1
|
Patterson KP, Gold AO, Spratlen MJ, Umans JG, Fretts AM, Goessler W, Zhang Y, Navas-Acien A, Nigra AE. Uranium Exposure, Hypertension, and Blood Pressure in the Strong Heart Family Study. Prev Chronic Dis 2025; 22:E16. [PMID: 40272946 DOI: 10.5888/pcd22.240122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025] Open
Abstract
Introduction Uranium is common in drinking water, soil, and dust in American Indian communities. Hypertension is a cardiovascular risk factor affecting American Indians. We evaluated the association between uranium exposure and incident hypertension and changes in blood pressure among Strong Heart Family Study participants. Methods We included 1,453 participants ≥14 years with baseline visits in 1998-1999 or 2001-2003, and follow-up in 2001-2003 and/or 2006-2009. We estimated the association of urinary uranium with changes in systolic and diastolic blood pressure levels over time and hypertension incidence; we accounted for family clustering. Results Median (IQR) baseline urinary uranium levels were 0.029 (0.013-0.059) μg/g creatinine; 17.4% (n = 253) of participants developed hypertension. In the comparison of the urinary uranium quartile 4 (highest concentration) and quartile 1 (lowest concentration), the multi-adjusted risk ratio (95% CI) of incident hypertension was 1.44 (1.04-1.99). The associations between urinary uranium with changes in systolic and diastolic blood pressure were null and nonlinear, respectively. Both associations were modified by study site, and diastolic blood pressure showed a positive association beyond 5 µg/g creatinine. The association between urinary uranium and change in systolic blood pressure was inverse in Arizona and Oklahoma, and positive in North Dakota/South Dakota at higher ends of the uranium distribution. Conclusion Findings suggest a higher risk for hypertension at uranium levels typical of the Southwest and Great Plains than at levels in other regions (<0.01 µg/g creatinine); the associations with changes in systolic and diastolic blood pressure levels were consistent with a positive association with higher uranium exposure. Prospective research is critical to characterize the cardiovascular effects of uranium and develop preventive strategies for US Indigenous communities disproportionately exposed.
Collapse
Affiliation(s)
- Kevin P Patterson
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, 722 W 168th St, 11th Floor, New York, NY 10032
| | | | - Miranda J Spratlen
- Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Jason G Umans
- MedStar Health Research Institute, Washington, District of Columbia
- Georgetown-Howard Universities Center for Clinical and Translational Science, Washington, District of Columbia
| | - Amanda M Fretts
- Department of Epidemiology, University of Washington, Seattle
| | - Walter Goessler
- Institute of Chemistry, Karl-Franzens University of Graz, Graz, Austria
| | - Ying Zhang
- The University of Oklahoma Health Sciences Center, Oklahoma City
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York
| | - Anne E Nigra
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York
| |
Collapse
|
2
|
Zhou YH, Bai YJ, Zhao XY. Combined exposure to multiple metals on abdominal aortic calcification: results from the NHANES study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:24282-24301. [PMID: 38438641 DOI: 10.1007/s11356-024-32745-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/28/2024] [Indexed: 03/06/2024]
Abstract
Exposure to metals increases the risk of many diseases and has become a public health concern. However, few studies have focused on the effect of metal on abdominal aortic calcification (AAC), especially the combined effects of metal mixtures. In this study, we aim to investigate the combined effect of metals on AAC risk and determine the key components in the multiple metals. We tried to investigate the relationship between multiple metal exposure and AAC risk. Fourteen urinary metals were analyzed with five statistical models as follows: generalized linear regression, weighted quantile sum regression (WQS), quantile g-computation (Qgcomp), and Bayesian kernel machine regression (BKMR) models. A total of 838 participants were involved, of whom 241 (28.8%) had AAC. After adjusting for covariates, in multiple metal exposure logistic regression, cadmium (Cd) (OR = 1.364, 95% CI = 1.035-1.797) was positively associated with AAC risk, while cobalt (Co) (OR = 0.631, 95% CI = 0.438-0.908) was negatively associated with AAC risk. A significant positive effect between multiple metal exposure and AAC risk was observed in WQS (OR = 2.090; 95% CI = 1.280-3.420, P < 0.01), Qgcomp (OR = 1.522, 95% CI = 1.012-2.290, P < 0.05), and BKMR models. It was found that the positive association may be driven primarily by Cd, lead (Pb), uranium (U), and tungsten (W). Subgroups analysis showed the association was more significant in participants with BMI ≥ 25 kg/m2, abdominal obesity, drinking, and smoking. Our study shows that exposure to multiple metals increases the risk of AAC in adults aged ≥ 40 years in the USA and that Cd, Pb, U, and W are the main contributors. The association is stronger in participants who are obese, smoker, or drinker.
