1
|
Liu Y, Tian X, Chen L, Xiao C, Huang X, Wang J. Low-intensity transcranial ultrasound stimulation and its regulatory effect on pain. Neuroscience 2025:S0306-4522(25)00326-4. [PMID: 40274188 DOI: 10.1016/j.neuroscience.2025.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 04/15/2025] [Accepted: 04/20/2025] [Indexed: 04/26/2025]
Abstract
Transcranial ultrasound stimulation is an emerging non-invasive neuromodulation technology with the advantages of deep tissue penetration, high spatial resolution, and minimal side effects. Low intensity transcranial ultrasound stimulation (LITUS) has been shownto bea promising neuromodulation treatment for psychiatric and neurological disorders. Notably, significant progress has been made recently in both the application of LITUS in pain disorders and the elucidation of its analgesic mechanisms. This review provides an overview of LITUS and its state-of-the-art mechanisms, including cavitation, mechanical, and thermal effects. We summarize studies spanning from animal models to human trials, highlighting the analgesic effects of transcranial ultrasound stimulation on pain-related neural pathways. Furthermore, we explore potential analgesic mechanisms, such as the suppression of neural activity in the ascending pain pathway and other associated processes.Lastly, we discuss the potential of LITUS for future integrative treatments of chronic pain and psychomotor disorders, as well as its broader therapeutic applications.
Collapse
Affiliation(s)
- Yuxi Liu
- School of Basic Medicine, Capital Medical University, China
| | - Xinyuan Tian
- School of Oncology, Capital Medical University, China
| | - Long Chen
- Department of Neurobiology, School of Basic Medicine, Capital Medical University, China
| | - Chenxu Xiao
- Department of Neurobiology, School of Basic Medicine, Capital Medical University, China
| | - Xinyang Huang
- School of Oncology, Capital Medical University, China
| | - Jing Wang
- Department of Neurobiology, School of Basic Medicine, Capital Medical University, China.
| |
Collapse
|
2
|
Reeves JM, Arias-Hervert E, Kmiec GE, Birdsong WT. Excitatory synaptic transmission is differentially modulated by opioid receptors along the claustro-cingulate pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.31.646444. [PMID: 40236172 PMCID: PMC11996480 DOI: 10.1101/2025.03.31.646444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
The anterior cingulate cortex (ACC) plays a pivotal role in processing pain and emotion, communicating with both cortical and subcortical regions involved in these functions. The claustrum (CLA), a subcortical region with extensive connectivity to the ACC also plays a critical role in pain perception and consciousness. Both ACC and CLA express Kappa (KOR), Mu (MOR), and Delta (DOR) opioid receptors, yet whether and how opioid receptors modulate this circuit is poorly understood. This study investigates the effects of opioid receptor activation on glutamatergic signaling in CLA-ACC circuitry using spatial transcriptomics, slice electrophysiology, optogenetics, and pharmacological approaches in mice. Our results demonstrated that excitatory inputs generated by the CLA onto layer 5 pyramidal cells (L5 PYR) in the ACC are reduced by KOR, MOR, and DOR agonists. However, only KOR agonists reduce monosynaptic transmission from the CLA onto L5 ACC PYR cells, highlighting the unique role of KOR in modulating the CLA-ACC pathway. MOR agonists had a heterogeneous effect on optically-evoked excitatory postsynaptic currents (oEPSCs), significantly reducing longer-latency excitatory responses while only modestly inhibiting the short latency excitatory postsynaptic currents. DOR agonists only reduce slower, longer-latency recurrent excitatory responses. These findings provide new insights into how opioid receptors regulate the claustro-cingulate circuit and demonstrate the distinct, receptor-specific modulation of synaptic transmission within this network.
