1
|
Guedes Pinto T, Dias TA, Renno ACM, de Barros Viana M, Ribeiro DA. The role of genetic polymorphisms for inducing genotoxicity in workers occupationally exposed to benzene: a systematic review. Arch Toxicol 2024; 98:1991-2005. [PMID: 38600397 DOI: 10.1007/s00204-024-03744-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/18/2024] [Indexed: 04/12/2024]
Abstract
Benzene is used worldwide as a major raw material in a number of industrial processes and also a potent airborne pollutant emitted from traffic exhaust fume. The present systematic review aimed to identify potential associations between genetic polymorphisms and occupational benzene-induced genotoxicity. For this purpose, a total of 22 selected studies were carefully analysed. Our results revealed a positive relation between gene polymorphism and genotoxicity in individuals exposed to benzene, since 17 studies (out of 22) observed positive relations between genotoxicity and polymorphisms in xenobiotics metabolizing genes influencing, therefore, individuals' susceptibility to genomic damage induced by benzene. In other words, individuals with some genotypes may show increase or decrease DNA damage and/or higher or lower DNA-repair potential. As for the quality assessment, 17 studies (out of 22) were categorized as Strong or Moderate and, therefore, we consider our findings to be trustworthy. Taken together, such findings are consistent with the notion that benzene induces genotoxicity in mammalian cells being strongly dependent on the genetic polymorphism. Certainly, such findings are important for clarifying the role of biomarkers related to genotoxicity in human biomonitoring studies.
Collapse
Affiliation(s)
- Thiago Guedes Pinto
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, UNIFESP, Rua Silva Jardim, 136, Room 332, Vila Mathias, Santos, SP, 11050-020, Brazil
| | - Thayza Aires Dias
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, UNIFESP, Rua Silva Jardim, 136, Room 332, Vila Mathias, Santos, SP, 11050-020, Brazil
| | - Ana Claudia Muniz Renno
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, UNIFESP, Rua Silva Jardim, 136, Room 332, Vila Mathias, Santos, SP, 11050-020, Brazil
| | - Milena de Barros Viana
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, UNIFESP, Rua Silva Jardim, 136, Room 332, Vila Mathias, Santos, SP, 11050-020, Brazil
| | - Daniel Araki Ribeiro
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, UNIFESP, Rua Silva Jardim, 136, Room 332, Vila Mathias, Santos, SP, 11050-020, Brazil.
| |
Collapse
|
2
|
Wang T, Cao Y, Xia Z, Christiani DC, Au WW. Review on novel toxicological effects and personalized health hazard in workers exposed to low doses of benzene. Arch Toxicol 2024; 98:365-374. [PMID: 38142431 DOI: 10.1007/s00204-023-03650-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023]
Abstract
Several recent reports indicate health hazards for workers with below occupational limit exposure to benzene (BZ). Our updated review indicates that such low exposures induced traditional as well as novel toxicity/genotoxicity, e.g., increased mitochondria copy numbers, prolongation of telomeres, impairment of DNA damage repair response (DDRR), perturbations of expression in non-coding RNAs, and epigenetic changes. These abnormalities were associated with alterations of gene expression and cellular signaling pathways which affected hematopoietic cell development, expression of apoptosis, autophagy, etc. The overarching mechanisms for induction of health risk are impaired DDRR, inhibition of tumor suppressor genes, and changes of MDM2-p53 axis activities that contribute to perturbed control for cancer pathways. Evaluation of the unusual dose-responses to BZ exposure indicates cellular over-compensation and reprogramming to overcome toxicity and to promote survival. However, these abnormal mechanisms also promote the induction of leukemia. Further investigations indicate that the current exposure limits for workers to BZ are unacceptable. Based on these studies, the new exposure limits should be less than 0.07 ppm rather than the current 1 ppm. This review also emphasizes the need to conduct appropriate bioassays, and to provide more reliable decisions on health hazards as well as on exposure limits for workers. In addition, it is important to use scientific data to provide significantly improved risk assessment, i.e., shifting from a population- to an individual-based risk assessment.
