1
|
Koyanagi Y, Yamamoto K, Kitano K, Kajiwara M, Kobayashi M. Neuronal subtype-dependent kinetics of EPSCs induced by thalamocortical projections from the ventroposteromedial thalamic nucleus to the insular cortex in rats. Pflugers Arch 2025; 477:707-717. [PMID: 40085200 DOI: 10.1007/s00424-025-03074-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/05/2025] [Accepted: 03/04/2025] [Indexed: 03/16/2025]
Abstract
Cerebrocortical neurons receive glutamatergic inputs via thalamocortical projections, and their activities are simultaneously controlled by GABAergic interneurons. Few studies have demonstrated the difference in the amplitude of evoked excitatory postsynaptic currents (EPSCs) via thalamocortical projections onto glutamatergic excitatory (ENs) and GABAergic inhibitory neurons (INs); the strength of excitation among neural subtypes varies among sensory cortices. The present study aimed to reveal the profile of thalamocortical inputs to ENs and inhibitory neurons in the insular cortex (IC) by evaluating the amplitude and latency of EPSCs evoked in the connection from the ventroposteromedial (VPM) thalamic nucleus to the IC. Whole-cell patch-clamp recordings were prepared from ENs, fast-spiking neurons (FSNs), and non-fast-spiking neurons (NFSNs) in the middle layers (layer 4 and adjacent layers) of the IC. Photostimulation-induced EPSCs (pEPSCs) were evoked via the selective activation of thalamocortical axons via optogenetics. All the neuronal subtypes received direct excitatory inputs from the VPM, and pEPSCs recorded from FSNs had the greatest amplitude and shortest latency compared with those recorded from ENs and NFSNs. Under current-clamp conditions, FSNs almost invariably exhibited action potentials responding to photostimulation, whereas ENs and NFSNs often showed the failure of action potential induction. In addition to excitatory inputs, some neurons exhibited pEPSCs followed by outward GABAA receptor-mediated currents, which curtailed the pEPSC peak and aligned the timing of the action potential to photostimulation. These results suggested that FSNs play a role in the feedforward inhibition of EN activity in the upper layer of the IC. (244 words).
Collapse
Affiliation(s)
- Yuko Koyanagi
- Department of Anesthesiology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-Ku, Tokyo, 101-8310, Japan
- Division of Immunology and Pathobiology, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-Ku, Tokyo, 101-8310, Japan
| | - Kiyofumi Yamamoto
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-Ku, Tokyo, 101-8310, Japan
- Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-Ku, Tokyo, 101-8310, Japan
| | - Kouhei Kitano
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-Ku, Tokyo, 101-8310, Japan
| | - Mie Kajiwara
- Department of Anesthesiology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-Ku, Tokyo, 101-8310, Japan
- Division of Immunology and Pathobiology, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-Ku, Tokyo, 101-8310, Japan
| | - Masayuki Kobayashi
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-Ku, Tokyo, 101-8310, Japan.
- Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-Ku, Tokyo, 101-8310, Japan.
| |
Collapse
|
2
|
Maric S, Hasan M, Pounder ML, Graham BA, Browne TJ. A Viral Labelling Study of Spinal Trigeminal Nucleus Caudalis Projection Neurons Targeting the Parabrachial Nucleus. J Neurochem 2025; 169:e70028. [PMID: 40050251 PMCID: PMC11885192 DOI: 10.1111/jnc.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 03/09/2025]
Abstract
Projection neurons (PNs) in the Spinal Trigeminal Nucleus Caudalis (Sp5C) relay orofacial nociceptive information to higher brain regions such as the thalamus and the parabrachial nucleus (PBN). Our understanding of Sp5C PN organisation and function has advanced less than the parallel spinal cord output system despite their corresponding roles for transmission of nociceptive signals from the orofacial region and body respectively. Viral vectors are an established approach for studying circuit connectivity in the nervous system, but different serotypes are known to produce variable results across circuits. As such, we sought to validate the utility of two common viral serotypes in spinal PN research: retrograde adeno-associated virus serotype 2 (rgAAV) and adeno-associated virus serotype 9 (AAV9), for identifying and analysing Sp5C PNs that project to the PBN. Following unilateral injections of either viral serotype into the PBN, many Sp5C projection neurons were retrogradely labelled. For both serotypes, these injections labelled Sp5C PNs bilaterally with a strong bias to the ipsilateral Sp5C. Within Sp5C, similar levels of PN labelling were present in both superficial and deep regions, contrasting previous work in spinal PNs that showed greater labelling by AAV9 versus rgAAV. Comparisons of the age dependence of labelling showed greater retrograde labelling of Sp5C projection neurons when injections were made in young adult animals. Finally, we demonstrate successful Cre-dependent recombination to selectively express channelrhodopsin-2 in Sp5C projection neurons. Together, these experiments show that rgAAV and AAV9 produce strong Sp5C PN transduction and provide a basis for future study of the afferent and efferent functions of the Sp5C PN population in health and disease.