Collapse
|
3
|
Liu S, Zhu R, Zhang Y, Jiang Z, Chen Y, Song Q, Wang F. Targeting PI3K-mTOR signaling in the anterior cingulate cortex improves emotional behavior, and locomotor activity in rats with bone cancer pain. Ann Med Surg (Lond) 2025; 87:1985-1994. [PMID: 40212145 PMCID: PMC11981390 DOI: 10.1097/ms9.0000000000003206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 03/09/2025] [Indexed: 04/13/2025] Open
Abstract
Objective To investigate the effects of targeting the PI3K-mTOR signaling pathway in the anterior cingulate cortex (ACC) on pain responses, locomotor activity, and emotional behavior in rats with bone cancer pain. Methods Bone cancer pain was induced by implanting Walker 256 cells into the rat. Pain responses were assessed using paw withdrawal threshold and latency measurements, while locomotor activity and negative mood were evaluated through open field and conditioned place aversion tests, respectively. Results The results showed that the bone cancer pain model led to allodynia, hyperalgesia, decreased ambulation, and ACC microglial activation. Morphine treatment improved pain responses but did not affect locomotor activity or mTOR protein expression. In contrast, rapamycin treatment reduced pain, improved locomotor activity, and decreased negative mood. It also downregulated PI3K-mTOR protein expression. Furthermore, inhibiting the PI3K-mTOR pathway with a PI3K inhibitor or rapamycin not only improved pain responses and locomotor activity but also reduced depression and anxiety-like behaviors. These effects were accompanied by changes in paw withdrawal threshold, latency, static time, and PI3K-mTOR protein expression. Conclusions Targeting the PI3K-mTOR signaling pathway in the ACC effectively alleviates pain-related symptoms and emotional disturbances in rats with bone cancer pain. This approach holds promise for alleviating pain and allaying negative emotion after further study.
Collapse
Affiliation(s)
- Shuyun Liu
- Department of Anesthesiology, Shaoxing People’s Hospital, Shaoxing, China
| | - Rujia Zhu
- School of Medicine, Shaoxing University, Shaoxing, China
| | - Yuan Zhang
- Department of Anesthesiology, Shaoxing People’s Hospital, Shaoxing, China
| | - Zongming Jiang
- Department of Anesthesiology, Shaoxing People’s Hospital, Shaoxing, China
| | - Yonghao Chen
- Department of Anesthesiology, Shanghai Jiang Qiao Hospital, Shanghai, China
| | - Qiliang Song
- Department of Anesthesiology, Shaoxing People’s Hospital, Shaoxing, China
| | - Fei Wang
- Bioinformation Branch, Hangzhou Hibio Bioinformation Technology Company, HangZhou, China
| |
Collapse
|
4
|
Vasylieva I, Smith MC, Aravind E, He K, Ling T, Kozel J, Puig S, Kedziora KM, Scarlett JJ, Joseph PN, Lycas MD, Gether U, Logan RW, Freyberg Z, Watson AM. Brain-wide mapping reveals temporal and sexually dimorphic opioid actions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.638902. [PMID: 40060548 PMCID: PMC11888231 DOI: 10.1101/2025.02.19.638902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/17/2025]
Abstract
While the molecular and cellular effects of opioids have been extensively studied, the precise mechanisms by which these drugs target specific brain regions over time remain unclear. Similarly, despite well-documented sex differences in opioid responses, the anatomical basis for this sexual dimorphism is not well characterized. To address these questions, we developed an automated, scalable, and unbiased approach for whole-brain anatomical mapping of the neuronal activity marker c-Fos in response to acute morphine exposure. Using ribbon scanning confocal microscopy, we imaged whole cleared brains from male and female wild-type mice at 1 hour and 4 hours post-morphine administration. Our whole-brain analysis of c-Fos expression revealed distinct patterns of morphine-induced regional brain activation across time and sex. Notably, we observed a greater number of structures with significant activity differences at 4 hours compared to 1 hour. In male mice, significant changes were primarily localized to regions within the dopamine system, whereas in female mice, they were concentrated in cortical regions. By combining high-throughput imaging with whole-brain expression analysis, particularly in the context of opioid actions, our approach provides a more comprehensive understanding of how drugs of abuse affect the brain.
