1
|
Barry AM, Sondermann JR, Lesnak JB, Xian F, Franco-Enzástiga Ú, O'Brien JA, Gomez-Varela D, Schackmuth MK, Shiers S, Price TJ, Schmidt M. Multi-omic integration with human DRG proteomics highlights TNFα signalling as a relevant sexually dimorphic pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.06.626968. [PMID: 39713351 PMCID: PMC11661068 DOI: 10.1101/2024.12.06.626968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
The peripheral nervous system (PNS) plays a critical role in pathological conditions, including chronic pain disorders, that manifest differently in men and women. To investigate this sexual dimorphism at the molecular level, we integrated quantitative proteomic profiling of human dorsal root ganglia (hDRG) and peripheral nerve tissue into the expanding omics framework of the PNS. Using data-independent acquisition (DIA) mass spectrometry, we characterized a comprehensive proteomic profile, validating tissue-specific differences between the hDRG and peripheral nerve. Through multi-omic analyses and in vitro functional assays, we identified sex-specific molecular differences, with TNFα signalling emerging as a key sexually dimorphic pathway with higher prominence in males. Genetic evidence from genome-wide association studies (GWAS) further supports the functional relevance of TNFα signalling in the periphery, while clinical trial data and meta-analyses indicate a sex-dependent response to TNFα inhibitors. Collectively, these findings underscore a functionally sexual dimorphism in the PNS, with direct implications for sensory and pain-related clinical translation.
Collapse
Affiliation(s)
- Allison M Barry
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
- Systems Biology of Pain, Division of Pharmacology & Toxicology, Department of Pharmaceutical Sciences, University of Vienna, Austria
| | - Julia R Sondermann
- Systems Biology of Pain, Division of Pharmacology & Toxicology, Department of Pharmaceutical Sciences, University of Vienna, Austria
| | - Joseph B Lesnak
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Feng Xian
- Systems Biology of Pain, Division of Pharmacology & Toxicology, Department of Pharmaceutical Sciences, University of Vienna, Austria
| | - Úrzula Franco-Enzástiga
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Jayden A O'Brien
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - David Gomez-Varela
- Systems Biology of Pain, Division of Pharmacology & Toxicology, Department of Pharmaceutical Sciences, University of Vienna, Austria
| | - Morgan K Schackmuth
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Stephanie Shiers
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Theodore J Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Manuela Schmidt
- Systems Biology of Pain, Division of Pharmacology & Toxicology, Department of Pharmaceutical Sciences, University of Vienna, Austria
| |
Collapse
|
2
|
Calderon-Rivera A, Gomez K, Rodríguez-Palma EJ, Khanna R. SUMOylation and DeSUMOylation: Tug of War of Pain Signaling. Mol Neurobiol 2025; 62:3305-3321. [PMID: 39276308 DOI: 10.1007/s12035-024-04478-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/02/2024] [Indexed: 09/16/2024]
Abstract
SUMOylation is a post-translational modification that attaches a small ubiquitin-like modifier (SUMO) group to a target protein via SUMO ligases, while deSUMOylation refers to the removal of this SUMO group by sentrin-specific proteases (SENPs). Although the functions of these processes have been well described in the nucleus, the role of SUMOylation and deSUMOylation in regulating ion channels is emerging as a novel area of study. Despite this, their contributions to pain signaling remain less clear. Therefore, this review consolidates the current evidence on the link(s) between SUMOylation, deSUMOylation, and pain, with a specific focus on ion channels expressed in the sensory system. Additionally, we explore the role of SUMOylation in the expression and function of kinases, vesicle proteins, and transcription factors, which result in the modulation of certain ion channels contributing to pain. Altogether, this review aims to highlight the relationship between SUMOylation and deSUMOylation in the modulation of ion channels, ultimately exploring the potential therapeutic role of these processes in chronic pain.
Collapse
Affiliation(s)
- Aida Calderon-Rivera
- Department of Pharmacology & Therapeutics, College of Medicine, University of Florida, 1200 Newell Drive, Gainesville, FL, 32610, USA
| | - Kimberly Gomez
- Department of Pharmacology & Therapeutics, College of Medicine, University of Florida, 1200 Newell Drive, Gainesville, FL, 32610, USA
| | - Erick J Rodríguez-Palma
- Department of Pharmacology & Therapeutics, College of Medicine, University of Florida, 1200 Newell Drive, Gainesville, FL, 32610, USA
| | - Rajesh Khanna
- Department of Pharmacology & Therapeutics, College of Medicine, University of Florida, 1200 Newell Drive, Gainesville, FL, 32610, USA.
