1
|
Keogh E. Sex, gender, and pain: Evidence and knowledge gaps. Curr Opin Psychol 2025; 63:102006. [PMID: 40022842 DOI: 10.1016/j.copsyc.2025.102006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 03/04/2025]
Abstract
Sex and gender contribute to the variation in pain experience. A range of biological, psychological, and social factors are relevant, which point to potential pain mechanisms and the reasons for this sex/gender-based variation. This review provides a brief critical overview of the evidence for these patterns. It draws on both experimental and clinical studies and identifies some of the biological and psychosocial factors that are thought to impact on men and women's pain. There are limitations and gaps in understanding, and numerous challenges exist, ranging from difficulties with concepts through to methodology. There is a focus on gender as a dimensional set of psychosocial constructs, as this offers one approach to help enhance our understanding of men and women's pain.
Collapse
Affiliation(s)
- Edmund Keogh
- Bath Centre for Pain Research, University of Bath, United Kingdom; Department of Psychology, University of Bath, United Kingdom.
| |
Collapse
|
2
|
Ilhan E, Swart R, Ross MH. Sex, gender and pain: beyond false binaries. J Physiother 2025; 71:75-77. [PMID: 40122762 DOI: 10.1016/j.jphys.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/06/2025] [Accepted: 02/13/2025] [Indexed: 03/25/2025] Open
Affiliation(s)
- Emre Ilhan
- Department of Health Sciences, Macquarie University, Sydney, Australia
| | - Roxie Swart
- School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Australia
| | - Megan H Ross
- School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
3
|
Janowski AJ, Berardi G, Hayashi K, Plumb AN, Lesnak JB, Khataei T, Martin B, Benson CJ, Sluka KA. The influence of sex on activity in voluntary wheel running, forced treadmill running, and open field testing in mice. Physiol Rep 2025; 13:e70246. [PMID: 39985141 PMCID: PMC11845322 DOI: 10.14814/phy2.70246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/01/2025] [Accepted: 02/02/2025] [Indexed: 02/24/2025] Open
Abstract
Physical activity is commonly used for both measuring and treating dysfunction. While preclinical work has been historically biased towards males, the inclusion of both males and females is gaining popularity. With the increasing inclusion of both sexes, it is imperative to determine sex differences in common behavioral assays. This was a secondary analysis of healthy naïve mice to determine baseline sex differences in three activity assays: voluntary wheel running (32 mice), forced treadmill running (178 mice), and open field (88 mice). In voluntary wheel running, females showed greater distance run, running time, bout duration, and speed, but no difference in total bouts. In forced treadmill running, females showed greater time to exhaustion, but no difference in maximum speed attained. In open field, males showed greater active time but no difference in distance and speed over 30 min; however, male mice showed a downward trajectory in distance and speed over the final 20 min of testing, whereas females did not. These data suggest that male mice demonstrate comparable activity intensity to female mice but do not match females' duration of activity, especially for volitional tasks. Researchers utilizing these assays should account for sex differences as they could mask true findings in an experiment.
Collapse
Affiliation(s)
- Adam J. Janowski
- Department of Physical Therapy & Rehabilitation SciencesUniversity of IowaIowa CityIowaUSA
| | - Giovanni Berardi
- Department of Physical Therapy & Rehabilitation SciencesUniversity of IowaIowa CityIowaUSA
| | - Kazuhiro Hayashi
- Department of Physical Therapy & Rehabilitation SciencesUniversity of IowaIowa CityIowaUSA
- Department of Physical Therapy, Human Health Sciences, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Ashley N. Plumb
- Department of Physical Therapy & Rehabilitation SciencesUniversity of IowaIowa CityIowaUSA
| | - Joe B. Lesnak
- Department of Physical Therapy & Rehabilitation SciencesUniversity of IowaIowa CityIowaUSA
- School for Behavioral and Brain Sciences and Center for Advanced Pain StudiesUniversity of Texas at DallasRichardsonTexasUSA
| | - Tahsin Khataei
- Department of Internal Medicine, Roy J. and Lucile A. Carver College or MedicineUniversity of IowaIowa CityIowaUSA
- Iowa City VA Healthcare SystemIowa CityIowaUSA
| | - Ben Martin
- Department of Physical Therapy & Rehabilitation SciencesUniversity of IowaIowa CityIowaUSA
| | - Christopher J. Benson
- Department of Internal Medicine, Roy J. and Lucile A. Carver College or MedicineUniversity of IowaIowa CityIowaUSA
- Iowa City VA Healthcare SystemIowa CityIowaUSA
| | - Kathleen A. Sluka
- Department of Physical Therapy & Rehabilitation SciencesUniversity of IowaIowa CityIowaUSA
| |
Collapse
|
4
|