Collapse
Affiliation(s)
- Iaroslavna Vasylieva
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Megan C Smith
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Eshan Aravind
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kelin He
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tianhan Ling
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jenesis Kozel
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stephanie Puig
- Department of Psychiatry and Behavioral Sciences, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Katarzyna M Kedziora
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jessica J Scarlett
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, USA
| | - Paul N Joseph
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew D Lycas
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Ulrik Gether
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Ryan W Logan
- Department of Psychiatry and Behavioral Sciences, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Zachary Freyberg
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alan M Watson
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
5
|
Neyama H, Wu Y, Nakaya Y, Kato S, Shimizu T, Tahara T, Shigeta M, Inoue M, Miyamichi K, Matsushita N, Mashimo T, Miyasaka Y, Dai Y, Noguchi K, Watanabe Y, Kobayashi M, Kobayashi K, Cui Y. Opioidergic activation of the descending pain inhibitory system underlies placebo analgesia. SCIENCE ADVANCES 2025; 11:eadp8494. [PMID: 39813331 PMCID: PMC11734720 DOI: 10.1126/sciadv.adp8494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 12/13/2024] [Indexed: 01/18/2025]
Abstract
Placebo analgesia is caused by inactive treatment, implicating endogenous brain function involvement. However, the neurobiological basis remains unclear. In this study, we found that μ-opioid signals in the medial prefrontal cortex (mPFC) activate the descending pain inhibitory system to initiate placebo analgesia in neuropathic pain rats. Chemogenetic manipulation demonstrated that specific activation of μ-opioid receptor-positive (MOR+) neurons in the mPFC or suppression of the mPFC-ventrolateral periaqueductal gray (vlPAG) circuit inhibited placebo analgesia in rats. MOR+ neurons in the mPFC are monosynaptically connected and directly inhibit layer V pyramidal neurons that project to the vlPAG via GABAA receptors. Thus, intrinsic opioid signaling in the mPFC disinhibits excitatory outflow to the vlPAG by suppressing MOR+ neurons, leading to descending pain inhibitory system activation that initiates placebo analgesia. Our results shed light on the fundamental neurobiological mechanism of the placebo effect that maximizes therapeutic efficacy and reduces adverse drug effects in medical practice.
Collapse
Affiliation(s)
- Hiroyuki Neyama
- Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Multiomics Platform, Center for Cancer Immunotherapy and Immunobiology, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuping Wu
- Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Yuka Nakaya
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Shigeki Kato
- Department of Molecular Genetics, Fukushima Medical University Institute of Biomedical Sciences, 1 Hikariga-oka, Fukushima 960-1295, Japan
| | - Tomoko Shimizu
- Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Tsuyoshi Tahara
- Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Mika Shigeta
- Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Michiko Inoue
- Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Kazunari Miyamichi
- Laboratory for Comparative Connections, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Natsuki Matsushita
- Division of Laboratory Animal Research, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| | - Tomoji Mashimo
- Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yoshiki Miyasaka
- Laboratory of Reproductive Engineering, Institute of Experimental Animal Sciences, Osaka University Medical School, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yi Dai
- Department of Anatomy and Neuroscience, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501, Japan
| | - Koichi Noguchi
- Department of Anatomy and Neuroscience, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501, Japan
| | - Yasuyoshi Watanabe
- Laboratory for Brain-Gut Homeostasis, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501, Japan
| | - Masayuki Kobayashi
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Fukushima Medical University Institute of Biomedical Sciences, 1 Hikariga-oka, Fukushima 960-1295, Japan
| | - Yilong Cui
- Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
6
|
Cole RH, Joffe ME. Mu and Delta Opioid Receptors Modulate Inhibition within the Prefrontal Cortex Through Dissociable Cellular and Molecular Mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.17.618870. [PMID: 39484533 PMCID: PMC11526863 DOI: 10.1101/2024.10.17.618870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Aberrant signaling within cortical inhibitory microcircuits has been identified as a common signature of neuropsychiatric disorders. Interneuron (IN) activity is precisely regulated by neuromodulatory systems that evoke widespread changes in synaptic transmission and principal cell output. Cortical interneurons express high levels of Mu and Delta opioid receptors (MOR and DOR), positioning opioid signaling as a critical regulator of inhibitory transmission. However, we lack a complete understanding of how MOR and DOR regulate prefrontal cortex (PFC) microcircuitry. Here, we combine whole-cell patch-clamp electrophysiology, optogenetics, and viral tools to provide an extensive characterization MOR and DOR regulation of inhibitory transmission. We show that DOR activation is more effective at suppressing spontaneous inhibitory transmission in the prelimbic PFC, while MOR causes a greater acute suppression of electrically-evoked GABA release. Cell type-specific optogenetics revealed that MOR and DOR differentially regulate inhibitory transmission from parvalbumin, somatostatin, cholecystokinin, and vasoactive intestinal peptide-expressing INs. Finally, we demonstrate that DOR regulates inhibitory transmission through pre- and postsynaptic modifications to IN physiology, whereas MOR function is predominantly observed in somato-dendritic or presynaptic compartments depending on cell type.