- Pain and Addiction Therapeutics (PATH) Collaboratory, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
3
|
Xiong W, Liu Y, Ge X, Wang J, Wang Z. Transcriptome Analysis of Non-coding RNAs and mRNAs in the Dorsal Root Ganglion of Peripheral Nerve Injury-Induced Neuropathic Pain. Biochem Genet 2025:10.1007/s10528-025-11066-7. [PMID: 39994131 DOI: 10.1007/s10528-025-11066-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 02/14/2025] [Indexed: 02/26/2025]
Abstract
Maladaptive changes in gene expression at transcriptional level in dorsal root ganglia (DRGs) after nerve injury are critical for neuropathic pain genesis. Emerging evidence reveals the important role of non-coding RNAs (ncRNAs) in regulating gene transcription. Recent studies also have showed the contribution of ncRNAs to neuropathic pain. However, the expression profile of ncRNAs in the DRGs and potential regulatory mechanism in peripheral nerve injury-induced neuropathic pain are not fully clear. We used bCCI neuropathic pain model induced by chronic constriction injury of bilateral sciatic nerves to study the expression profile and potential functional mechanism of micro RNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs) and messenger RNA (mRNA) in the DRGs by RNA sequencing and bioinformatics analysis. A total of 47 miRNAs, 337 lncRNAs, 32 circRNAs, and 2269 mRNAs were differentially expressed (DE) in the DRGs of CCI mice 14 days after surgery. KEGG analysis demonstrated nociception-related signaling pathways were significantly enriched for DEncRNAs, including Rap1, Ras, and Hippo signaling pathway. GO analysis showed neuron related biological process, membrane related cell components, and binding related molecular functions were significantly enriched. The competing endogenous RNA (ceRNA) regulatory network of DEmiRNA-DEmRNA, DElncRNA-DEmRNA, and DEcircRNA-DEmiRNA existed in the DRGs of mice with neuropathic pain induced by peripheral nerve injury. In addition, 81 pain-related DE genes had protein-protein interactions (PPI) with each other. Our findings indicated that ncRNAs are involved in the development of peripheral nerve injury-induced neuropathic pain. DEncRNAs may provide us with a new perspective in chronic neuropathic pain research and may become a potential target for pain treatment.
Collapse
Affiliation(s)
- Wanxia Xiong
- Department of Anesthesiology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yujia Liu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiaodong Ge
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jie Wang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhiyao Wang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
4
|
Cooper AH, Barry AM, Chrysostomidou P, Lolignier R, Wang J, Redondo Canales M, Titterton HF, Bennett DL, Weir GA. Peripheral nerve injury results in a biased loss of sensory neuron subpopulations. Pain 2024; 165:2863-2876. [PMID: 39158319 PMCID: PMC11562755 DOI: 10.1097/j.pain.0000000000003321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/11/2024] [Accepted: 05/25/2024] [Indexed: 08/20/2024]
Abstract
ABSTRACT There is a rich literature describing the loss of dorsal root ganglion (DRG) neurons following peripheral axotomy, but the vulnerability of discrete subpopulations has not yet been characterised. Furthermore, the extent or even presence of neuron loss following injury has recently been challenged. In this study, we have used a range of transgenic recombinase driver mouse lines to genetically label molecularly defined subpopulations of DRG neurons and track their survival following traumatic nerve injury. We find that spared nerve injury leads to a marked loss of cells containing DRG volume and a concomitant loss of small-diameter DRG neurons. Neuron loss occurs unequally across subpopulations and is particularly prevalent in nonpeptidergic nociceptors, marked by expression of Mrgprd. We show that this subpopulation is almost entirely lost following spared nerve injury and severely depleted (by roughly 50%) following sciatic nerve crush. Finally, we used an in vitro model of DRG neuron survival to demonstrate that nonpeptidergic nociceptor loss is likely dependent on the absence of neurotrophic support. Together, these results profile the extent to which DRG neuron subpopulations can survive axotomy, with implications for our understanding of nerve injury-induced plasticity and pain.