Collapse
Affiliation(s)
- Yuan-Hang Zhou
- Department of Cardiology, Cardiovascular Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou, 450052, China
| | - Yu-Jie Bai
- Department of Nuclear Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xiao-Yan Zhao
- Department of Cardiology, Cardiovascular Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou, 450052, China.
| |
Collapse
|
3
|
Wang Y, Liu J, Shi J, Zhou X, Tan Y, Dai Z, Zhen D, Li L. Colorimetric sensing for the sensitive detection of UO 22+via the phosphorylation functionalized mesoporous silica-based controlled release system. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:837-845. [PMID: 38230997 DOI: 10.1039/d3ay01281f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
In this study, we developed a simple and sensitive colorimetric sensing method for the detection of UO22+, which was built to release MB from the molybdenum disulfide with a phosphate group (MoS2-PO4) gated mesoporous silica nanoparticles functionalized phosphate group (MSN-PO4) with UO22+ chelating. In the presence of UO22+, MoS2-PO4 can be effectively adsorbed onto the surface of MSN-PO4 based on the coordination chemistry for strong affinity between the P-O bond and UO22+. The adsorbed MoS2-PO4 was then utilized as an ideal gate material to control the release of signal molecules (MB) entrapped within the pores of MSN-PO4, resulting in a detectable decrease in the absorption peak at 663 nm. This colorimetric sensing demonstrated the advantages of simplicity and easy manipulation and exhibited a linear response to the concentration of UO22+ within the range of 0.02-0.2 μM. The detection limit of UO22+ was determined to be 0.85 nM, which was lower than the limit (130 nmol L-1) set by the US Environmental Protection Agency. Furthermore, the proposed colorimetric sensing method has been utilized to determine UO22+ in samples of Xiangjiang River and tap water, and a high recovery rate was achieved. This method shows promising potential in preventing and controlling environmental pollution.
Collapse
Affiliation(s)
- Yating Wang
- Department of Health Inspection and Quarantine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China.
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, University of South China, Hengyang 421001, People's Republic of China
- Key Laboratory of Health Hazard Factors Inspection and Quarantine, University of South China, Hengyang, 421001, Hunan, China
| | - Jinquan Liu
- Department of Health Inspection and Quarantine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China.
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, University of South China, Hengyang 421001, People's Republic of China
- Key Laboratory of Health Hazard Factors Inspection and Quarantine, University of South China, Hengyang, 421001, Hunan, China
| | - Jiao Shi
- Department of Health Inspection and Quarantine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China.
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, University of South China, Hengyang 421001, People's Republic of China
- Key Laboratory of Health Hazard Factors Inspection and Quarantine, University of South China, Hengyang, 421001, Hunan, China
| | - Xiayu Zhou
- Department of Health Inspection and Quarantine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China.
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, University of South China, Hengyang 421001, People's Republic of China
- Key Laboratory of Health Hazard Factors Inspection and Quarantine, University of South China, Hengyang, 421001, Hunan, China
| | - Yan Tan
- Department of Health Inspection and Quarantine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China.
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, University of South China, Hengyang 421001, People's Republic of China
- Key Laboratory of Health Hazard Factors Inspection and Quarantine, University of South China, Hengyang, 421001, Hunan, China
| | - Zhongran Dai
- Hunan Province Key Laboratory of Green Development Technology for Extremely Low-Grade Uranium Resources, University of South China, Hengyang 421001, People's Republic of China
| | - Deshuai Zhen
- Department of Health Inspection and Quarantine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China.
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, University of South China, Hengyang 421001, People's Republic of China
- Key Laboratory of Health Hazard Factors Inspection and Quarantine, University of South China, Hengyang, 421001, Hunan, China
| | - Le Li
- Department of Health Inspection and Quarantine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China.