Collapse
Affiliation(s)
- Tongshuai Wang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Yiyi Cao
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhaolin Xia
- Department of Occupational Health & Toxicology, School of Public Health, Shanghai Medical College of Fudan University, Shanghai, 200032, China
- School of Public Health, Xinjiang Medical University, Urumqi, 830011, China
| | - David C Christiani
- Department of Environmental Health, Harvard University TH Chan School of Public Health, Harvard Medical School, Boston, MA, USA
| | - William W Au
- School of Public and Population Health, University of Texas Medical Branch, Galveston, TX, 77555, USA.
- Shantou University Medical College, Shantou, 515041, China.
| |
Collapse
|
3
|
Verma N, Pandit S, Gupta PK, Kumar S, Kumar A, Giri SK, Yadav G, Priya K. Occupational health hazards and wide spectrum of genetic damage by the organic solvent fumes at the workplace: A critical appraisal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:30954-30966. [PMID: 35102507 DOI: 10.1007/s11356-022-18889-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Long-term exposure to organic solvents is known to affect human health posing serious occupational hazards. Organic solvents are genotoxic, and they can cause genetic changes in the exposed employees' somatic or germ cells. Chemicals such as benzene, toluene, and gasoline induce an excessive amount of genotoxicity results either in genetic polymorphism or culminates in deleterious mutations when concentration crosses the threshold limits. The impact of genotoxicity is directly related to the time of exposure, types, and quantum of solvent. Genotoxicity affects almost all the physiological systems, but the most vulnerable ones are the nervous system, reproductive system, and blood circulatory system. Based on the available literature report, we propose to evaluate the outcomes of such chemicals on the exposed humans at the workplace. Attempts would be made to ascertain if the long-term exposure makes a person resistant to such chemicals. This may seem to be a far-fetched idea but has not been studied. The health prospect of this study is envisaged to complement the already existing data facilitating a deeper understanding of the genotoxicity across the population. This would also demonstrate if it correlates with the demographic profile of the population and contributes to comorbidity and epidemiology.
Collapse
Affiliation(s)
- Neha Verma
- Deptt. of Life Sciences, SBSR, Sharda University, Greater Noida, UP, 201310, India
| | - Soumya Pandit
- Deptt. of Life Sciences, SBSR, Sharda University, Greater Noida, UP, 201310, India
| | - Piyush Kumar Gupta
- Deptt. of Life Sciences, SBSR, Sharda University, Greater Noida, UP, 201310, India
| | - Sanjay Kumar
- Deptt. of Life Sciences, SBSR, Sharda University, Greater Noida, UP, 201310, India
| | - Anil Kumar
- Center of Medical Biotechnology, Maharishi Dayanand University, Rohtak Haryana, HR, 124001, India
| | - Shiv Kumar Giri
- Department of Biotechnology, Maharaja Agrasen University, Baddi, HP, India
| | - Gulab Yadav
- Department of Biotechnology, Maharaja Agrasen University, Baddi, HP, India
| | - Kanu Priya
- Deptt. of Life Sciences, SBSR, Sharda University, Greater Noida, UP, 201310, India.