Collapse
Affiliation(s)
- Andrew H. Cooper
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, United Kingdom
| | - Allison M. Barry
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | | | - Romane Lolignier
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, United Kingdom
| | - Jinyi Wang
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, United Kingdom
| | | | - Heather F. Titterton
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, United Kingdom
| | - David L. Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Greg A. Weir
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
5
|
Midavaine É, Moraes BC, Benitez J, Rodriguez SR, Braz JM, Kochhar NP, Eckalbar WL, Domingos AI, Pintar JE, Basbaum AI, Kashem SW. Regulatory T cell-derived enkephalin gates nociception. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.11.593442. [PMID: 38798460 PMCID: PMC11118376 DOI: 10.1101/2024.05.11.593442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
T cells have emerged as sex-dependent orchestrators of pain chronification but the sexually dimorphic mechanisms by which T cells control pain sensitivity is not resolved. Here, we demonstrate an influence of regulatory T cells (Tregs) on pain processing that is distinct from their canonical functions of immune regulation and tissue repair. Specifically, meningeal Tregs (mTregs) express the endogenous opioid, enkephalin, and mTreg-derived enkephalin exerts an antinociceptive action through a presynaptic opioid receptor signaling mechanism that is dispensable for immunosuppression. We demonstrate that mTregs are both necessary and sufficient to suppress mechanical pain sensitivity in female, but not male, mice, with this modulation reliant on sex hormones. These results uncover a fundamental sex-specific, and immunologically-derived endogenous opioid circuit for nociceptive regulation with critical implications for pain biology.
Collapse
Affiliation(s)
- Élora Midavaine
- Department of Anatomy, University of California San Francisco, San Francisco, California, USA
| | - Beatriz C. Moraes
- Department of Anatomy, University of California San Francisco, San Francisco, California, USA
| | - Jorge Benitez
- Department of Anatomy, University of California San Francisco, San Francisco, California, USA
| | - Sian R. Rodriguez
- Department of Anatomy, University of California San Francisco, San Francisco, California, USA
| | - Joao M. Braz
- Department of Anatomy, University of California San Francisco, San Francisco, California, USA
| | - Nathan P. Kochhar
- Department of Anatomy, University of California San Francisco, San Francisco, California, USA
| | - Walter L. Eckalbar
- Department of Anatomy, University of California San Francisco, San Francisco, California, USA
| | - Ana I. Domingos
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - John E. Pintar
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Allan I. Basbaum
- Department of Anatomy, University of California San Francisco, San Francisco, California, USA
| | - Sakeen W. Kashem
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
- Dermatology, Veterans Affairs Medical Center, San Francisco, California, USA
| |
Collapse
|
6
|
Zhao N, Bennett DL, Baskozos G, Barry AM. Predicting 'pain genes': multi-modal data integration using probabilistic classifiers and interaction networks. BIOINFORMATICS ADVANCES 2024; 4:vbae156. [PMID: 39526039 PMCID: PMC11549022 DOI: 10.1093/bioadv/vbae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/16/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
Motivation Accurate identification of pain-related genes remains challenging due to the complex nature of pain pathophysiology and the subjective nature of pain reporting in humans. Here, we use machine learning to identify possible 'pain genes'. Labelling was based on a gold-standard list with validated involvement across pain conditions, and was trained on a selection of -omics, protein-protein interaction network features, and biological function readouts for each gene. Results The top-performing model was selected to predict a 'pain score' per gene. The top-ranked genes were then validated against pain-related human SNPs. Functional analysis revealed JAK2/STAT3 signal, ErbB, and Rap1 signalling pathways as promising targets for further exploration, while network topological features contribute significantly to the identification of 'pain' genes. As such, a network based on top-ranked genes was constructed to reveal previously uncharacterized pain-related genes. Together, these novel insights into pain pathogenesis can indicate promising directions for future experimental research. Availability and implementation These analyses can be further explored using the linked open-source database at https://livedataoxford.shinyapps.io/drg-directory/, which is accompanied by a freely accessible code template and user guide for wider adoption across disciplines.