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, University of South China, Hengyang 421001, People's Republic of China
- Key Laboratory of Health Hazard Factors Inspection and Quarantine, University of South China, Hengyang, 421001, Hunan, China
| |
Collapse
|
4
|
McGraw KE, Schilling K, Glabonjat RA, Galvez-Fernandez M, Domingo-Relloso A, Martinez-Morata I, Jones MR, Post WS, Kaufman J, Tellez-Plaza M, Valeri L, Brown ER, Kronmal RA, Barr GR, Shea S, Navas-Acien A, Sanchez TR. Urinary Metal Levels and Coronary Artery Calcification: Longitudinal Evidence in the Multi-Ethnic Study of Atherosclerosis (MESA). MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.31.23297878. [PMID: 37961623 PMCID: PMC10635251 DOI: 10.1101/2023.10.31.23297878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Objective Growing evidence indicates that exposure to metals are risk factors for cardiovascular disease (CVD). We hypothesized that higher urinary levels of metals with prior evidence of an association with CVD, including non-essential (cadmium , tungsten, and uranium) and essential (cobalt, copper, and zinc) metals are associated with baseline and rate of change of coronary artery calcium (CAC) progression, a subclinical marker of atherosclerotic CVD. Methods We analyzed data from 6,418 participants in the Multi-Ethnic Study of Atherosclerosis (MESA) with spot urinary metal levels at baseline (2000-2002) and 1-4 repeated measures of spatially weighted coronary calcium score (SWCS) over a ten-year period. SWCS is a unitless measure of CAC highly correlated to the Agatston score but with numerical values assigned to individuals with Agatston score=0. We used linear mixed effect models to assess the association of baseline urinary metal levels with baseline SWCS, annual change in SWCS, and SWCS over ten years of follow-up. Urinary metals (adjusted to μg/g creatinine) and SWCS were log transformed. Models were progressively adjusted for baseline sociodemographic factors, estimated glomerular filtration rate, lifestyle factors, and clinical factors. Results At baseline, the median and interquartile range (25th, 75th) of SWCS was 6.3 (0.7, 58.2). For urinary cadmium, the fully adjusted geometric mean ratio (GMR) (95%Cl) of SWCS comparing the highest to the lowest quartile was 1.51 (1.32, 1.74) at baseline and 1.75 (1.47, 2.07) at ten years of follow-up. For urinary tungsten, uranium, and cobalt the corresponding GMRs at ten years of follow-up were 1.45 (1.23, 1.71), 1.39 (1.17, 1.64), and 1.47 (1.25, 1.74), respectively. For copper and zinc, the association was attenuated with adjustment for clinical risk factors; GMRs at ten years of follow-up before and after adjustment for clinical risk factors were 1.55 (1.30, 1.84) and 1.33 (1.12, 1.58), respectively, for copper and 1.85 (1.56, 2.19) and 1.57 (1.33, 1.85) for zinc. Conclusion Higher levels of cadmium, tungsten, uranium, cobalt, copper, and zinc, as measured in urine, were associated with subclinical CVD at baseline and at follow-up. These findings support the hypothesis that metals are pro-atherogenic factors.
