1
|
Canicoba ARB, Poveda VDB. Surgical Smoke and Biological Symptoms in Healthcare Professionals and Patients: A Systematic Review. J Perianesth Nurs 2021; 37:130-136. [PMID: 34802919 DOI: 10.1016/j.jopan.2021.06.106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 11/18/2022]
Abstract
PURPOSE This study aimed to identify the evidence in the scientific literature between exposure to surgical smoke and biological symptoms in healthcare professionals and patients. DESIGN A systematic review. METHODS Electronic databases were searched, including vivo observational and experimental studies published until August 2020 in Portuguese, English, Spanish and French. FINDINGS We identified 13 studies, with a predominance of cross-sectional (6; 46.15%), experimental laboratory (4; 30.76%) and cohort (3; 23.07%) studies. The main manifestations identified were related to respiratory tract and headache. There was identification of histopathological changes in the nasal mucosa of healthcare professionals and the presence of toxic substances from smoke identified in the urine of patients and healthcare professionals. CONCLUSION The scientific literature on the biological symptoms of surgical smoke is mainly composed of observational studies with a reduced sample size, thus constituting aspects which limit a broader and long-term understanding of the biological effects of surgical smoke exposure in healthcare professionals and patients.
Collapse
Affiliation(s)
| | - Vanessa de Brito Poveda
- School of Nursing, University of Sao Paulo, The Brazilian Centre of Evidence-based Healthcare: A JBI Centre of Excellence (JBI Brazil), São Paulo, Brazil
| |
Collapse
|
2
|
Wang Y, Xiong L, Wu T, Zhang T, Kong L, Xue Y, Tang M. Analysis of differentially changed gene expression in EA.hy926 human endothelial cell after exposure of fine particulate matter on the basis of microarray profile. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 159:213-220. [PMID: 29753823 DOI: 10.1016/j.ecoenv.2018.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/29/2018] [Accepted: 05/01/2018] [Indexed: 06/08/2023]
Abstract
Epidemiological studies have illustrated that PM2.5 is closely related to cardiovascular disease (CVD), but underlying toxicological mechanisms are not yet clear. The main purpose of this study is to disclose the potential biological mechanisms responsible for PM2.5-dependent adverse cardiovascular outcomes through the appliance of genome-wide transcription microarray. From results, compared with the control group, there are 97 genes significantly altered in 2.5 μg/cm2 PM2.5 treated group and 440 differentially expressed genes in 10 μg/cm2 group. Of note, when 2.5 μg/cm2 and 10 μg/cm2 group were respectively compared with the control group, 46 significantly altered genes showed a consistent tendency in two treated groups, of which 31 genes were upregulated while 15 genes were meanwhile downregulated. Based on Gene Ontology (GO) annotation, altered genes are mainly gathered in functions of cellular processes and immune regulation. Pathway analysis indicated that TNF signaling pathway, NOD-like receptor (NLRs) signaling pathway, MAPK signaling pathway and gap junction are vital pathways involved in PM2.5-induced toxicity in EA.hy926. Moreover, results from RT-qPCR further corroborated that changed genes are implicated in oxidative stress, inflammation and metabolic disorder. In addition, metabolism of xenobiotics by cytochrome P450 pathway is the critical pathway which may serve as a target to prevent PM2.5-induced CVD. To sum up, our effort provides a fundamental data for further studies regarding mechanisms of PM2.5-induced cardiovascular toxicity on the basis of genome-wide screening.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, Jiangsu, 210009, China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Lilin Xiong
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, Jiangsu, 210009, China; Department of Environmental Health, Nanjing Municipal Center for Disease Control and Prevention, Nanjing, Jiangsu, 210003, China
| | - Tianshu Wu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, Jiangsu, 210009, China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, Jiangsu, 210009, China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Lu Kong
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, Jiangsu, 210009, China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Yuying Xue
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, Jiangsu, 210009, China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, Jiangsu, 210009, China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, Jiangsu, 210009, China.
| |
Collapse
|