Collapse
Affiliation(s)
- Na Zhao
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - David L Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Georgios Baskozos
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Allison M Barry
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, United Kingdom
| |
Collapse
|
7
|
Mogil JS, Parisien M, Esfahani SJ, Diatchenko L. Sex differences in mechanisms of pain hypersensitivity. Neurosci Biobehav Rev 2024; 163:105749. [PMID: 38838876 DOI: 10.1016/j.neubiorev.2024.105749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/23/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
The introduction of sex-as-a-biological-variable policies at funding agencies around the world has led to an explosion of very recent observations of sex differences in the biology underlying pain. This review considers evidence of sexually dimorphic mechanisms mediating pain hypersensitivity, derived from modern assays of persistent pain in rodent animal models. Three well-studied findings are described in detail: the male-specific role of spinal cord microglia, the female-specific role of calcitonin gene-related peptide (CGRP), and the female-specific role of prolactin and its receptor. Other findings of sex-specific molecular involvement in pain are subjected to pathway analyses and reveal at least one novel hypothesis: that females may preferentially use Th1 and males Th2 T cell activity to mediate chronic pain.
Collapse
Affiliation(s)
- Jeffrey S Mogil
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC H3A 1B1, Canada.
| | - Marc Parisien
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC H3A 1B1, Canada
| | - Sahel J Esfahani
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC H3A 1B1, Canada
| | - Luda Diatchenko
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC H3A 1B1, Canada
| |
Collapse
|
8
|
Lister KC, Wong C, Uttam S, Parisien M, Stecum P, Brown N, Cai W, Hooshmandi M, Gu N, Amiri M, Beaudry F, Jafarnejad SM, Tavares-Ferreira D, Inturi NN, Mazhar K, Zhao HT, Fitzsimmons B, Gkogkas CG, Sonenberg N, Price TJ, Diatchenko L, Atlasi Y, Mogil JS, Khoutorsky A. Translational control in the spinal cord regulates gene expression and pain hypersensitivity in the chronic phase of neuropathic pain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600539. [PMID: 38979173 PMCID: PMC11230214 DOI: 10.1101/2024.06.24.600539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Sensitization of spinal nociceptive circuits plays a crucial role in neuropathic pain. This sensitization depends on new gene expression that is primarily regulated via transcriptional and translational control mechanisms. The relative roles of these mechanisms in regulating gene expression in the clinically relevant chronic phase of neuropathic pain are not well understood. Here, we show that changes in gene expression in the spinal cord during the chronic phase of neuropathic pain are substantially regulated at the translational level. Downregulating spinal translation at the chronic phase alleviated pain hypersensitivity. Cell-type-specific profiling revealed that spinal inhibitory neurons exhibited greater changes in translation after peripheral nerve injury compared to excitatory neurons. Notably, increasing translation selectively in all inhibitory neurons or parvalbumin-positive (PV+) interneurons, but not excitatory neurons, promoted mechanical pain hypersensitivity. Furthermore, increasing translation in PV+ neurons decreased their intrinsic excitability and spiking activity, whereas reducing translation in spinal PV+ neurons prevented the nerve injury-induced decrease in excitability. Thus, translational control mechanisms in the spinal cord, particularly in inhibitory neurons, play a role in mediating neuropathic pain hypersensitivity.
Collapse
Affiliation(s)
- Kevin C. Lister
- Department of Anesthesia, McGill University, Montreal, QC, Canada
| | - Calvin Wong
- Department of Anesthesia, McGill University, Montreal, QC, Canada
| | - Sonali Uttam
- Department of Anesthesia, McGill University, Montreal, QC, Canada
| | - Marc Parisien
- Department of Anesthesia, McGill University, Montreal, QC, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Patricia Stecum
- Department of Anesthesia, McGill University, Montreal, QC, Canada
| | - Nicole Brown