| |
Collapse
|
4
|
Ramírez‐Lopera V, Uribe‐Castro D, Bautista‐Amorocho H, Silva‐Sayago JA, Mateus‐Sánchez E, Ardila‐Barbosa WY, Pérez‐Cala TL. The effects of genetic polymorphisms on benzene-exposed workers: A systematic review. Health Sci Rep 2021; 4:e327. [PMID: 34295994 PMCID: PMC8284097 DOI: 10.1002/hsr2.327] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/04/2021] [Accepted: 05/20/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND AND AIMS Benzene is a group I carcinogen, which has been associated with leukemia and myelodysplastic syndrome. Moreover, it has been proposed that polymorphisms in benzene metabolizing genes influence the outcomes of benzene exposure in the human body. This systematic review aims to elucidate the existent relationship between genetic polymorphisms and the risk of developing adverse health effects in benzene-exposed workers. METHODS Three databases were systematically searched until April 2020. The preferred reporting items for systematic reviews and meta-analyses method was used to select articles published between 2005 and 2020. Quality assessment and risk of bias were evaluated by the Newcastle-Ottawa scale. RESULTS After full-text evaluation, 36 articles remained out of 645 initially screened. The most studied health effects within the reviewed papers were chronic benzene poisoning, hematotoxicity, altered urinary biomarkers of exposure, micronucleus/chromosomal aberrations, and gene methylation. Furthermore, some polymorphisms on NQO1, GSTT1, GSTM1, MPO, and CYP2E1, among other genes, showed a statistically significant relationship with an increased risk of developing at least one of these effects on benzene-exposed workers. However, there was no consensus among the reviewed papers on which specific polymorphisms were the ones associated with the adverse health-related outcomes, except for the NQO1 rs1800566 and the GSTT1 null genotypes. Additionally, the smoking habit was identified as a confounder, demonstrating worse health outcomes in exposed workers that smoked. CONCLUSION Though there is a positive relationship between genetic polymorphisms and detrimental health outcomes for benzene-exposed workers, broader benzene-exposed cohorts that take into account the genetic diversity of the population are needed in order to determine which specific polymorphisms incur in health risks.
Collapse
Affiliation(s)
- Verónica Ramírez‐Lopera
- Bacterias & Cáncer Group, Microbiology and Parasitology, Faculty of MedicineUniversidad de AntioquiaMedellínColombia
| | - Daniel Uribe‐Castro
- Bacterias & Cáncer Group, Microbiology and Parasitology, Faculty of MedicineUniversidad de AntioquiaMedellínColombia
| | - Henry Bautista‐Amorocho
- Bacterias & Cáncer Group, Microbiology and Parasitology, Faculty of MedicineUniversidad de AntioquiaMedellínColombia
- Grupo de Investigación en Desarrollo Humano, Tejido Social e Innovaciones Tecnológicas—GIDTI, Programa Administración en Salud OcupacionalCentro Regional Bucaramanga, Corporación Universitaria Minuto de DiosBucaramangaColombia
| | - Jorge Alexander Silva‐Sayago
- Grupo de Investigación en Desarrollo Humano, Tejido Social e Innovaciones Tecnológicas—GIDTI, Programa Administración en Salud OcupacionalCentro Regional Bucaramanga, Corporación Universitaria Minuto de DiosBucaramangaColombia
| | - Enrique Mateus‐Sánchez
- Grupo de Investigación en Desarrollo Humano, Tejido Social e Innovaciones Tecnológicas—GIDTI, Programa de PsicologíaCentro Regional Bucaramanga, Corporación Universitaria Minuto de DiosBucaramangaColombia
| | - Wilman Yesid Ardila‐Barbosa
- Grupo de Investigación en Desarrollo Humano, Tejido Social e Innovaciones Tecnológicas—GIDTI, Programa Administración en Salud OcupacionalCentro Regional Bucaramanga, Corporación Universitaria Minuto de DiosBucaramangaColombia
| | - Tania Liseth Pérez‐Cala
- Bacterias & Cáncer Group, Microbiology and Parasitology, Faculty of MedicineUniversidad de AntioquiaMedellínColombia
| |
Collapse
|
5
|