Collapse
Affiliation(s)
- Rebecca H. Cole
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA
- Center for Neuroscience University of Pittsburgh, Pittsburgh, PA
| | - Max E. Joffe
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA
- Center for Neuroscience University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
7
|
Li Y, Jiang Z, Zuo W, Huang C, Zhao J, Liu P, Wang J, Guo J, Zhang X, Wang M, Lu Y, Hou W, Wang Q. Sexual dimorphic distribution of G protein-coupled receptor 30 in pain-related regions of the mouse brain. J Neurochem 2024; 168:2423-2442. [PMID: 37924265 DOI: 10.1111/jnc.15995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 09/24/2023] [Accepted: 10/04/2023] [Indexed: 11/06/2023]
Abstract
Sex differences in pain sensitivity have contributed to the fact that medications for curing chronic pain are unsatisfactory. However, the underlying mechanism remains to be elucidated. Brain-derived estrogen participates in modulation of sex differences in pain and related emotion. G protein-coupled receptor 30 (GPR30), identified as a novel estrogen receptor with a different distribution than traditional receptors, has been proved to play a vital role in regulating pain affected by estrogen. However, the contribution of its distribution to sexually dimorphic pain-related behaviors has not been fully explored. In the current study, immunofluorescence assays were applied to mark the neurons expressing GPR30 in male and female mice (in metestrus and proestrus phase) in pain-related brain regions. The neurons that express CaMKIIα or VGAT were also labeled to observe overlap with GPR30. We found that females had more GPR30-positive (GPR30+) neurons in the primary somatosensory (S1) and insular cortex (IC) than males. In the lateral habenula (LHb) and the nucleus tractus solitarius (NTS), males had more GPR30+ neurons than females. Moreover, within the LHb, the expression of GPR30 varied with estrous cycle phase; females in metestrus had fewer GPR30+ neurons than those in proestrus. In addition, females had more GPR30+ neurons, which co-expressed CaMKIIα in the medial preoptic nucleus (mPOA) than males, while males had more than females in the basolateral complex of the amygdala (BLA). These findings may partly explain the different modulatory effects of GPR30 in pain and related emotional phenotypes between sexes and provide a basis for comprehension of sexual dimorphism in pain related to estrogen and GPR30, and finally provide new targets for exploiting new treatments of sex-specific pain.
Collapse
Affiliation(s)
- You Li
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Zhenhua Jiang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
- Department of Nursing, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Wenqiang Zuo
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Chenchen Huang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Jianshuai Zhao
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Peizheng Liu
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Jiajia Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Jingzhi Guo
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Xiao Zhang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Minghui Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Yan Lu
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Wugang Hou
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Qun Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| |
Collapse
|
8
|
Bodnar RJ. Endogenous opiates and behavior: 2023. Peptides 2024; 179:171268. [PMID: 38943841 DOI: 10.1016/j.peptides.2024.171268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/01/2024]
Abstract
This paper is the forty-sixth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2023 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug and alcohol abuse (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Psychology Doctoral Sub-Program, Queens College and the Graduate Center, City University of New York, USA.