Collapse
Affiliation(s)
- Katlyn E. McGraw
- Columbia University Mailman School of Public Health, Department of Environmental Health Science, 722 W 168th St, New York, NY 10032
| | - Kathrin Schilling
- Columbia University Mailman School of Public Health, Department of Environmental Health Science, 722 W 168th St, New York, NY 10032
| | - Ronald A. Glabonjat
- Columbia University Mailman School of Public Health, Department of Environmental Health Science, 722 W 168th St, New York, NY 10032
| | - Marta Galvez-Fernandez
- Columbia University Mailman School of Public Health, Department of Environmental Health Science, 722 W 168th St, New York, NY 10032
| | - Arce Domingo-Relloso
- Columbia University Mailman School of Public Health, Department of Biostatistics, 722 W 168th St, New York, NY 10032
| | - Irene Martinez-Morata
- Columbia University Mailman School of Public Health, Department of Environmental Health Science, 722 W 168th St, New York, NY 10032
| | - Miranda R. Jones
- Johns Hopkins University School of Medicine, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Baltimore MD 21057
- Johns Hopkins University Bloomberg School of Public Health, Department of Epidemiology, 615 N. Wolfe Street. Baltimore MD 212057
| | - Wendy S. Post
- Johns Hopkins University School of Medicine, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Baltimore MD 21057
- Johns Hopkins University Bloomberg School of Public Health, Department of Epidemiology, 615 N. Wolfe Street. Baltimore MD 212057
| | - Joel Kaufman
- University of Washington, Department of Medicine
| | - Maria Tellez-Plaza
- National Center for Epidemiology, Instituto de Salud Carlos III, Madrid, Spain, Department of Chronic Diseases Epidemiology
| | - Linda Valeri
- Columbia University Mailman School of Public Health, Department of Biostatistics, 722 W 168th St, New York, NY 10032
| | - Elizabeth R. Brown
- Fred Hutchinson Cancer Center, Vaccine and Infectious Disease Division
- University of Washington, Department of Biostatistics
| | | | - Graham R. Barr
- Columbia University Irving Medical Center, Departments of Medicine and Epidemiology
| | - Steven Shea
- Columbia University Irving Medical Center, Departments of Medicine and Epidemiology
| | - Ana Navas-Acien
- Columbia University Mailman School of Public Health, Department of Environmental Health Science, 722 W 168th St, New York, NY 10032
| | - Tiffany R. Sanchez
- Columbia University Mailman School of Public Health, Department of Environmental Health Science, 722 W 168th St, New York, NY 10032
| |
Collapse
|
5
|
Erdei E, Zhou X, Shuey C, Ass'ad N, Page K, Gore B, Zhu C, Kanda D, Luo L, Sood A, Zychowski KE. Serum autoantibodies and exploratory molecular pathways in rural miners: A pilot study. J Transl Autoimmun 2023; 6:100197. [PMID: 36942097 PMCID: PMC10023988 DOI: 10.1016/j.jtauto.2023.100197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Introduction The Southwestern United States (SWUS) has an extensive history of coal and metal mining, including uranium (U) mining. Lung diseases, including but not limited to, lung cancer and pulmonary fibrosis, have been studied extensively in miners due to occupational, dust-related exposures. However, high-throughput autoimmune biomarkers are largely understudied in miners, despite the fact that ore miners, such as U-miners, are at an increased risk for the development of autoimmune diseases such as systemic sclerosis and systemic lupus erythematosus (SLE). Additionally, there are current gaps in knowledge regarding which signaling pathways may play a role in occupational exposure-associated autoimmunity. Methods Most current and former miners in the SWUS live close to their previous workplaces, in remote areas, with limited access to healthcare. In this pilot study, by leveraging a mobile clinical platform for patient care and clinical outreach, we recruited 44 miners who self-identified as either U (n = 10) or non-U miners (n = 34) and received health screenings. Serum IgG and IgM autoantibodies against 128 antigens were assessed using a high-throughput molecular technique, as a preliminary health screening opportunity. Results Even when adjusting for age as a covariate, there was a significant (p < 0.05) association between self-reported U-mining exposure and biomarkers including IgM alpha-actinin, histones H2B, and H4, myeloperoxidase (MPO) and myelin basic protein. However, adjusting for age did not result in significant associations for IgG autoantibody production in U-miners. Bioinformatic pathway analysis revealed several altered signaling pathways between IgM and IgG autoantibodies among both U and non-U miners. Conclusions Further research is warranted regarding the mechanistic connection between U-exposure and autoantibody development, especially regarding histone-related alterations and IgM autoantibody production.