Chow PW, Abd Hamid Z, Mathialagan RD, Rajab NF, Shuib S, Sulong S. Clastogenicity and Aneugenicity of 1,4-Benzoquinone in Different Lineages of Mouse Hematopoietic Stem/Progenitor Cells. TOXICS 2021; 9:toxics9050107. [PMID: 34065823 PMCID: PMC8150741 DOI: 10.3390/toxics9050107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/03/2021] [Accepted: 05/07/2021] [Indexed: 11/16/2022]
Abstract
Previous reports on hematotoxicity and leukemogenicity related to benzene exposure highlighted its adverse effects on hematopoiesis. Despite the reported findings, studies concerning the mechanism of benzene affecting chromosomal integrity in lineage-committed hematopoietic stem/progenitor cells (HSPCs) remain unclear. Here, we studied the clastogenicity and aneugenicity of benzene in lineage-committed HSPCs via karyotyping. Isolated mouse bone marrow cells (MBMCs) were exposed to the benzene metabolite 1,4-benzoquinone (1,4-BQ) at 1.25, 2.5, 5, 7, and 12 μM for 24 h, followed by karyotyping. Then, the chromosomal aberration (CA) in 1,4-BQ-exposed hematopoietic progenitor cells (HPCs) comprising myeloid, Pre-B lymphoid, and erythroid lineages were evaluated following colony-forming cell (CFC) assay. Percentage of CA, predominantly via Robertsonian translocation (Rb), was increased significantly (p < 0.05) in MBMCs and all progenitors at all concentrations. As a comparison, Pre-B lymphoid progenitor demonstrated a significantly higher percentage of CA (p < 0.05) than erythroid progenitor at 1.25, 2.5, and 7 μM as well as a significantly higher percentage (p < 0.05) than myeloid progenitor at 7 μM of 1,4-BQ. In conclusion, 1,4-BQ induced CA, particularly via Rb in both MBMCs and HPCs, notably via a lineage-dependent response. The role of lineage specificity in governing the clastogenicity and aneugenicity of 1,4-BQ deserves further investigation.
Collapse
Affiliation(s)
- Paik Wah Chow
- Biomedical Science Programme and Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (P.W.C.); (R.D.M.)
| | - Zariyantey Abd Hamid
- Biomedical Science Programme and Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (P.W.C.); (R.D.M.)
- Correspondence: ; Tel.: +60-3-9289-7196
| | - Ramya Dewi Mathialagan
- Biomedical Science Programme and Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (P.W.C.); (R.D.M.)
| | - Nor Fadilah Rajab
- Biomedical Science Programme and Center for Healthy Ageing & Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia;
| | - Salwati Shuib
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| | - Sarina Sulong
- Human Genome Center, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kelantan 16150, Malaysia;
| |
Collapse
|
6
|
The association of three DNA repair genes polymorphisms on the frequency of chromosomal alterations detected by fluorescence in situ hybridization. Int Arch Occup Environ Health 2021; 94:1567-1577. [PMID: 33778923 PMCID: PMC8384795 DOI: 10.1007/s00420-021-01652-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 01/07/2021] [Indexed: 10/26/2022]
Abstract
PURPOSE Gas station workers (GSWs) are exposed to carcinogenic agents. The aim was to study the association of high somatic chromosome alterations (CAs) rates in the blood of GSWs and the polymorphisms of three genes playing a role in DNA double-strand break repair. METHODS This is a cross-sectional study with 114 GSWs and 115 age-matched controls. Cytogenetic analyses, blood exams, medical interviews and genotypes for RAD51/G135C (rs1801320), ATM/P1054R (rs1800057) and CHEK2/T470C (rs17879961) genes were performed. RESULTS The CA rate in GSWs was 9.8 CAs/1000 metaphases, and 19.1% of the workers had > 10 CAs per 1000 metaphases (group two). GSWs had decreased levels of monocytes (P = 0.024) in their blood exams. The number of variant alleles of the RAD51/G135C polymorphism was higher in GSWs (P = 0.011) compared to the controls, and were associated with enhanced number of CAs per worker (P = 0.008). No allele variant was found for CHEK2/T470C in this study. CONCLUSION The RAD51/G135C polymorphism appears to be related to genome instability in gas station workers. Increasing the knowledge of DNA repair gene variations involved in maintaining genomic stability in GSWs may be crucial for future cancer prevention.
