.B.)
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Lorenzo Ciano
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, 16132 Genova, Italy; (M.A.); (A.A.-B.); (A.K.-R.); (L.C.); (F.B.)
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, 16132 Genova, Italy; (M.A.); (A.A.-B.); (A.K.-R.); (L.C.); (F.B.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Caterina Michetti
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, 16132 Genova, Italy; (M.A.); (A.A.-B.); (A.K.-R.); (L.C.); (F.B.)
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy
| | - Fabrizia Cesca
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, 16132 Genova, Italy; (M.A.); (A.A.-B.); (A.K.-R.); (L.C.); (F.B.)
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
3
|
Zhang F, Chen J, Li Y, Ye J, Wang C. Neuronal Scaffold Protein ARMS Interacts with Synaptotagmin-4 C2AB through the Ankyrin Repeat Domain with an Unexpected Mode. Int J Mol Sci 2023; 24:16993. [PMID: 38069318 PMCID: PMC10707181 DOI: 10.3390/ijms242316993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/21/2023] [Accepted: 11/26/2023] [Indexed: 12/18/2023] Open
Abstract
The ankyrin repeat-rich membrane spanning (ARMS), a transmembrane neuronal scaffold protein, plays a fundamental role in neuronal physiology, including neuronal development, polarity, differentiation, survival and angiogenesis, through interactions with diverse partners. Previous studies have shown that the ARMS negatively regulates brain-derived neurotrophic factor (BDNF) secretion by interacting with Synaptotagmin-4 (Syt4), thereby affecting neurogenesis and the development and function of the nervous system. However, the molecular mechanisms of the ARMS/Syt4 complex assembly remain unclear. Here, we confirmed that the ARMS directly interacts with Syt4 through its N-terminal ankyrin repeats 1-8. Unexpectedly, both the C2A and C2B domains of Syt4 are necessary for binding with the ARMS. We then combined the predicted complex structural models from AlphaFold2 with systematic biochemical analyses using point mutagenesis to underline the molecular basis of ARMS/Syt4 complex formation and to identify two conserved residues, E15 and W72, of the ARMS, as essential residues mediating the assembly of the complex. Furthermore, we showed that ARMS proteins are unable to interact with Syt1 or Syt3, indicating that the interaction between ARMS and Syt4 is specific. Taken together, the findings from this study provide biochemical details on the interaction between the ARMS and Syt4, thereby offering a biochemical basis for the further understanding of the potential mechanisms and functional implications of the ARMS/Syt4 complex formation, especially with regard to the modulation of BDNF secretion and associated neuropathies.
Collapse
Affiliation(s)
- Fa Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Jiasheng Chen
- Hefei National Research Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Yahong Li
- Hefei National Research Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Jin Ye
- Hefei National Research Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Chao Wang
- Hefei National Research Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|