| |
Collapse
|
9
|
Cole RH, Moussawi K, Joffe ME. Opioid modulation of prefrontal cortex cells and circuits. Neuropharmacology 2024; 248:109891. [PMID: 38417545 PMCID: PMC10939756 DOI: 10.1016/j.neuropharm.2024.109891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/30/2024] [Accepted: 02/26/2024] [Indexed: 03/01/2024]
Abstract
Several neurochemical systems converge in the prefrontal cortex (PFC) to regulate cognitive and motivated behaviors. A rich network of endogenous opioid peptides and receptors spans multiple PFC cell types and circuits, and this extensive opioid system has emerged as a key substrate underlying reward, motivation, affective behaviors, and adaptations to stress. Here, we review the current evidence for dysregulated cortical opioid signaling in the pathogenesis of psychiatric disorders. We begin by providing an introduction to the basic anatomy and function of the cortical opioid system, followed by a discussion of endogenous and exogenous opioid modulation of PFC function at the behavioral, cellular, and synaptic level. Finally, we highlight the therapeutic potential of endogenous opioid targets in the treatment of psychiatric disorders, synthesizing clinical reports of altered opioid peptide and receptor expression and activity in human patients and summarizing new developments in opioid-based medications. This article is part of the Special Issue on "PFC circuit function in psychiatric disease and relevant models".
Collapse
Affiliation(s)
- Rebecca H Cole
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience University of Pittsburgh, Pittsburgh, PA, USA
| | - Khaled Moussawi
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience University of Pittsburgh, Pittsburgh, PA, USA
| | - Max E Joffe
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
10
|
Changkakoti L, Das JM, Borah R, Rajabalaya R, David SR, Balaraman AK, Pramanik S, Haldar PK, Bala A. Protein Kinase C (PKC)-mediated TGF-β Regulation in Diabetic Neuropathy: Emphasis on Neuro-inflammation and Allodynia. Endocr Metab Immune Disord Drug Targets 2024; 24:777-788. [PMID: 37937564 DOI: 10.2174/0118715303262824231024104849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/08/2023] [Accepted: 09/25/2023] [Indexed: 11/09/2023]
Abstract
According to the World Health Organization (WHO), diabetes has been increasing steadily over the past few decades. In developing countries, it is the cause of increased morbidity and mortality. Diabetes and its complications are associated with education, occupation, and income across all levels of socioeconomic status. Factors, such as hyperglycemia, social ignorance, lack of proper health knowledge, and late access to medical care, can worsen diabetic complications. Amongst the complications, neuropathic pain and inflammation are considered the most common causes of morbidity for common populations. This review is focused on exploring protein kinase C (PKC)-mediated TGF-946; regulation in diabetic complications with particular emphasis on allodynia. The role of PKC-triggered TGF-946; in diabetic neuropathy is not well explored. This review will provide a better understanding of the PKC-mediated TGF-946; regulation in diabetic neuropathy with several schematic illustrations. Neuroinflammation and associated hyperalgesia and allodynia during microvascular complications in diabetes are scientifically illustrated in this review. It is hoped that this review will facilitate biomedical scientists to better understand the etiology and target drugs effectively to manage diabetes and diabetic neuropathy.