Collapse
Affiliation(s)
- Esther Erdei
- College of Pharmacy, University of New Mexico- Health Sciences Center, 905 Vassar Drive NE, Albuquerque, NM, 87106, USA
| | - Xixi Zhou
- College of Pharmacy, University of New Mexico- Health Sciences Center, 905 Vassar Drive NE, Albuquerque, NM, 87106, USA
| | - Chris Shuey
- Southwest Research and Information Center, 105 Stanford Drive SE, Albuquerque, NM, 87106, USA
| | - Nour Ass'ad
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Kimberly Page
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Bobbi Gore
- Miners' Colfax Medical Center, 203 Hospital Drive, Raton, NM, 87740, USA
| | - Chengsong Zhu
- Department of Immunology and Microarray Core, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Deborah Kanda
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, 87106, USA
| | - Li Luo
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, 87106, USA
| | - Akshay Sood
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
- Miners' Colfax Medical Center, 203 Hospital Drive, Raton, NM, 87740, USA
| | - Katherine E. Zychowski
- College of Nursing, University of New Mexico- Health Sciences Center, 2502 Marble Ave NE, Albuquerque, NM, 87131, USA
| |
Collapse
|
6
|
Zarnke A, Oliver C, Dorman S. McIntyre Powder and its potential contributions to cardiovascular disease risk: A literature review through the McIntyre Powder historical lens. Am J Ind Med 2022; 65:813-821. [PMID: 35863903 PMCID: PMC9541914 DOI: 10.1002/ajim.23415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022]
Abstract
McIntyre Powder (MP) is a fine aluminum powder that was developed to prevent silicosis in gold and uranium mine workers in Ontario, Canada, and was administered to miners there from 1943 to 1979. Mine workers were exposed to high concentrations (35.6 mg/m3) of MP for approximately 10 min before every work shift. Contemporary physical and chemical characterizations of this powder have revealed that 12% of the powder is in the ultrafine particle size‐range (nanoparticles); and the remaining 88%, in the fine particulate size range (below 2.5 µm in diameter). The confluence of ultrafine particulate (UFP) composition and high airborne concentration of MP would be expected to overwhelm the defense mechanisms of the lung and increase the lung dust burden of the mine worker exposed to respirable dust in the mine. Published studies revealing associations between air pollution particulates and increased risk for cardiovascular disease (CVD) shown a dose–response relationship with ambient PM2.5 and UFP and suggest that miners exposed to MP may also be at increased risk of CVD. The historical perspective of the use of MP in northern Ontario hard‐rock mines and its potential implications for CVD in exposed mine workers are discussed.
Collapse
Affiliation(s)
- Andrew Zarnke
- Laurentian University, Sudbury, Ontario, Canada.,The Occupational Health Clinics for Ontario Workers, Sudbury, Ontario, Canada.,The Centre for Research in Occupational Safety and Health (CROSH), Laurentian University, Sudbury, Ontario, Canada
| | - Christine Oliver
- The Occupational Health Clinics for Ontario Workers, Sudbury, Ontario, Canada.,Dalla Lana School of Public Health, Division of Occupational and Environmental Health, University of Toronto, Toronto, Ontario, Canada
| | - Sandra Dorman
- Laurentian University, Sudbury, Ontario, Canada.,The Centre for Research in Occupational Safety and Health (CROSH), Laurentian University, Sudbury, Ontario, Canada
| |
Collapse
|
7
|
Ass’ad NA, Shore X, Myers O, Camacho AR, Jacquez Q, Pollard C, Cook LS, Leng S, Page K, Sood A, Zychowski KE. VCAM-1 Is Upregulated in Uranium Miners Compared to Other Miners. Life (Basel) 2021; 11:1223. [PMID: 34833099 PMCID: PMC8621685 DOI: 10.3390/life11111223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/20/2021] [Accepted: 11/09/2021] [Indexed: 12/01/2022] Open
Abstract
The United States has a rich history of mining including uranium (U)-mining, coal mining, and other metal mining. Cardiovascular diseases (CVD) are largely understudied in miners and recent literature suggests that when compared to non-U miners, U-miners are more likely to report CVD. However, the molecular basis for this phenomenon is currently unknown. In this pilot study, a New Mexico (NM)-based occupational cohort of current and former miners (n = 44) were recruited via a mobile screening clinic for miners. Serum- and endothelial-based endpoints were used to assess circulating inflammatory potential relevant to CVD. Non-U miners reported significantly fewer pack years of smoking than U-miners. Circulating biomarkers of interest revealed that U-miners had significantly greater serum amyloid A (SAA), soluble intercellular adhesion molecule 1 (ICAM-1, ng/mL), soluble vascular cell adhesion molecule 1 (VCAM-1, ng/mL), and VCAM-1 mRNA expression, as determined by the serum cumulative inflammatory potential (SCIP) assay, an endothelial-based assay. Even after adjusting for various covariates, including age, multivariable analysis determined that U-miners had significantly upregulated VCAM-1 mRNA. In conclusion, VCAM-1 may be an important biomarker and possible contributor of CVD in U-miners. Further research to explore this mechanism may be warranted.