Collapse
|
7
|
Schnatter AR, Rooseboom M, Kocabas NA, North CM, Dalzell A, Twisk J, Faulhammer F, Rushton E, Boogaard PJ, Ostapenkaite V, Williams SD. Derivation of an occupational exposure limit for benzene using epidemiological study quality assessment tools. Toxicol Lett 2020; 334:117-144. [PMID: 32497562 DOI: 10.1016/j.toxlet.2020.05.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/20/2020] [Accepted: 05/28/2020] [Indexed: 02/04/2023]
Abstract
This paper derives an occupational exposure limit for benzene using quality assessed data. Seventy-seven genotoxicity and 36 haematotoxicity studies in workers were scored for study quality with an adapted tool based on that of Vlaanderen et al., 2008 (Environ Health. Perspect. 116 1700-5). These endpoints were selected as they are the most sensitive and relevant to the proposed mode of action (MOA) and protecting against these will protect against benzene carcinogenicity. Lowest and No- Adverse Effect Concentrations (LOAECs and NOAECs) were derived from the highest quality studies (i.e. those ranked in the top tertile or top half) and further assessed as being "more certain" or "less certain". Several sensitivity analyses were conducted to assess whether alternative "high quality" constructs affected conclusions. The lowest haematotoxicity LOAECs showed effects near 2 ppm (8 h TWA), and no effects at 0.59 ppm. For genotoxicity, studies also showed effects near 2 ppm and showed no effects at about 0.69 ppm. Several sensitivity analyses supported these observations. These data define a benzene LOAEC of 2 ppm (8 h TWA) and a NOAEC of 0.5 ppm (8 h TWA). Allowing for possible subclinical effects in bone marrow not apparent in studies of peripheral blood endpoints, an OEL of 0.25 ppm (8 h TWA) is proposed.
Collapse
Affiliation(s)
| | | | | | - Colin M North
- ExxonMobil Biomedical Sciences, Inc, Annandale, NJ, USA
| | | | - Johannes Twisk
- Dow Chemical International Pvt. Ltd, Terneuzen, the Netherlands
| | | | - Erik Rushton
- Basell Service Company B.V., Rotterdam, the Netherlands
| | | | | | | |
Collapse
|
8
|
Scholten B, Vlaanderen J, Stierum R, Portengen L, Rothman N, Lan Q, Pronk A, Vermeulen R. A Quantitative Meta-Analysis of the Relation between Occupational Benzene Exposure and Biomarkers of Cytogenetic Damage. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:87004. [PMID: 32783535 PMCID: PMC7422719 DOI: 10.1289/ehp6404] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND The genotoxicity of benzene has been investigated in dozens of biomonitoring studies, mainly by studying (classical) chromosomal aberrations (CAs) or micronuclei (MN) as markers of DNA damage. Both have been shown to be predictive of future cancer risk in cohort studies and could, therefore, potentially be used for risk assessment of genotoxicity-mediated cancers. OBJECTIVES We sought to estimate an exposure-response curve (ERC) and quantify between-study heterogeneity using all available quantitative evidence on the cytogenetic effects of benzene exposure on CAs and MN respectively. METHODS We carried out a systematic literature review and summarized all available data of sufficient quality using meta-analyses. We assessed the heterogeneity in slope estimates between studies and conducted additional sensitivity analyses to assess how various study characteristics impacted the estimated ERC. RESULTS Sixteen CA (1,356 individuals) and 13 MN studies (2,097 individuals) were found to be eligible for inclusion in a meta-analysis. Studies where benzene was the primary genotoxic exposure and that had adequate assessment of both exposure and outcomes were used for the primary analysis. Estimated slope estimates were an increase of 0.27% CA [(95% CI: 0.08%, 0.47%); based on the results from 4 studies] and 0.27% MN [(95% CI: -0.23%, 0.76%); based on the results from 7 studies] per parts-per-million benzene exposure. We observed considerable between-study heterogeneity for both end points (I2>90%). DISCUSSION Our study provides a systematic, transparent, and quantitative summary of the literature describing the strong association between benzene exposure and accepted markers of genotoxicity in humans. The derived consensus slope can be used as a best estimate of the quantitative relationship between real-life benzene exposure and genetic damage in future risk assessment. We also quantitate the large between-study heterogeneity that exists in this literature, a factor which is crucial for the interpretation of single-study or consensus slopes. https://doi.org/10.1289/EHP6404.