Collapse
Affiliation(s)
- Liza Changkakoti
- Pharmacology and Drug Discovery Research Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), An Autonomous Institute Under - Department of Science & Technology (Govt. of India) Vigyan Path, Guwahati, PIN- 781035 Assam, India
| | - Jitu Mani Das
- Pharmacology and Drug Discovery Research Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), An Autonomous Institute Under - Department of Science & Technology (Govt. of India) Vigyan Path, Guwahati, PIN- 781035 Assam, India
| | - Rajiv Borah
- Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Rajan Rajabalaya
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, BE 1410 Bandar Seri Begawan, Brunei Darussalam
| | - Sheba Rani David
- School of Pharmacology, University of Wyoming, Laramie, Wyoming, 82071, USA
| | - Ashok Kumar Balaraman
- Faculty of Pharmacy, MAHSA University, Bandar Saujana Putra, 42610, Jenjarom, Selangor, Malaysia
| | - Subrata Pramanik
- Jyoti and Bhupat Mehta School of Health Sciences & Technology, Indian Institute of Technology (IIT), Guwahati, Assam- 781039, India
| | - Pallab Kanti Haldar
- Department of Pharmaceutical Technology, Division of Pharmacology & Toxicology, Jadavpur University, Kolkata, 700032, India
| | - Asis Bala
- Pharmacology and Drug Discovery Research Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), An Autonomous Institute Under - Department of Science & Technology (Govt. of India) Vigyan Path, Guwahati, PIN- 781035 Assam, India
| |
Collapse
|
11
|
Won W, Kim D, Shin E, Lee CJ. Mapping Astrocytic and Neuronal μ-opioid Receptor Expression in Various Brain Regions Using MOR-mCherry Reporter Mouse. Exp Neurobiol 2023; 32:395-409. [PMID: 38196135 PMCID: PMC10789176 DOI: 10.5607/en23039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/11/2024] Open
Abstract
The μ-opioid receptor (MOR) is a class of opioid receptors characterized by a high affinity for β-endorphin and morphine. MOR is a G protein-coupled receptor (GPCR) that plays a role in reward and analgesic effects. While expression of MOR has been well established in neurons and microglia, astrocytic MOR expression has been less clear. Recently, we have reported that MOR is expressed in hippocampal astrocytes, and its activation has a critical role in the establishment of conditioned place preference. Despite this critical role, the expression and function of astrocytic MOR from other brain regions are still unknown. Here, we report that MOR is significantly expressed in astrocytes and GABAergic neurons from various brain regions including the hippocampus, nucleus accumbens, periaqueductal gray, amygdala, and arcuate nucleus. Using the MOR-mCherry reporter mice and Imaris analysis, we demonstrate that astrocytic MOR expression exceeded 60% in all tested regions. Also, we observed similar MOR expression of GABAergic neurons as shown in the previous distribution studies and it is noteworthy that MOR expression is particularly in parvalbumin (PV)-positive neurons. Furthermore, consistent with the normal MOR function observed in the MOR-mCherry mouse, our study also demonstrates intact MOR functionality in astrocytes through iGluSnFr-mediated glutamate imaging. Finally, we show the sex-difference in the expression pattern of MOR in PV-positive neurons, but not in the GABAergic neurons and astrocytes. Taken together, our findings highlight a substantial astrocytic MOR presence across various brain regions.
Collapse
Affiliation(s)
- Woojin Won
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34126, Korea
| | - Daeun Kim
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34126, Korea
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Eunjin Shin
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34126, Korea
| | - C. Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34126, Korea
| |
Collapse
|
12
|
Paunova R, Ramponi C, Kandilarova S, Todeva-Radneva A, Latypova A, Stoyanov D, Kherif F. Degeneracy and disordered brain networks in psychiatric patients using multivariate structural covariance analyzes. Front Psychiatry 2023; 14:1272933. [PMID: 37908595 PMCID: PMC10614636 DOI: 10.3389/fpsyt.2023.1272933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023] Open
Abstract
INTRODUCTION In this study, we applied multivariate methods to identify brain regions that have a critical role in shaping the connectivity patterns of networks associated with major psychiatric diagnoses, including schizophrenia (SCH), major depressive disorder (MDD) and bipolar disorder (BD) and healthy controls (HC). We used T1w images from 164 subjects: Schizophrenia (n = 17), bipolar disorder (n = 25), major depressive disorder (n = 68) and a healthy control group (n = 54). METHODS We extracted regions of interest (ROIs) using a method based on the SHOOT algorithm of the SPM12 toolbox. We then performed multivariate structural covariance between the groups. For the regions identified as significant in t term of their covariance value, we calculated their eigencentrality as a measure of the influence of brain regions within the network. We applied a significance threshold of p = 0.001. Finally, we performed a cluster analysis to determine groups of regions that had similar eigencentrality profiles in different pairwise comparison networks in the observed groups. RESULTS As a result, we obtained 4 clusters with different brain regions that were diagnosis-specific. Cluster 1 showed the strongest discriminative values between SCH and HC and SCH and BD. Cluster 2 had the strongest discriminative value for the MDD patients, cluster 3 - for the BD patients. Cluster 4 seemed to contribute almost equally to the discrimination between the four groups. DISCUSSION Our results suggest that we can use the multivariate structural covariance method to identify specific regions that have higher predictive value for specific psychiatric diagnoses. In our research, we have identified brain signatures that suggest that degeneracy shapes brain networks in different ways both within and across major psychiatric disorders.