Plumb AN, Hayashi K, Janowski A, Smith A, Rasmussen L, Sluka KA, Lesnak JB. Pregabalin produces analgesia in males but not females in an animal model of chronic widespread muscle pain. Pain Rep 2024; 9:e1207. [PMID: 39574484 PMCID: PMC11581757 DOI: 10.1097/pr9.0000000000001207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/05/2024] [Accepted: 08/29/2024] [Indexed: 11/24/2024] Open
Abstract
Introduction Pregabalin, which acts on the α2δ-1 subunit of voltage-gated calcium channels, relieves ≥50% of pain in a third of individuals with fibromyalgia. Thus far, preclinical studies of pregabalin have predominantly used male animals. Objectives The purpose of our study was to investigate potential sex differences in the analgesic efficacy of pregabalin that may contribute to disparities in human outcomes. Methods We used a mouse model of chronic widespread muscle pain (CWP) to test the effects of pregabalin on muscle hyperalgesia, nonreflexive pain, and motor behaviors. The CWP pain model combines 2 pH 4.0 saline injections, spaced 5 days apart, into the gastrocnemius muscle and produces bilateral muscle hyperalgesia. Furthermore, we explored sex differences in the mRNA and protein expression of the α2δ-1 subunit of voltage-gated calcium channels in the dorsal horn of the spinal cord and dorsal root ganglia after development of CWP. Results Pregabalin fully attenuated muscle hyperalgesia bilaterally in male but not female mice with equal motor deficits produced in both sexes. In addition, using the conditioned place preference test, mice of both sexes with CWP spent significantly more time in the pregabalin-paired chamber compared with baseline, but not significantly greater than pain-free controls. Chronic widespread muscle pain produced no changes in α2δ-1 subunit mRNA or protein expression in the dorsal horn of the spinal cord or dorsal root ganglia in either sex. Conclusion Overall, these findings indicate pregabalin may be more effective in treating CWP in males, but the factors leading to these differences are not fully understood.
Collapse
Affiliation(s)
- Ashley N. Plumb
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA. Dr. Lesnak is now with University of Texas at Dallas, Department of Neuroscience, Richardson, TX
| | - Kazuhiro Hayashi
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA. Dr. Lesnak is now with University of Texas at Dallas, Department of Neuroscience, Richardson, TX
| | - Adam Janowski
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA. Dr. Lesnak is now with University of Texas at Dallas, Department of Neuroscience, Richardson, TX
| | - Angela Smith
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA. Dr. Lesnak is now with University of Texas at Dallas, Department of Neuroscience, Richardson, TX
| | - Lynn Rasmussen
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA. Dr. Lesnak is now with University of Texas at Dallas, Department of Neuroscience, Richardson, TX
| | - Kathleen A. Sluka
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA. Dr. Lesnak is now with University of Texas at Dallas, Department of Neuroscience, Richardson, TX
| | - Joseph B. Lesnak
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA. Dr. Lesnak is now with University of Texas at Dallas, Department of Neuroscience, Richardson, TX
| |
Collapse
|
5
|
Hayashi K, Lesnak JB, Plumb AN, Janowski AJ, Smith AF, Hill JK, Sluka KA. Brain-derived neurotrophic factor contributes to activity-induced muscle pain in male but not female mice. Brain Behav Immun 2024; 120:471-487. [PMID: 38925417 DOI: 10.1016/j.bbi.2024.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024] Open
Abstract
Activity-induced muscle pain increases interleukin-1β (IL-1β) release from muscle macrophages and the development of hyperalgesia is prevented by blockade of IL-1β in muscle. Brain derived neurotrophic factor (BDNF) is released from sensory neurons in response to IL-1β and mediates both inflammatory and neuropathic pain. Thus, we hypothesize that in activity-induced pain, fatigue metabolites combined with IL-1β activate sensory neurons to increase BDNF release, peripherally in muscle and centrally in the spinal dorsal horn, to produce hyperalgesia. We tested the effect of intrathecal or intramuscular injection of BDNF-Tropomyosin receptor kinase B (TrkB) inhibitors, ANA-12 or TrkB-Fc, on development of activity-induced pain. Both inhibitors prevented the hyperalgesia when given before or 24hr after induction of the model in male but not female mice. BDNF messenger ribonucleic acid (mRNA) and protein were significantly increased in dorsal root ganglion (DRG) 24hr after induction of the model in both male and female mice. Blockade of IL-1β in muscle had no effect on the increased BNDF mRNA observed in the activity-induced pain model, while IL-1β applied to cultured DRG significantly induced BDNF expression, suggesting IL-1β is sufficient but not necessary to induce BNDF. Thus, fatigue metabolites, combined with IL-1β, upregulate BDNF in primary DRG neurons in both male and female mice, but contribute to activity-induced pain only in males.