Collapse
Affiliation(s)
- Nour A. Ass’ad
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (N.A.A.); (L.S.C.); (S.L.); (K.P.); (A.S.)
| | - Xin Shore
- Department of Family and Community Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (X.S.); (O.M.)
| | - Orrin Myers
- Department of Family and Community Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (X.S.); (O.M.)
| | - Alexandra R. Camacho
- College of Nursing, University of New Mexico-Health Sciences Center, Albuquerque, NM 87131, USA; (A.R.C.); (Q.J.)
| | - Quiteria Jacquez
- College of Nursing, University of New Mexico-Health Sciences Center, Albuquerque, NM 87131, USA; (A.R.C.); (Q.J.)
| | - Charles Pollard
- Miners’ Colfax Medical Center, 203 Hospital Drive, Raton, NM 87740, USA;
| | - Linda S. Cook
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (N.A.A.); (L.S.C.); (S.L.); (K.P.); (A.S.)
- Department of Epidemiology, School of Public Health, University of Colorado-Anschutz, Arora, CO 80045, USA
| | - Shuguang Leng
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (N.A.A.); (L.S.C.); (S.L.); (K.P.); (A.S.)
| | - Kimberly Page
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (N.A.A.); (L.S.C.); (S.L.); (K.P.); (A.S.)
| | - Akshay Sood
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (N.A.A.); (L.S.C.); (S.L.); (K.P.); (A.S.)
- Miners’ Colfax Medical Center, 203 Hospital Drive, Raton, NM 87740, USA;
| | - Katherine E. Zychowski
- College of Nursing, University of New Mexico-Health Sciences Center, Albuquerque, NM 87131, USA; (A.R.C.); (Q.J.)
| |
Collapse
|
8
|
Troke N, Logar‐Henderson C, DeBono N, Dakouo M, Hussain S, MacLeod JS, Demers PA. Incidence of acute myocardial infarction in the workforce: Findings from the Occupational Disease Surveillance System. Am J Ind Med 2021; 64:338-357. [PMID: 33682182 DOI: 10.1002/ajim.23241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/30/2021] [Accepted: 02/15/2021] [Indexed: 01/24/2023]
Abstract
BACKGROUND Increased risks of acute myocardial infarction (AMI) may be attributable to the workplace, however, associations are not well-established. Using the Occupational Disease Surveillance System (ODSS), we sought to estimate associations between occupation and industry of employment and AMI risk among workers in Ontario, Canada. METHODS The study population was derived by linking provincial accepted lost-time workers' compensation claims data, to inpatient hospitalization records. Workers aged 15-65 years with an accepted non-AMI compensation claim were followed for an AMI event between 2007 and 2016. Adjusted Cox proportional hazard models were used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for each industry and occupation group, compared to all other workers in the cohort. Sex-stratified analyses were also performed. RESULTS In all, 24,514 incident cases of AMI were identified among 1,502,072 Ontario workers. Increased incidence rates of AMI were found across forestry (HR 1.37, 95% CI 1.19-1.58) and wood processing (HR 1.50, 1.27-1.77) job-titles. Elevated rates were also detected within industries and occupations both broadly related to mining and quarrying (HR 1.52, 1.17-1.97), trucking (HR 1.32, 1.27-1.38), construction (HR 1.32, 1.14-1.54), and the manufacturing and processing of metal (HR 1.41, 1.19-1.68), textile (HR 1.41, 1.07-1.88), non-metallic mineral (HR 1.30, 0.82-2.07), and rubber and plastic (HR 1.42, 1.27-1.60) products. Female food service workers also had elevated AMI rates (HR 1.36, 1.23-1.51). CONCLUSION This study found occupational variation in AMI incidence. Future studies should examine work-related hazards possibly contributing to such excess risks, like noise, vibration, occupational physical activity, shift work, and chemical and particulate exposures.