Collapse
Affiliation(s)
- Rositsa Paunova
- Department of Psychiatry and Medical Psychology, Medical University Plovdiv, Plovdiv, Bulgaria
- Research Institute, Medical University Plovdiv, Plovdiv, Bulgaria
| | - Cristina Ramponi
- Laboratory for Research in Neuroimaging, Department of Clinical Neuroscience, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Sevdalina Kandilarova
- Department of Psychiatry and Medical Psychology, Medical University Plovdiv, Plovdiv, Bulgaria
- Research Institute, Medical University Plovdiv, Plovdiv, Bulgaria
| | - Anna Todeva-Radneva
- Department of Psychiatry and Medical Psychology, Medical University Plovdiv, Plovdiv, Bulgaria
- Research Institute, Medical University Plovdiv, Plovdiv, Bulgaria
| | - Adeliya Latypova
- Laboratory for Research in Neuroimaging, Department of Clinical Neuroscience, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Drozdstoy Stoyanov
- Department of Psychiatry and Medical Psychology, Medical University Plovdiv, Plovdiv, Bulgaria
- Research Institute, Medical University Plovdiv, Plovdiv, Bulgaria
| | - Ferath Kherif
- Laboratory for Research in Neuroimaging, Department of Clinical Neuroscience, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
13
|
Sánchez ML, Rodríguez FD, Coveñas R. Involvement of the Opioid Peptide Family in Cancer Progression. Biomedicines 2023; 11:1993. [PMID: 37509632 PMCID: PMC10377280 DOI: 10.3390/biomedicines11071993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Peptides mediate cancer progression favoring the mitogenesis, migration, and invasion of tumor cells, promoting metastasis and anti-apoptotic mechanisms, and facilitating angiogenesis/lymphangiogenesis. Tumor cells overexpress peptide receptors, crucial targets for developing specific treatments against cancer cells using peptide receptor antagonists and promoting apoptosis in tumor cells. Opioids exert an antitumoral effect, whereas others promote tumor growth and metastasis. This review updates the findings regarding the involvement of opioid peptides (enkephalins, endorphins, and dynorphins) in cancer development. Anticancer therapeutic strategies targeting the opioid peptidergic system and the main research lines to be developed regarding the topic reviewed are suggested. There is much to investigate about opioid peptides and cancer: basic information is scarce, incomplete, or absent in many tumors. This knowledge is crucial since promising anticancer strategies could be developed alone or in combination therapies with chemotherapy/radiotherapy.