Collapse
Affiliation(s)
- Bernice Scholten
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
- Netherlands Organisation for Applied Scientific Research, Zeist, Netherlands
| | - Jelle Vlaanderen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - Rob Stierum
- Netherlands Organisation for Applied Scientific Research, Zeist, Netherlands
| | - Lützen Portengen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - Nat Rothman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Rockville, Maryland, USA
| | - Qing Lan
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Rockville, Maryland, USA
| | - Anjoeka Pronk
- Netherlands Organisation for Applied Scientific Research, Zeist, Netherlands
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
9
|
Zhou Y, Wang K, Wang B, Pu Y, Zhang J. Occupational benzene exposure and the risk of genetic damage: a systematic review and meta-analysis. BMC Public Health 2020; 20:1113. [PMID: 32669091 PMCID: PMC7362416 DOI: 10.1186/s12889-020-09215-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 07/06/2020] [Indexed: 12/29/2022] Open
Abstract
Background Benzene, an important component of organic solvents, is commonly used in industry. Meanwhile, benzene is a human carcinogen leading to leukemia. Although the links between benzene and various types of genetic damage indicators have been evaluated in several studies, but their results remain inconsistent. So we conducted a meta-analysis, and to explore the influence of low concentration benzene exposure on workers’ genetic damage indicators using 3.25 mg/m3 as the boundary value, in order to provide a basis for improved prevention and control of the harm from benzene exposure to the occupational population. Methods We conducted a search of five databases, including Pub Med, Web of Science, China National Knowledge Infrastructure (CNKI), Wan Fang Data and Chongqing VIP, to identify relevant articles up to December 25, 2018. Two researchers independently extracted and evaluated the data according to the inclusion and exclusion criteria of the literature. The imported articles were managed by Endnote X7, and the data were extracted and sorted by Excel 2013. We utilized Stata 12.0 software to perform the meta-analysis in the present study. Results A total of 68 eligible articles were finally included for the synthetic analyses. The meta-analysis results showed that occupational benzene exposure led to significantly increased Micronucleus (MN) frequency, Sister chromatid exchange (SCE) frequency, Chromosome aberration (CA) frequency, Olive Tail moment (OTM), Tail moment (TM), Tail length (TL), and Tail DNA% (T DNA%) compared to the control group (P < 0.05), and the pooled effect value estimates were 1.36, 0.98, 0.76, 1.06, 0.96, 1.78, and 1.42, respectively. Subsequent analysis of the effect of low concentration benzene exposure on genetic damage found significantly increased MN frequency increased compared with the control group (P < 0.05). Conclusions Occupational benzene exposure can affect multiple genetic damage indicators. Even at an exposure concentration lower than 3.25 mg/m3, benzene exposure has genotoxicity. These data provide an important scientific basis for the further revision of occupational disease prevention strategies. At the same time, increased attention should be focused on the health monitoring of the occupational population exposed to benzene, and health management should be strengthened to improve the health of the occupational population.