Collapse
Affiliation(s)
- Kazuhiro Hayashi
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA; Department of Physical Therapy, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Joseph B Lesnak
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| | - Ashley N Plumb
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| | - Adam J Janowski
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| | - Angela F Smith
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| | - Joslyn K Hill
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| | - Kathleen A Sluka
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
6
|
Keogh E, Boerner KE. Challenges with embedding an integrated sex and gender perspective into pain research: Recommendations and opportunities. Brain Behav Immun 2024; 117:112-121. [PMID: 38145854 DOI: 10.1016/j.bbi.2023.12.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 12/01/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023] Open
Abstract
The focus of this article, within this BBI horizons special issue, is on sex, gender, and pain. We summarise what is currently known about sex- and gender-related variations in pain, exploring intersectional biological and psychosocial mechanisms, and highlight gaps in knowledge and understanding. Five key challenges with the exploration of sex and gender in pain research are presented, relating to: conceptual imprecision, research bias, limitations with binary descriptions, integrating sex and gender, and timely adoption/implementation of good research practice. Guidance on how to overcome such challenges is provided. Despite clear evidence for sex and gender differences in pain, there are conceptual and methodological barriers to overcome. Innovation in methods and approach can help develop more effective and tailored treatment approaches for men, women, boys, girls, and gender-diverse people.
Collapse
Affiliation(s)
- Edmund Keogh
- Bath Centre for Pain Research & Department of Psychology, University of Bath, UK.
| | | |
Collapse
|
7
|
Hayashi K, Lesnak JB, Plumb AN, Janowski AJ, Smith AF, Hill JK, Sluka KA. Brain-derived neurotrophic factor contributes to activity-induced muscle pain in male but not female mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.31.565022. [PMID: 37961342 PMCID: PMC10635076 DOI: 10.1101/2023.10.31.565022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Activity-induced muscle pain increases release of interleukin-1β (IL-1β) in muscle macrophages and the development of pain is prevented by blockade of IL-1β. Brain derived neurotrophic factor (BDNF) is released from sensory neurons in response to IL-1β and mediates both inflammatory and neuropathic pain. Thus, we hypothesized that metabolites released during fatiguing muscle contractions activate macrophages to release IL-1β, which subsequently activate sensory neurons to secrete BDNF. To test this hypothesis, we used an animal model of activity-induced pain induced by repeated intramuscular acidic saline injections combined with fatiguing muscle contractions. Intrathecal or intramuscular injection of inhibitors of BDNF-Tropomyosin receptor kinase B (TrkB) signaling, ANA-12 or TrkB-Fc, reduced the decrease in muscle withdrawal thresholds in male, but not in female, mice when given before or 24hr after, but not 1 week after induction of the model. BDNF messenger ribonucleic acid (mRNA) was significantly increased in L4-L6 dorsal root ganglion (DRG), but not the spinal dorsal horn or gastrocnemius muscle, 24hr after induction of the model in either male or female mice. No changes in TrkB mRNA or p75 neurotrophin receptor mRNA were observed. BDNF protein expression via immunohistochemistry was significantly increased in L4-L6 spinal dorsal horn and retrogradely labelled muscle afferent DRG neurons, at 24hr after induction of the model in both sexes. In cultured DRG, fatigue metabolites combined with IL-1β significantly increased BDNF expression in both sexes. In summary, fatigue metabolites release, combined with IL-1β, BDNF from primary DRG neurons and contribute to activity-induced muscle pain only in males, while there were no sex differences in the changes in expression observed in BDNF.
Collapse
Affiliation(s)
- Kazuhiro Hayashi
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| | - Joseph B. Lesnak
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| | - Ashley N. Plumb
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| | - Adam J. Janowski
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| | - Angela F. Smith
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| | - Joslyn K. Hill
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| | - Kathleen A. Sluka
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
8
|
Lesnak JB, Mazhar K, Price TJ. Neuroimmune Mechanisms Underlying Post-acute Sequelae of SARS-CoV-2 (PASC) Pain, Predictions from a Ligand-Receptor Interactome. Curr Rheumatol Rep 2023; 25:169-181. [PMID: 37300737 PMCID: PMC10256978 DOI: 10.1007/s11926-023-01107-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
PURPOSE OF REVIEW Individuals with post-acute sequelae of SARS-CoV-2 (PASC) complain of persistent musculoskeletal pain. Determining how COVID-19 infection produces persistent pain would be valuable for the development of therapeutics aimed at alleviating these symptoms. RECENT FINDINGS To generate hypotheses regarding neuroimmune interactions in PASC, we used a ligand-receptor interactome to make predictions about how ligands from PBMCs in individuals with COVID-19 communicate with dorsal root ganglia (DRG) neurons to induce persistent pain. In a structured literature review of -omics COVID-19 studies, we identified ligands capable of binding to receptors on DRG neurons, which stimulate signaling pathways including immune cell activation and chemotaxis, the complement system, and type I interferon signaling. The most consistent finding across immune cell types was an upregulation of genes encoding the alarmins S100A8/9 and MHC-I. This ligand-receptor interactome, from our hypothesis-generating literature review, can be used to guide future research surrounding mechanisms of PASC-induced pain.