Collapse
Affiliation(s)
- Sophie Maric
- School of Biomedical Sciences & Pharmacy, Faculty of HealthUniversity of NewcastleCallaghanAustralia
- Hunter Medical Research Institute (HMRI)New Lambton HeightsNewcastleNew South WalesAustralia
| | - Mehedi Hasan
- School of Biomedical Sciences & Pharmacy, Faculty of HealthUniversity of NewcastleCallaghanAustralia
- Hunter Medical Research Institute (HMRI)New Lambton HeightsNewcastleNew South WalesAustralia
| | - Madison L. Pounder
- School of Biomedical Sciences & Pharmacy, Faculty of HealthUniversity of NewcastleCallaghanAustralia
- Hunter Medical Research Institute (HMRI)New Lambton HeightsNewcastleNew South WalesAustralia
| | - Brett A. Graham
- School of Biomedical Sciences & Pharmacy, Faculty of HealthUniversity of NewcastleCallaghanAustralia
- Hunter Medical Research Institute (HMRI)New Lambton HeightsNewcastleNew South WalesAustralia
| | - Tyler J. Browne
- School of Biomedical Sciences & Pharmacy, Faculty of HealthUniversity of NewcastleCallaghanAustralia
- Hunter Medical Research Institute (HMRI)New Lambton HeightsNewcastleNew South WalesAustralia
| |
Collapse
|
3
|
Kobayashi S, Osaki H, Kato S, Kobayashi K, Kobayashi M. Regulation of nociception by long-term potentiation of inhibitory postsynaptic currents from insular cortical parvalbumin-immunopositive neurons to pyramidal neurons. Pain 2025:00006396-990000000-00803. [PMID: 39841043 DOI: 10.1097/j.pain.0000000000003518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 12/02/2024] [Indexed: 01/23/2025]
Abstract
ABSTRACT The insular cortex (IC) processes various sensory information, including nociception, from the trigeminal region. Repetitive nociceptive inputs from the orofacial area induce plastic changes in the IC. Parvalbumin-immunopositive neurons (PVNs) project to excitatory neurons (pyramidal neurons [PNs]), whose inputs strongly suppress the activities of PNs. This study investigated how PVNs in the IC modulate pain-related behaviors using optogenetics. To evaluate the effect of PVN activation on pain-related behavior, we applied nociceptive heat stimulation to the whisker pads of PV-Cre rats that received an injection of adeno-associated virus-Flex-channelrhodopsin-2-mCherry into the IC. Exposure to nociceptive heat stimulation significantly increased the amount of pain-related escape behavior, and PVN activation by optogenetics did not significantly decrease pain-related behavior. We next examined the possibility that long-term potentiation (LTP) of PVN→PN synapses suppresses pain-related behaviors. We recorded light-evoked inhibitory postsynaptic currents (IPSCs) from PNs in the IC slice preparation to examine whether optogenetic activation of PVNs can induce LTP. Repetitive optogenetic stimulation (ROS) of PVNs in a manner analogous to theta burst stimulation increased the amplitude of IPSCs for at least 50 minutes. Long-term potentiation was induced by either the -45 or -60 mV membrane potential of PNs. Then, the IC received ROS to induce LTP of IPSCs from PVNs to PNs, and we evaluated pain-related behaviors. Compared to those before ROS, the pain-related behaviors were further reduced after ROS. These results suggest that LTP induction of PVN→PN synapses in the IC could be a possible treatment for abnormal pain in the orofacial area.