- Department of Anesthesia, McGill University, Montreal, QC, Canada
| | - Weihua Cai
- Department of Anesthesia, McGill University, Montreal, QC, Canada
| | - Mehdi Hooshmandi
- Department of Anesthesia, McGill University, Montreal, QC, Canada
| | - Ning Gu
- Department of Anesthesia, McGill University, Montreal, QC, Canada
| | - Mehdi Amiri
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Canada
| | - Francis Beaudry
- Département de biomédecine vétérinaire, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Centre de recherche sur le cerveau et l’apprentissage (CIRCA), Université de Montréal, Montréal, Québec, Canada
| | - Seyed Mehdi Jafarnejad
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, BT9 7AE, UK
| | - Diana Tavares-Ferreira
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Dallas, 75080
| | - Nikhil Nageshwar Inturi
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Dallas, 75080
| | - Khadijah Mazhar
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Dallas, 75080
| | | | | | - Christos G. Gkogkas
- Biomedical Research Institute, Foundation for Research and Technology-Hellas, University Campus, 45110 Ioannina, Greece
| | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Canada
| | - Theodore J. Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Dallas, 75080
| | - Luda Diatchenko
- Department of Anesthesia, McGill University, Montreal, QC, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Yaser Atlasi
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, BT9 7AE, UK
| | - Jeffrey S. Mogil
- Department of Anesthesia, McGill University, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
- Department of Psychology, Faculty of Science, McGill University, Montreal, QC, Canada
| | - Arkady Khoutorsky
- Department of Anesthesia, McGill University, Montreal, QC, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| |
Collapse
|
9
|
Gomez K, Allen HN, Duran P, Loya-Lopez S, Calderon-Rivera A, Moutal A, Tang C, Nelson TS, Perez-Miller S, Khanna R. Targeted transcriptional upregulation of SENP1 by CRISPR activation enhances deSUMOylation pathways to elicit antinociception in the spinal nerve ligation model of neuropathic pain. Pain 2024; 165:866-883. [PMID: 37862053 PMCID: PMC11389604 DOI: 10.1097/j.pain.0000000000003080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/04/2023] [Indexed: 10/21/2023]
Abstract
ABSTRACT The voltage-gated sodium channel Na V 1.7 is an essential component of human pain signaling. Changes in Na V 1.7 trafficking are considered critical in the development of neuropathic pain. SUMOylation of collapsin response mediator protein 2 (CRMP2) regulates the membrane trafficking and function of Na V 1.7. Enhanced CRMP2 SUMOylation in neuropathic pain correlates with increased Na V 1.7 activity. Pharmacological and genetic interventions that interfere with CRMP2 SUMOylation in rodents with neuropathic pain have been shown to reverse mechanical allodynia. Sentrin or SUMO-specific proteases (SENPs) are vital for balancing SUMOylation and deSUMOylation of substrates. Overexpression of SENP1 and/or SENP2 in CRMP2-expressing cells results in increased deSUMOylation and decreased membrane expression and currents of Na V 1.7. Although SENP1 is present in the spinal cord and dorsal root ganglia, its role in regulating Na V 1.7 function and pain is not known. We hypothesized that favoring SENP1 expression can enhance CRMP2 deSUMOylation to modulate Na V 1.7 channels. In this study, we used a clustered regularly interspaced short palindromic repeats activation (CRISPRa) SENP1 lentivirus to overexpress SENP1 in dorsal root ganglia neurons. We found that SENP1 lentivirus reduced CRMP2 SUMOylation, Na V 1.7-CRMP2 interaction, and Na V 1.7 membrane expression. SENP1 overexpression decreased Na V 1.7 currents through clathrin-mediated endocytosis, directly linked to CRMP2 deSUMOylation. Moreover, enhancing SENP1 expression did not affect the activity of TRPV1 channels or voltage-gated calcium and potassium channels. Intrathecal injection of CRISPRa SENP1 lentivirus reversed mechanical allodynia in male and female rats with spinal nerve injury. These results provide evidence that the pain-regulating effects of SENP1 overexpression involve, in part, the modulation of Na V 1.7 channels through the indirect mechanism of CRMP2 deSUMOylation.