Collapse
Affiliation(s)
- Manuel Lisardo Sánchez
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla and León (INCYL), University of Salamanca, 37007 Salamanca, Spain
| | - Francisco D Rodríguez
- Department of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, University of Salamanca, 37007 Salamanca, Spain
- Group GIR-USAL: BMD (Bases Moleculares del Desarrollo), University of Salamanca, 37007 Salamanca, Spain
| | - Rafael Coveñas
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla and León (INCYL), University of Salamanca, 37007 Salamanca, Spain
- Group GIR-USAL: BMD (Bases Moleculares del Desarrollo), University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
14
|
Todeva-Radneva A, Kandilarova S, Paunova R, Stoyanov D, Zdravkova T, Sladky R. Functional Connectivity of the Anterior Cingulate Cortex and the Right Anterior Insula Differentiates between Major Depressive Disorder, Bipolar Disorder and Healthy Controls. Biomedicines 2023; 11:1608. [PMID: 37371703 PMCID: PMC10296271 DOI: 10.3390/biomedicines11061608] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Background: This study aimed to explore possible differences of the whole-brain functional connectivity of the anterior cingulate cortex (ACC) and anterior insula (AI), in a sample of depressed patients with major depressive disorder (MDD), bipolar disorder (BD) and healthy controls (HC). Methods: A hundred and three subjects (nMDD = 35, nBD = 25, and nHC = 43) between the ages of eighteen and sixty-five years old underwent functional magnetic resonance imaging. The CONN Toolbox was used to process and analyze the functional connectivity of the ACC and AI. Results: The comparison between the patients (MDD/BD) and HC yielded increased resting-state functional connectivity (rsFC) between the ACC and the motor and somatosensory cortices (SSC), superior parietal lobule (SPL), precuneus, and lateral occipital cortex, which was driven by the BD group. In addition, hyperconnectivity between the right AI and the motor and SSC was found in BD, as compared to HC. In MDD, as compared to HC, hyperconnectivity between ACC and SPL and the lateral occipital cortex was found, with no statistical rsFC differences for the AI seed. Compared to BD, the MDD group showed ACC-cerebellum hyperconnectivity and a trend for increased rsFC between the right AI and the bilateral superior frontal cortex. Conclusions: Considering the observed hyperconnectivity between the ACC/somatosensory cortex in the patient group, we suggest depression may be related to an impairment of the sensory-discriminative function of the SSC, which results in the phenomenological signature of mental pain in both MDD and BD. These findings suggest that future research should investigate this particular network with respect to motor functions and executive control, as a potential differential diagnostic biomarker for MDD and BD.
Collapse
Affiliation(s)
- Anna Todeva-Radneva
- Department of Psychiatry and Medical Psychology, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Sevdalina Kandilarova
- Department of Psychiatry and Medical Psychology, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Rositsa Paunova
- Department of Psychiatry and Medical Psychology, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Drozdstoy Stoyanov
- Department of Psychiatry and Medical Psychology, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Tina Zdravkova
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Ronald Sladky
- Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, 1010 Vienna, Austria
| |
Collapse
|
15
|
Hosseinzadeh Sahafi O, Sardari M, Alijanpour S, Rezayof A. Shared Mechanisms of GABAergic and Opioidergic Transmission Regulate Corticolimbic Reward Systems and Cognitive Aspects of Motivational Behaviors. Brain Sci 2023; 13:brainsci13050815. [PMID: 37239287 DOI: 10.3390/brainsci13050815] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The functional interplay between the corticolimbic GABAergic and opioidergic systems plays a crucial role in regulating the reward system and cognitive aspects of motivational behaviors leading to the development of addictive behaviors and disorders. This review provides a summary of the shared mechanisms of GABAergic and opioidergic transmission, which modulate the activity of dopaminergic neurons located in the ventral tegmental area (VTA), the central hub of the reward mechanisms. This review comprehensively covers the neuroanatomical and neurobiological aspects of corticolimbic inhibitory neurons that express opioid receptors, which act as modulators of corticolimbic GABAergic transmission. The presence of opioid and GABA receptors on the same neurons allows for the modulation of the activity of dopaminergic neurons in the ventral tegmental area, which plays a key role in the reward mechanisms of the brain. This colocalization of receptors and their immunochemical markers can provide a comprehensive understanding for clinicians and researchers, revealing the neuronal circuits that contribute to the reward system. Moreover, this review highlights the importance of GABAergic transmission-induced neuroplasticity under the modulation of opioid receptors. It discusses their interactive role in reinforcement learning, network oscillation, aversive behaviors, and local feedback or feedforward inhibitions in reward mechanisms. Understanding the shared mechanisms of these systems may lead to the development of new therapeutic approaches for addiction, reward-related disorders, and drug-induced cognitive impairment.
Collapse
Affiliation(s)
- Oveis Hosseinzadeh Sahafi
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran 14155-6465, Iran
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Maryam Sardari
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran 14155-6465, Iran
| | - Sakineh Alijanpour
- Department of Biology, Faculty of Science, Gonbad Kavous University, Gonbad Kavous 4971799151, Iran
| | - Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran 14155-6465, Iran
| |
Collapse
|