Collapse
Affiliation(s)
- Satomi Kobayashi
- Department of Pharmacology, Nihon University School of Dentistry, Tokyo, Japan
- Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
- Department of Biology, Nihon University School of Dentistry, Tokyo, Japan
| | - Hironobu Osaki
- Laboratory of Functional Brain Circuit Construction, Graduate School of Brain Science, Doshisha University, Kyoto, Japan
| | - Shigeki Kato
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Masayuki Kobayashi
- Department of Pharmacology, Nihon University School of Dentistry, Tokyo, Japan
- Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| |
Collapse
|
4
|
Neyama H, Wu Y, Nakaya Y, Kato S, Shimizu T, Tahara T, Shigeta M, Inoue M, Miyamichi K, Matsushita N, Mashimo T, Miyasaka Y, Dai Y, Noguchi K, Watanabe Y, Kobayashi M, Kobayashi K, Cui Y. Opioidergic activation of the descending pain inhibitory system underlies placebo analgesia. SCIENCE ADVANCES 2025; 11:eadp8494. [PMID: 39813331 PMCID: PMC11734720 DOI: 10.1126/sciadv.adp8494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 12/13/2024] [Indexed: 01/18/2025]
Abstract
Placebo analgesia is caused by inactive treatment, implicating endogenous brain function involvement. However, the neurobiological basis remains unclear. In this study, we found that μ-opioid signals in the medial prefrontal cortex (mPFC) activate the descending pain inhibitory system to initiate placebo analgesia in neuropathic pain rats. Chemogenetic manipulation demonstrated that specific activation of μ-opioid receptor-positive (MOR+) neurons in the mPFC or suppression of the mPFC-ventrolateral periaqueductal gray (vlPAG) circuit inhibited placebo analgesia in rats. MOR+ neurons in the mPFC are monosynaptically connected and directly inhibit layer V pyramidal neurons that project to the vlPAG via GABAA receptors. Thus, intrinsic opioid signaling in the mPFC disinhibits excitatory outflow to the vlPAG by suppressing MOR+ neurons, leading to descending pain inhibitory system activation that initiates placebo analgesia. Our results shed light on the fundamental neurobiological mechanism of the placebo effect that maximizes therapeutic efficacy and reduces adverse drug effects in medical practice.
Collapse
Affiliation(s)
- Hiroyuki Neyama
- Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Multiomics Platform, Center for Cancer Immunotherapy and Immunobiology, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuping Wu
- Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Yuka Nakaya
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Shigeki Kato
- Department of Molecular Genetics, Fukushima Medical University Institute of Biomedical Sciences, 1 Hikariga-oka, Fukushima 960-1295, Japan
| | - Tomoko Shimizu
- Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Tsuyoshi Tahara
- Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Mika Shigeta
- Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Michiko Inoue
- Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Kazunari Miyamichi
- Laboratory for Comparative Connections, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Natsuki Matsushita
- Division of Laboratory Animal Research, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| | - Tomoji Mashimo
- Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yoshiki Miyasaka
- Laboratory of Reproductive Engineering, Institute of Experimental Animal Sciences, Osaka University Medical School, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yi Dai
- Department of Anatomy and Neuroscience, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501, Japan
| | - Koichi Noguchi
- Department of Anatomy and Neuroscience, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501, Japan
| | - Yasuyoshi Watanabe
- Laboratory for Brain-Gut Homeostasis, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501, Japan
| | - Masayuki Kobayashi
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Fukushima Medical University Institute of Biomedical Sciences, 1 Hikariga-oka, Fukushima 960-1295, Japan
| | - Yilong Cui
- Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
5
|
Li J, Zhu Q, Xiang J, Wei Y, Zhang D. Involvement of the parabrachial nucleus in emergence from general anesthesia. Front Neurosci 2024; 18:1500353. [PMID: 39723422 PMCID: PMC11668774 DOI: 10.3389/fnins.2024.1500353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024] Open
Abstract
The parabrachial nucleus (PBN), located in the dorsolateral pons, is involved in many important biological functions, such as sensory signaling, feeding, defensive behaviors, fear, anxiety, and sleep-wake cycles. General anesthesia shares the classical feature of reversible loss of consciousness with natural sleep, and accumulating evidence has indicated that general anesthesia and sleep-wake behaviors share some common underlying neural mechanism. In recent years, emerging studies have investigated the involvement of PBN in emergence from general anesthesia, but divergence exists in terms of different types of general anesthetics or different durations of treatment with the same group of general anesthetics. Here, we reviewed the current literature and summarized the evidence about the contribution of PBN to general anesthesia.