Collapse
Affiliation(s)
- Kimberly Gomez
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
- NYU Pain Research Center, New York, NY, United States
| | - Heather N Allen
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
- NYU Pain Research Center, New York, NY, United States
| | - Paz Duran
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
- NYU Pain Research Center, New York, NY, United States
| | - Santiago Loya-Lopez
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
- NYU Pain Research Center, New York, NY, United States
| | - Aida Calderon-Rivera
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
- NYU Pain Research Center, New York, NY, United States
| | - Aubin Moutal
- School of Medicine, Department of Pharmacology and Physiology, Saint Louis University, Saint Louis, MO, United States
| | - Cheng Tang
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
- NYU Pain Research Center, New York, NY, United States
| | - Tyler S Nelson
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
- NYU Pain Research Center, New York, NY, United States
| | - Samantha Perez-Miller
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
- NYU Pain Research Center, New York, NY, United States
| | - Rajesh Khanna
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
- NYU Pain Research Center, New York, NY, United States
- Department of Neuroscience and Physiology and Neuroscience Institute, School of Medicine, New York University, New York, NY, United States
| |
Collapse
|
10
|
Tian M, Kawaguchi R, Shen Y, Machnicki M, Villegas NG, Cooper DR, Montgomery N, Haring J, Lan R, Yuan AH, Williams CK, Magaki S, Vinters HV, Zhang Y, De Biase LM, Silva AJ, Carmichael ST. Intercellular Signaling Pathways as Therapeutic Targets for Vascular Dementia Repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.24.585301. [PMID: 38585718 PMCID: PMC10996514 DOI: 10.1101/2024.03.24.585301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Vascular dementia (VaD) is a white matter ischemic disease and the second-leading cause of dementia, with no direct therapy. Within the lesion site, cell-cell interactions dictate the trajectory towards disease progression or repair. To elucidate the underlying intercellular signaling pathways, a VaD mouse model was developed for transcriptomic and functional studies. The mouse VaD transcriptome was integrated with a human VaD snRNA-Seq dataset. A custom-made database encompassing 4053 human and 2032 mouse ligand-receptor (L-R) interactions identified significantly altered pathways shared between human and mouse VaD. Two intercellular L-R systems, Serpine2-Lrp1 and CD39-A3AR, were selected for mechanistic study as both the ligand and receptor were dysregulated in VaD. Decreased Seprine2 expression enhances OPC differentiation in VaD repair. A clinically relevant drug that reverses the loss of CD39-A3AR function promotes tissue and behavioral recovery in the VaD model. This study presents novel intercellular signaling targets and may open new avenues for VaD therapies.
Collapse
|
11
|
Song Y, Xue T, Guo S, Yu Z, Yun C, Zhao J, Song Z, Liu Z. Inhibition of aquaporin-4 and its subcellular localization attenuates below-level central neuropathic pain by regulating astrocyte activation in a rat spinal cord injury model. Neurotherapeutics 2024; 21:e00306. [PMID: 38237380 DOI: 10.1016/j.neurot.2023.e00306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/19/2023] [Indexed: 03/24/2024] Open
Abstract
The mechanisms of central neuropathic pain (CNP) caused by spinal cord injury have not been sufficiently studied. We have found that the upregulation of astrocytic aquaporin-4 (AQP4) aggravated peripheral neuropathic pain after spinal nerve ligation in rats. Using a T13 spinal cord hemisection model, we showed that spinal AQP4 was markedly upregulated after SCI and mainly expressed in astrocytes in the spinal dorsal horn (SDH). Inhibition of AQP4 with TGN020 suppressed astrocyte activation, attenuated the development and maintenance of below-level CNP and promoted motor function recovery in vivo. In primary astrocyte cultures, TGN020 also changed cell morphology, diminished cell proliferation and suppressed astrocyte activation. Moreover, T13 spinal cord hemisection induced cell-surface abundance of the AQP4 channel and perivascular localization in the SDH. Targeted inhibition of AQP4 subcellular localization with trifluoperazine effectively diminished astrocyte activation in vitro and further ablated astrocyte activation, attenuated the development and maintenance of below-level CNP, and accelerated functional recovery in vivo. Together, these results provide mechanistic insights into the roles of AQP4 in the development and maintenance of below-level CNP. Intervening with AQP4, including targeting AQP4 subcellular localization, might emerge as a promising agent to prevent chronic CNP after SCI.
Collapse
Affiliation(s)
- Yu Song
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Tao Xue
- Department of Orthopedics, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213003, China
| | - Shiwu Guo
- Department of Orthopedics, Suzhou Kowloon Hospital, Shanghai Jiao Tong University School of Medicine, Suzhou, 215028, China
| | - Zhen Yu
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Chengming Yun
- Department of Orthopedics, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213003, China
| | - Jie Zhao
- Department of Orthopedics, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213003, China
| | - Zhiwen Song
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Zhiyuan Liu
- Department of Orthopedics, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213003, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China; The Wujin Clinical College of Xuzhou Medical University, Changzhou 213003, China.
| |
Collapse
|
12
|
Uniyal A, Tiwari V, Tsukamoto T, Dong X, Guan Y, Raja SN. Targeting sensory neuron GPCRs for peripheral neuropathic pain. Trends Pharmacol Sci 2023; 44:1009-1027. [PMID: 37977131 PMCID: PMC10657387 DOI: 10.1016/j.tips.2023.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/29/2023] [Accepted: 10/10/2023] [Indexed: 11/19/2023]
Abstract
Despite the high prevalence of peripheral neuropathic pain (NP) conditions and significant progress in understanding its underlying mechanisms, the management of peripheral NP remains inadequate. Existing pharmacotherapies for NP act primarily on the central nervous system (CNS) and are often associated with CNS-related adverse effects, limiting their clinical effectiveness. Mounting preclinical evidence indicates that reducing the heightened activity in primary sensory neurons by targeting G-protein-coupled receptors (GPCRs), without activating these receptors in the CNS, relieves pain without central adverse effects. In this review, we focus on recent advancements in GPCR-mediated peripheral pain relief and discuss strategies to advance the development of more effective and safer therapies for peripheral NP by shifting from traditional CNS modulatory approaches toward selective targeting of GPCRs on primary sensory neurons.