Collapse
Affiliation(s)
- Joseph B Lesnak
- School for Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, BSB 14.102G, Richardson, TX, 75080, USA
| | - Khadijah Mazhar
- School for Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, BSB 14.102G, Richardson, TX, 75080, USA
| | - Theodore J Price
- School for Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, BSB 14.102G, Richardson, TX, 75080, USA.
| |
Collapse
|
9
|
Hung CH, Chin Y, Fong YO, Lee CH, Han DS, Lin JH, Sun WH, Chen CC. Acidosis-related pain and its receptors as targets for chronic pain. Pharmacol Ther 2023; 247:108444. [PMID: 37210007 DOI: 10.1016/j.pharmthera.2023.108444] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/24/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
Sensing acidosis is an important somatosensory function in responses to ischemia, inflammation, and metabolic alteration. Accumulating evidence has shown that acidosis is an effective factor for pain induction and that many intractable chronic pain diseases are associated with acidosis signaling. Various receptors have been known to detect extracellular acidosis and all express in the somatosensory neurons, such as acid sensing ion channels (ASIC), transient receptor potential (TRP) channels and proton-sensing G-protein coupled receptors. In addition to sense noxious acidic stimulation, these proton-sensing receptors also play a vital role in pain processing. For example, ASICs and TRPs are involved in not only nociceptive activation but also anti-nociceptive effects as well as some other non-nociceptive pathways. Herein, we review recent progress in probing the roles of proton-sensing receptors in preclinical pain research and their clinical relevance. We also propose a new concept of sngception to address the specific somatosensory function of acid sensation. This review aims to connect these acid-sensing receptors with basic pain research and clinical pain diseases, thus helping with better understanding the acid-related pain pathogenesis and their potential therapeutic roles via the mechanism of acid-mediated antinociception.
Collapse
Affiliation(s)
- Chih-Hsien Hung
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yin Chin
- Department of Life Science & Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-On Fong
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Cheng-Han Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Der-Shen Han
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Bei-Hu Branch, Taipei, Taiwan
| | - Jiann-Her Lin
- Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan; Department of Neurosurgery, Taipei Medical University Hospital, Taipei, Taiwan
| | - Wei-Hsin Sun
- Department of Life Science & Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chih-Cheng Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan; Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan; Neuroscience Program of Academia Sinica, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
10
|
Lesnak JB, Berardi G, Sluka KA. Influence of routine exercise on the peripheral immune system to prevent and alleviate pain. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 13:100126. [PMID: 37179769 PMCID: PMC10173010 DOI: 10.1016/j.ynpai.2023.100126] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 05/15/2023]
Abstract
Routine physical activity reduces the onset of pain and exercise is a first line treatment for individuals who develop chronic pain. In both preclinical and clinical research regular exercise (routine exercise sessions) produces pain relief through multiple mechanisms such as alterations in the central and peripheral nervous system. More recently, it has been appreciated that exercise can also alter the peripheral immune system to prevent or reduce pain. In animal models, exercise can alter the immune system at the site of injury or pain model induction, in the dorsal root ganglia, and systemically throughout the body to produce analgesia. Most notably exercise shows the ability to dampen the presence of pro-inflammatory immune cells and cytokines at these locations. Exercise decreases M1 macrophages and the cytokines IL-6, IL-1β, and TFNα, while increasing M2 macrophages and the cytokines IL-10, IL-4, and IL-1ra. In clinical research, a single bout of exercise produces an acute inflammatory response, however repeated training can lead to an anti-inflammatory immune profile leading to symptom relief. Despite the clinical and immune benefits of routine exercise, the direct effect of exercise on immune function in clinical pain populations remains unexplored. This review will discuss in more detail the preclinical and clinical research which demonstrates the numerous ways through which multiple types of exercise alter the peripheral immune system. This review closes with the clinical implications of these findings along with suggestions for future research directions.
Collapse
Affiliation(s)
- Joseph B. Lesnak
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, USA
| | - Giovanni Berardi
- Department of Physical Therapy & Rehabilitation Sciences, University of Iowa, Iowa City, IA, USA
| | - Kathleen A. Sluka
- Department of Physical Therapy & Rehabilitation Sciences, University of Iowa, Iowa City, IA, USA
- Corresponding author.
| |
Collapse
|