Collapse
Affiliation(s)
- Jia Li
- Department of Anesthesiology, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Qiuyu Zhu
- Department of Anesthesiology, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People’s Hospital of Shenzhen, Shenzhen, China
| | - Jiaxin Xiang
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, United States
| | - Yiyong Wei
- Department of Anesthesiology, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, Longgang Maternity and Child Institute of Shantou University Medical College, Shenzhen, China
| | - Donghang Zhang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Sugawara S, Iwata K, Takamizawa T, Miyazaki M, Kobayashi M. Potassium nitrate suppresses hyperactivities of Vc neurons of the model with dentin hypersensitivity. J Oral Biosci 2024; 66:41-48. [PMID: 39304059 DOI: 10.1016/j.job.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/22/2024]
Abstract
OBJECTIVE Potassium nitrate (KNO3) suppresses nociception induced by dental hypersensitivity (HYS). We aimed to examine the effects of KNO3 on the neural activity of the trigeminal spinal subnucleus caudalis (Vc) in HYS model rats. METHODS KNO3 or vehicle was applied to the exposed dentin of HYS rats for 3 days. c-Fos expression and neuronal activity in the Vc after acetone treatment for cold stimulation were examined to evaluate the effects of KNO3 application on dentin. RESULTS The number of c-Fos-immunoreactive cells in the Vc was lower in the group that received KNO3 (KNO3 group) than in the group that received vehicle (control group). Spike firing of Vc neurons in response to cold stimulation of the dentin was recorded before and after KNO3 application to the cavity, and the increased neural activity was effectively suppressed by KNO3 application. Scanning electron microscopy revealed that the dentin tubules were not occluded by deposits in any of the groups. CONCLUSIONS KNO3-induced suppression of Vc neuronal activity does not involve physical occlusion of the dentin tubules but likely involves suppression of Aδ or C-fiber activities in the tooth pulp, resulting in the suppression of Vc neuronal activities.
Collapse
Affiliation(s)
- Shiori Sugawara
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan; Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan.
| | - Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan; Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Toshiki Takamizawa
- Department of Operative Dentistry, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan; Division of Biomaterials Science, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Masashi Miyazaki
- Department of Operative Dentistry, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan; Division of Biomaterials Science, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Masayuki Kobayashi
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan; Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| |
Collapse
|
7
|
Liang D, Labrakakis C. Multiple Posterior Insula Projections to the Brainstem Descending Pain Modulatory System. Int J Mol Sci 2024; 25:9185. [PMID: 39273133 PMCID: PMC11395413 DOI: 10.3390/ijms25179185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/30/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
The insular cortex is an important hub for sensory and emotional integration. It is one of the areas consistently found activated during pain. While the insular's connections to the limbic system might play a role in the aversive and emotional component of pain, its connections to the descending pain system might be involved in pain intensity coding. Here, we used anterograde tracing with viral expression of mCherry fluorescent protein, to examine the connectivity of insular axons to different brainstem nuclei involved in the descending modulation of pain in detail. We found extensive connections to the main areas of descending pain control, namely, the periaqueductal gray (PAG) and the raphe magnus (RMg). In addition, we also identified an extensive insular connection to the parabrachial nucleus (PBN). Although not as extensive, we found a consistent axonal input from the insula to different noradrenergic nuclei, the locus coeruleus (LC), the subcoereuleus (SubCD) and the A5 nucleus. These connections emphasize a prominent relation of the insula with the descending pain modulatory system, which reveals an important role of the insula in pain processing through descending pathways.
Collapse
Affiliation(s)
- Despoina Liang
- Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece
| | - Charalampos Labrakakis
- Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece
- Institute of Biosciences, University Research Center of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
8
|
Kobayashi M, Nakaya Y, Kobayashi S. Functional roles of descending projections from the cerebral cortex to the trigeminal spinal subnucleus caudalis in orofacial nociceptive information processing. J Oral Biosci 2024; 66:304-307. [PMID: 38734177 DOI: 10.1016/j.job.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND The trigeminal spinal subnucleus caudalis (Sp5C), also known as the medullary dorsal horn, receives orofacial somatosensory inputs, particularly nociceptive inputs, from the trigeminal nerve. In the Sp5C, excitatory and inhibitory neurons, glutamatergic and GABAergic/glycinergic neurons, respectively, form the local circuits. The axons of the glutamatergic neurons in lamina I ascend toward the thalamic and parabrachial nuclei, and this projection is the main pathway of orofacial nociception. Additionally, the axons of the higher brain regions, including the locus coeruleus, dorsal raphe, and cerebral cortex, are sent to the Sp5C. HIGHLIGHT Among these descending projections, this review focuses on the functional profiles of the corticotrigeminal projections to the Sp5C, along with their anatomical aspects. The primary and secondary somatosensory and insular cortices are of particular interest. CONCLUSION Corticotrigeminal projections from the somatosensory cortex to the Sp5C play a suppressive role in nociceptive information processing, whereas recent studies have demonstrated a facilitative role of the insular cortex in nociceptive information processing at the Sp5C level.