Collapse
Affiliation(s)
- Yanhua Zhou
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu Province, People's Republic of China
| | - Kun Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu Province, People's Republic of China
| | - Boshen Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu Province, People's Republic of China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu Province, People's Republic of China
| | - Juan Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu Province, People's Republic of China.
| |
Collapse
|
10
|
Yuan Q, Zhang H, Pan Z, Ling X, Wu M, Gui Z, Chen J, Peng J, Liu Z, Tan Q, Huang D, Xiu L, Chen W, Shi Z, Liu L. Regulatory loop between lncRNA FAS-AS1 and DNMT3b controls FAS expression in hydroquinone-treated TK6 cells and benzene-exposed workers. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:114147. [PMID: 32088430 DOI: 10.1016/j.envpol.2020.114147] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 06/10/2023]
Abstract
Hydroquinone (HQ), one of the main metabolites of benzene, is a well-known human leukemogen. However, the specific mechanism of how benzene or HQ contributes to the development of leukemia is unknown. In a previous study, we demonstrated the upregulation of DNA methyltransferase (DNMT) expression in HQ-induced malignant transformed TK6 (HQ-TK6) cells. Here, we investigated whether a regulatory loop between the long noncoding RNA FAS-AS1 and DNMT3b exists in HQ-TK6 cells and benzene-exposed workers. We found that the expression of FAS-AS1 was downregulated in HQ-TK6 cells and workers exposed to benzene longer than 1.5 years via histone acetylation, and FAS-AS1 expression was negatively correlated with the time of benzene exposure. Restoration of FAS-AS1 in HQ-TK6 cells promoted apoptosis and inhibited tumorigenicity in female nude mice. Interestingly, treatment with a DNMT inhibitor (5-aza-2-deoxycytidine), histone deacetylase inhibitor (trichostatin A), or DNMT3b knockout led to increased FAS-AS1 through increased H3K27ac protein expression in HQ-TK6 cells, and DNMT3b knockout decreased H3K27ac and DNMT3b enrichment to the FAS-AS1 promoter region, which suggested that DNMT3b and/or histone acetylation involve FAS-AS1 expression. Importantly, restoration of FAS-AS1 resulted in reduced expression of DNMT3b and SIRT1 and increased expression of FAS in both HQ-TK6 cells and xenograft tissues. Moreover, the average DNMT3b expression in 17 paired workers exposed to benzene within 1.5 years was decreased, but that of the remaining 103 paired workers with longer exposure times was increased. Conversely, DNMT3b was negatively correlated with FAS-AS1 expression. Both FAS-AS1 and DNMT3b influenced the enrichment of H3K27ac in the FAS promoter region by regulating the expression of SIRT1, consequently upregulating FAS expression. Taken together, these observations demonstrate crosstalk between FAS-AS1 and DNMT3b via a mutual inhibition loop and indicate a new mechanism by which FAS-AS1 regulates the expression of FAS in benzene-related carcinogenesis.
Collapse
Affiliation(s)
- Qian Yuan
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, PR China; Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan, 523808, PR China
| | - Haiqiao Zhang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, PR China; Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan, 523808, PR China
| | - Zhijie Pan
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, PR China; Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan, 523808, PR China
| | - Xiaoxuan Ling
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, PR China
| | - Minhua Wu
- Department of Histology and Embryology, Guangdong Medical University, Zhanjiang, 524001, PR China
| | - Zhiming Gui
- Department of Urology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, PR China
| | - Jialong Chen
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, PR China
| | - Jianming Peng
- Huizhou Hospital for Occupational Disease Prevention and Treatment, Huizhou, 516001, PR China
| | - Zhidong Liu
- Huizhou Hospital for Occupational Disease Prevention and Treatment, Huizhou, 516001, PR China
| | - Qiang Tan
- Foshan Institute of Occupational Disease Prevention and Control, Foshan, 528000, PR China
| | - Dongsheng Huang
- Guangdong Medical University Affiliated Longhua District Central Hospital, Shenzhen, PR China
| | - Liangchang Xiu
- Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan, 523808, PR China; Department of Histology and Embryology, Guangdong Medical University, Zhanjiang, 524001, PR China
| | - Wen Chen
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, PR China
| | - Zhizhen Shi
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, PR China
| | - Linhua Liu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, PR China; Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan, 523808, PR China.
| |
Collapse
|