Collapse
Affiliation(s)
- Ankit Uniyal
- Division of Pain Medicine, Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University, Baltimore, MD, USA
| | - Vinod Tiwari
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (B.H.U), Varanasi, India
| | - Takashi Tsukamoto
- Department of Neurology and Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xinzhong Dong
- Department of Neuroscience, The Johns Hopkins University, Baltimore, MD, USA
| | - Yun Guan
- Division of Pain Medicine, Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University, Baltimore, MD, USA; Department of Neurological Surgery, The Johns Hopkins University, Baltimore, MD, USA
| | - Srinivasa N Raja
- Division of Pain Medicine, Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University, Baltimore, MD, USA; Department of Neurology and Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
13
|
Ibrahim T, Wu P, Wang LJ, Fang-Mei C, Murillo J, Merlo J, Shein SS, Tumanov AV, Lai Z, Weldon K, Chen Y, Ruparel S. Sex-dependent differences in the genomic profile of lingual sensory neurons in naïve and tongue-tumor bearing mice. Sci Rep 2023; 13:13117. [PMID: 37573456 PMCID: PMC10423281 DOI: 10.1038/s41598-023-40380-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023] Open
Abstract
Mechanisms of sex-dependent orofacial pain are widely understudied. A significant gap in knowledge exists about comprehensive regulation of tissue-specific trigeminal sensory neurons in diseased state of both sexes. Using RNA sequencing of FACS sorted retro-labeled sensory neurons innervating tongue tissue, we determined changes in transcriptomic profiles in males and female mice under naïve as well as tongue-tumor bearing conditions Our data revealed the following interesting findings: (1) FACS sorting obtained higher number of neurons from female trigeminal ganglia (TG) compared to males; (2) Naïve female neurons innervating the tongue expressed immune cell markers such as Csf1R, C1qa and others, that weren't expressed in males. This was validated by Immunohistochemistry. (3) Accordingly, immune cell markers such as Csf1 exclusively sensitized TRPV1 responses in female TG neurons. (4) Male neurons were more tightly regulated than female neurons upon tumor growth and very few differentially expressed genes (DEGs) overlapped between the sexes, (5) Male DEGs contained higher number of transcription factors whereas female DEGs contained higher number of enzymes, cytokines and chemokines. Collectively, this is the first study to characterize the effect of sex as well as of tongue-tumor on global gene expression, pathways and molecular function of tongue-innervating sensory neurons.
Collapse
Affiliation(s)
- Tarek Ibrahim
- Department of Endodontics, School of Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Ping Wu
- Department of Endodontics, School of Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Li-Ju Wang
- Greehey Children's Cancer Institute, University of Texas Health San Antonio, San Antonio, USA
- Department of Population Health Sciences, University of Texas Health at San Antonio, San Antonio, USA
| | - Chang Fang-Mei
- Department of Endodontics, School of Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Josue Murillo
- Department of Endodontics, School of Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Jaclyn Merlo
- Department of Endodontics, School of Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Sergey S Shein
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, USA
| | - Alexei V Tumanov
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, USA
| | - Zhao Lai
- Greehey Children's Cancer Institute, University of Texas Health San Antonio, San Antonio, USA
- Department of Molecular Medicine, University of Texas Health at San Antonio, San Antonio, TX, USA
| | - Korri Weldon
- Greehey Children's Cancer Institute, University of Texas Health San Antonio, San Antonio, USA
- Department of Molecular Medicine, University of Texas Health at San Antonio, San Antonio, TX, USA
| | - Yidong Chen
- Greehey Children's Cancer Institute, University of Texas Health San Antonio, San Antonio, USA
- Department of Population Health Sciences, University of Texas Health at San Antonio, San Antonio, USA
| | - Shivani Ruparel
- Department of Endodontics, School of Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA.
| |
Collapse
|