Collapse
Affiliation(s)
- Masayuki Kobayashi
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan; Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan.
| | - Yuka Nakaya
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan; Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan.
| | - Satomi Kobayashi
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan; Department of Biology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan.
| |
Collapse
|
9
|
Li Y, Li C, Chen QY, Hao S, Mao J, Zhang W, Han X, Dong Z, Liu R, Tang W, Zhuo M, Yu S, Liu Y. Alleviation of migraine related pain and anxiety by inhibiting calcium-stimulating AC1-dependent CGRP in the insula of adult rats. J Headache Pain 2024; 25:81. [PMID: 38760739 PMCID: PMC11100092 DOI: 10.1186/s10194-024-01778-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 04/22/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Recent animal and clinical findings consistently highlight the critical role of calcitonin gene-related peptide (CGRP) in chronic migraine (CM) and related emotional responses. CGRP antibodies and receptor antagonists have been approved for CM treatment. However, the underlying CGRP-related signaling pathways in the pain-related cortex remain poorly understood. METHODS The SD rats were used to establish the CM model by dural infusions of inflammatory soup. Periorbital mechanical thresholds were assessed using von-Frey filaments, and anxiety-like behaviors were observed via open field and elevated plus maze tests. Expression of c-Fos, CGRP and NMDA GluN2B receptors was detected using immunofluorescence and western blotting analyses. The excitatory synaptic transmission was detected by whole-cell patch-clamp recording. A human-used adenylate cyclase 1 (AC1) inhibitor, hNB001, was applied via insula stereotaxic and intraperitoneal injections in CM rats. RESULTS The insular cortex (IC) was activated in the migraine model rats. Glutamate-mediated excitatory transmission and NMDA GluN2B receptors in the IC were potentiated. CGRP levels in the IC significantly increased during nociceptive and anxiety-like activities. Locally applied hNB001 in the IC or intraperitoneally alleviated periorbital mechanical thresholds and anxiety behaviors in migraine rats. Furthermore, CGRP expression in the IC decreased after the hNB001 application. CONCLUSIONS Our study indicated that AC1-dependent IC plasticity contributes to migraine and AC1 may be a promising target for treating migraine in the future.
Collapse
Affiliation(s)
- Yang Li
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Chenhao Li
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Qi-Yu Chen
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China
- Zhuomin Institute of Brain Research, Qingdao, Shandong Province, China
| | - Shun Hao
- Zhuomin Institute of Brain Research, Qingdao, Shandong Province, China
| | - Jingrui Mao
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Wenwen Zhang
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Xun Han
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zhao Dong
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Ruozhuo Liu
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Wenjing Tang
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Min Zhuo
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China.
- Zhuomin Institute of Brain Research, Qingdao, Shandong Province, China.
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | - Shengyuan Yu
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing, China.
| | - Yinglu Liu
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
10
|
Islam J, Rahman MT, Kc E, Park YS. Deciphering the functional role of insular cortex stratification in trigeminal neuropathic pain. J Headache Pain 2024; 25:76. [PMID: 38730344 PMCID: PMC11084050 DOI: 10.1186/s10194-024-01784-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024] Open
Abstract
Trigeminal neuropathic pain (TNP) is a major concern in both dentistry and medicine. The progression from normal to chronic TNP through activation of the insular cortex (IC) is thought to involve several neuroplastic changes in multiple brain regions, resulting in distorted pain perception and associated comorbidities. While the functional changes in the insula are recognized contributors to TNP, the intricate mechanisms underlying the involvement of the insula in TNP processing remain subjects of ongoing investigation. Here, we have overviewed the most recent advancements regarding the functional role of IC in regulating TNP alongside insights into the IC's connectivity with other brain regions implicated in trigeminal pain pathways. In addition, the review examines diverse modulation strategies that target the different parts of the IC, thereby suggesting novel diagnostic and therapeutic management of chronic TNP in the future.