Collapse
Affiliation(s)
- Natalie Troke
- Occupational Cancer Research Centre Ontario Health (Cancer Care Ontario Division) Toronto Ontario Canada
- Dalla Lana School of Public Health University of Toronto Toronto Ontario Canada
| | - Chloë Logar‐Henderson
- Occupational Cancer Research Centre Ontario Health (Cancer Care Ontario Division) Toronto Ontario Canada
| | - Nathan DeBono
- Occupational Cancer Research Centre Ontario Health (Cancer Care Ontario Division) Toronto Ontario Canada
- Dalla Lana School of Public Health University of Toronto Toronto Ontario Canada
| | - Mamadou Dakouo
- Occupational Cancer Research Centre Ontario Health (Cancer Care Ontario Division) Toronto Ontario Canada
| | - Selena Hussain
- Occupational Cancer Research Centre Ontario Health (Cancer Care Ontario Division) Toronto Ontario Canada
- Dalla Lana School of Public Health University of Toronto Toronto Ontario Canada
| | - Jill S. MacLeod
- Occupational Cancer Research Centre Ontario Health (Cancer Care Ontario Division) Toronto Ontario Canada
| | - Paul A. Demers
- Occupational Cancer Research Centre Ontario Health (Cancer Care Ontario Division) Toronto Ontario Canada
- Dalla Lana School of Public Health University of Toronto Toronto Ontario Canada
| |
Collapse
|
9
|
Sharma S, Shore XW, Mohite S, Myers O, Kesler D, Vlahovich K, Sood A. Association between Spirometric Parameters and Depressive Symptoms in New Mexico Uranium Workers. SOUTHWEST JOURNAL OF PULMONARY AND CRITICAL CARE 2021; 22:58-68. [PMID: 33664988 DOI: 10.13175/swjpcc015-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background Uranium workers are at risk of developing lung disease, characterized by low forced expiratory volume in one second (FEV1) and/or forced vital capacity (FVC). Previous studies have found an association between decreased lung function and depressive symptoms in patients with pulmonary pathologies, but this association has not been well examined in occupational cohorts, especially uranium workers. Methods This cross-sectional study evaluated the association between spirometric measures and depressive symptoms in a sample of elderly former uranium workers screened by the New Mexico Radiation Exposure Screening & Education Program (NM-RESEP). Race- and ethnicity-specific reference equations were used to determine predicted spirometric indices (predictor variable). At least one depressive symptom [depressed mood and/or anhedonia, as determined by a modified Patient Health Questionnaire-2 (PHQ-2)], was the outcome variables. Chi-square tests and multivariable logistic regression models were used for statistical analyses. Results At least one depressive symptom was self-reported by 7.6% of uranium workers. Depressed mood was reported over twice as much as anhedonia (7.2% versus 3.3%). Abnormal FVC was associated with at least one depressive symptom after adjustment for covariates. There was no significant interaction between race/ethnicity and spirometric indices on depressive symptoms. Conclusions Although depressive symptoms are uncommonly reported in uranium workers, they are an important comorbidity due to their overall clinical impact. Abnormal FVC was associated with depressive symptoms. Race/ethnicity was not found to be an effect modifier for the association between abnormal FVC and depressive symptoms. To better understand the mechanism underlying this association and determine if a causal relationship exists between spirometric indices and depressive symptoms in occupational populations at risk for developing lung disease, larger longitudinal studies are required. We recommend screening for depressive symptoms for current and former uranium workers as part of routine health surveillance of this occupational cohort. Such screening may help overcome workers' reluctance to self-report and seek treatment for depression and may avoid negative consequences to health and safety from missed diagnoses.
Collapse
Affiliation(s)
- Shiva Sharma
- Preventive Medicine Section, Department of Internal Medicine, University of New Mexico School of Medicine
| | - Xin W Shore
- Department of Family and Community Medicine, University of New Mexico School of Medicine
| | - Satyajit Mohite
- Department of Behavioral Health, Psychiatry & Psychology, Mayo Clinic Health System
| | - Orrin Myers
- Department of Family and Community Medicine, University of New Mexico School of Medicine
| | - Denece Kesler
- Preventive Medicine Section, Department of Internal Medicine, University of New Mexico School of Medicine
| | - Kevin Vlahovich
- Preventive Medicine Section, Department of Internal Medicine, University of New Mexico School of Medicine
| | - Akshay Sood
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of New Mexico School of Medicine
| |
Collapse
|