Collapse
Affiliation(s)
- Jaisan Islam
- Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Md Taufiqur Rahman
- Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Elina Kc
- Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Korea
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Young Seok Park
- Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Korea.
- Department of Neurosurgery, Chungbuk National University Hospital, Cheongju, Korea.
| |
Collapse
|
11
|
Kc E, Islam J, Lee G, Park YS. Optogenetic Approach in Trigeminal Neuralgia and Potential Concerns: Preclinical Insights. Mol Neurobiol 2024; 61:1769-1780. [PMID: 37775720 DOI: 10.1007/s12035-023-03652-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/11/2023] [Indexed: 10/01/2023]
Abstract
The integration of optogenetics in the trigeminal pain circuitry broadens and reinforces existing pain investigations. Similar to research on spinal neuropathic pain, the exploration of the underlying determinants of orofacial pain is expanding. Optogenetics facilitates more direct, specific, and subtle investigations of the neuronal circuits involved in orofacial pain. One of the most significant concerns of both dentistry and medicine is trigeminal neuralgia (TN) management due to its substantial impact on a patient's quality of life. Our objective is to gather insights from preclinical studies conducted in TN employing an optogenetic paradigm, thereby extending the prospects for in-depth neurobiological research. This review highlights optogenetic research in trigeminal pain circuitry involving TN. We outline the central and peripheral regions associated with pain-that have been investigated using optogenetics in the trigeminal pain circuitry. The study further reports its scope and limitations as well as its potential for future applications from bench to bedside.
Collapse
Affiliation(s)
- Elina Kc
- Program in Neuroscience, Department of Medicine, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Jaisan Islam
- Program in Neuroscience, Department of Medicine, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Gabsang Lee
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Solomon H. Snyder, Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Young Seok Park
- Program in Neuroscience, Department of Medicine, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea.
- Department of Neurosurgery, Chungbuk National University Hospital, Cheongju, Republic of Korea.
| |
Collapse
|
12
|
Kadakia F, Khadka A, Yazell J, Davidson S. Chemogenetic Modulation of Posterior Insula CaMKIIa Neurons Alters Pain and Thermoregulation. THE JOURNAL OF PAIN 2024; 25:766-780. [PMID: 37832899 PMCID: PMC10922377 DOI: 10.1016/j.jpain.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023]
Abstract
The posterior insular cortex (PIC) is well positioned to perform somatosensory-limbic integration; yet, the function of neuronal subsets within the PIC in processing the sensory and affective dimensions of pain remains unclear. Here, we employ bidirectional chemogenetic modulation to characterize the function of PIC CaMKIIa-expressing excitatory neurons in a comprehensive array of sensory, affective, and thermoregulatory behaviors. Excitatory pyramidal neurons in the PIC were found to be sensitized under inflammatory pain conditions. Chemogenetic activation of excitatory CaMKIIa-expressing PIC neurons in non-injured conditions produced an increase in reflexive and affective pain- and anxiety-like behaviors. Moreover, activation of PIC CaMKIIa-expressing neurons during inflammatory pain conditions exacerbated hyperalgesia and decreased pain tolerance. However, Chemogenetic activation did not alter heat nociception via hot plate latency or body temperature. Conversely, inhibiting CaMKIIa-expressing neurons did not alter either sensory or affective pain-like behaviors in non-injured or under inflammatory pain conditions, but it did decrease body temperature and decreased hot plate latency. Our findings reveal that PIC CaMKIIa-expressing neurons are a critical hub for producing both sensory and affective pain-like behaviors and important for thermoregulatory processing. PERSPECTIVE: The present study reveals that activation of the posterior insula produces hyperalgesia and negative affect, and has a role in thermal tolerance and thermoregulation. These findings highlight the insula as a key player in contributing to the multidimensionality of pain.
Collapse
Affiliation(s)
- Feni Kadakia
- Neuroscience Graduate Program, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
- Department of Anesthesiology and Pain Research Center, University of Cincinnati, College of Medicine, Cincinnati, OH, United States
| | - Akansha Khadka
- Department of Anesthesiology and Pain Research Center, University of Cincinnati, College of Medicine, Cincinnati, OH, United States
| | - Jake Yazell
- Department of Anesthesiology and Pain Research Center, University of Cincinnati, College of Medicine, Cincinnati, OH, United States
| | - Steve Davidson
- Neuroscience Graduate Program, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
- Department of Anesthesiology and Pain Research Center, University of Cincinnati, College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
13
|
Reddy P, Vasudeva J, Shah D, Prajapati JN, Harikumar N, Barik A. A Deep-Learning Driven Investigation of the Circuit Basis for Reflexive Hypersensitivity to Thermal Pain. Neuroscience 2023; 530:158-172. [PMID: 37640138 DOI: 10.1016/j.neuroscience.2023.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023]
Abstract
Objectively measuring animal behavior is vital to understanding the neural circuits underlying pain. Recent progress in machine vision has presented unprecedented scope in behavioral analysis. Here, we apply DeepLabCut (DLC) to dissect mouse behavior on the thermal-plate test - a commonly used paradigm to ascertain supraspinal contributions to noxious thermal sensation and pain hypersensitivity. We determine the signature characteristics of the pattern of mouse movement and posture in 3D in response to a range of temperatures from innocuous to noxious on the thermal-plate test. Next, we test how acute chemical and chronic inflammatory injuries sensitize mouse behaviors. Repeated exposure to noxious temperatures on the thermal plate can induce learning. In this study, we design a novel assay and formulate an analytical pipeline to facilitate the dissection of plasticity mechanisms in pain circuits in the brain. Last, we record and test how activating Tacr1 expressing PBN neurons (PBNTacr1) - a population responsive to sustained noxious stimuli- affects mouse behavior on the thermal plate test. Taken together, we demonstrate that by tracking a single body part of a mouse, we can reveal the behavioral signatures of mice exposed to noxious surface temperatures, report the alterations of the same when injured, and determine if a molecularly and anatomically defined pain-responsive circuit plays a role in the reflexive hypersensitivity to thermal pain.
Collapse
Affiliation(s)
- Prannay Reddy
- Center for Neuroscience, Division of Biological Sciences, Indian Institute of Science, Gulmohar Marg, Bengaluru, Karnataka 560012, India
| | - Jayesh Vasudeva
- Center for Neuroscience, Division of Biological Sciences, Indian Institute of Science, Gulmohar Marg, Bengaluru, Karnataka 560012, India
| | - Devanshi Shah
- Center for Neuroscience, Division of Biological Sciences, Indian Institute of Science, Gulmohar Marg, Bengaluru, Karnataka 560012, India
| | - Jagat Narayan Prajapati
- Center for Neuroscience, Division of Biological Sciences, Indian Institute of Science, Gulmohar Marg, Bengaluru, Karnataka 560012, India
| | - Nikhila Harikumar
- Center for Neuroscience, Division of Biological Sciences, Indian Institute of Science, Gulmohar Marg, Bengaluru, Karnataka 560012, India
| | - Arnab Barik
- Center for Neuroscience, Division of Biological Sciences, Indian Institute of Science, Gulmohar Marg, Bengaluru, Karnataka 560012, India.
| |
Collapse
|
14
|
Labrakakis C. The Role of the Insular Cortex in Pain. Int J Mol Sci 2023; 24:ijms24065736. [PMID: 36982807 PMCID: PMC10056254 DOI: 10.3390/ijms24065736] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/09/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
The transition from normal to chronic pain is believed to involve alterations in several brain areas that participate in the perception of pain. These plastic changes are then responsible for aberrant pain perception and comorbidities. The insular cortex is consistently found activated in pain studies of normal and chronic pain patients. Functional changes in the insula contribute to chronic pain; however, the complex mechanisms by which the insula is involved in pain perception under normal and pathological conditions are still not clear. In this review, an overview of the insular function is provided and findings on its role in pain from human studies are summarized. Recent progress on the role of the insula in pain from preclinical experimental models is reviewed, and the connectivity of the insula with other brain regions is examined to shed new light on the neuronal mechanisms of the insular cortex’s contribution to normal and pathological pain sensation. This review underlines the need for further studies on the mechanisms underlying the involvement of the insula in the chronicity of pain and the expression of comorbid disorders.
Collapse
Affiliation(s)
- Charalampos Labrakakis
- Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece;
- Institute of Biosciences, University Research Center of Ioannina (URCI), 45110 Ioannina, Greece
| |
Collapse
|