1
|
Roy A, Gyanchandani B, Oza A, Singh A. TriSpectraKAN: a novel approach for COPD detection via lung sound analysis. Sci Rep 2025; 15:6296. [PMID: 39984500 PMCID: PMC11845766 DOI: 10.1038/s41598-024-82781-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 12/09/2024] [Indexed: 02/23/2025] Open
Abstract
This study aims to create an automated, accessible, and cost-effective diagnostic tool for chronic obstructive pulmonary disease (COPD). Traditional diagnostic methods are expensive, time-consuming, and require specialized equipment. The proposed TriSpectraKAN model leverages audio-based lung sound features to improve early diagnosis. TriSpectraKAN is a hybrid model combining spectral features and the Kolmogorov-Arnold Network (KAN) to analyze lung sounds using Mel-frequency cepstral coefficients (MFCCs), chromagram, and Mel spectrograms. Each sub-model focuses on a different audio feature, capturing unique sonic signatures. These features are merged through a hybrid network for comprehensive analysis. The model, trained on a COPD dataset, was deployed on a Raspberry Pi for real-time use. TriSpectraKAN achieved 93% accuracy, an F1 score of 0.98, precision of 0.97, and recall of 0.98. This multimodal approach captured a broad range of lung sound features, improving diagnosis accuracy compared to traditional methods. The integration of multiple audio features in TriSpectraKAN enhances COPD diagnosis, demonstrating the potential of AI and machine learning to transform respiratory disease diagnosis through accessible tools.
Collapse
|
2
|
Sun Y, Milando CW, Spangler KR, Wei Y, Schwartz J, Dominici F, Nori-Sarma A, Sun S, Wellenius GA. Short term exposure to low level ambient fine particulate matter and natural cause, cardiovascular, and respiratory morbidity among US adults with health insurance: case time series study. BMJ 2024; 384:e076322. [PMID: 38383039 PMCID: PMC10879982 DOI: 10.1136/bmj-2023-076322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/17/2024] [Indexed: 02/23/2024]
Abstract
OBJECTIVE To estimate the excess relative and absolute risks of hospital admissions and emergency department visits for natural causes, cardiovascular disease, and respiratory disease associated with daily exposure to fine particulate matter (PM2.5) at concentrations below the new World Health Organization air quality guideline limit among adults with health insurance in the contiguous US. DESIGN Case time series study. SETTING US national administrative healthcare claims database. PARTICIPANTS 50.1 million commercial and Medicare Advantage beneficiaries aged ≥18 years between 1 January 2010 and 31 December 2016. MAIN OUTCOME MEASURES Daily counts of hospital admissions and emergency department visits for natural causes, cardiovascular disease, and respiratory disease based on the primary diagnosis code. RESULTS During the study period, 10.3 million hospital admissions and 24.1 million emergency department visits occurred for natural causes among 50.1 million adult enrollees across 2939 US counties. The daily PM2.5 levels were below the new WHO guideline limit of 15 μg/m3 for 92.6% of county days (7 360 725 out of 7 949 713). On days when daily PM2.5 levels were below the new WHO air quality guideline limit of 15 μg/m3, an increase of 10 μg/m3 in PM2.5 during the current and previous day was associated with higher risk of hospital admissions for natural causes, with an excess relative risk of 0.91% (95% confidence interval 0.55% to 1.26%), or 1.87 (95% confidence interval 1.14 to 2.59) excess hospital admissions per million enrollees per day. The increased risk of hospital admissions for natural causes was observed exclusively among adults aged ≥65 years and was not evident in younger adults. PM2.5 levels were also statistically significantly associated with relative risk of hospital admissions for cardiovascular and respiratory diseases. For emergency department visits, a 10 μg/m3 increase in PM2.5 during the current and previous day was associated with respiratory disease, with an excess relative risk of 1.34% (0.73% to 1.94%), or 0.93 (0.52 to 1.35) excess emergency department visits per million enrollees per day. This association was not found for natural causes or cardiovascular disease. The higher risk of emergency department visits for respiratory disease was strongest among middle aged and young adults. CONCLUSIONS Among US adults with health insurance, exposure to ambient PM2.5 at concentrations below the new WHO air quality guideline limit is statistically significantly associated with higher rates of hospital admissions for natural causes, cardiovascular disease, and respiratory disease, and with emergency department visits for respiratory diseases. These findings constitute an important contribution to the debate about the revision of air quality limits, guidelines, and standards.
Collapse
Affiliation(s)
- Yuantong Sun
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Chad W Milando
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Keith R Spangler
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Yaguang Wei
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Francesca Dominici
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Amruta Nori-Sarma
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Shengzhi Sun
- School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education Guizhou Medical University, Guiyang, China
| | - Gregory A Wellenius
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| |
Collapse
|
3
|
Xie Y, Shi K, Yuan Y, Gu M, Zhang S, Wang K, Fu L, Shen C, Yuan Z. Bibliometric Analysis Reveals the Progress of PM 2.5 in Health Research, Especially in Cancer Research. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1271. [PMID: 36674029 PMCID: PMC9859174 DOI: 10.3390/ijerph20021271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
PM2.5 has an aerodynamic diameter of less than or equal to 2.5 microns due to its inherent physical and chemical properties so that it can enter the alveoli through the respiratory tract for blood gas exchange. Numerous studies have shown that PM2.5 is a serious air pollutant that poses a wide range of health risks, especially for cancer. Bibliometric methods were employed to have comprehensively analyzed the research of PM2.5 in cancer for about a decade in Web of Science to identify hotspots and trends using VOSviewer, CiteSpace, and R. The field has undergone overall growth in the past decade. As research on PM2.5 in health deepens, cancer related to it expanded beyond the respiratory system to the digestive system, urinary system, female gonadal axis, breast cancer and other cancers. Another observation is that research on PM2.5 in cancer has progressed in the mechanisms of deterioration, such as the role of matrix metalloproteinases in cancer. In addition, research on the risks of PM2.5 in combination with polycyclic aromatic hydrocarbons and heavy metals has also emerged. Results showed that there are relatively more studies on PM2.5 in high-latitude countries, which may be due to different national conditions, such as climate and coal combustion. Our research has combed through the progress of PM2.5 in cancer research and provided a supplement for developing pollution prevention ideas with different national conditions in this field.
Collapse
Affiliation(s)
- Yaxuan Xie
- School of Public Health, Wuhan University, Wuhan 430000, China
| | - Kejian Shi
- School of Public Health, Wuhan University, Wuhan 430000, China
| | - Yuncong Yuan
- College of Life Sciences, Wuhan University, Wuhan 430000, China
| | - Meijia Gu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430000, China
| | - Shihan Zhang
- School of Public Health, Wuhan University, Wuhan 430000, China
| | - Kai Wang
- School of Public Health, Wuhan University, Wuhan 430000, China
| | - Liangying Fu
- School of Public Health, Wuhan University, Wuhan 430000, China
| | - Chao Shen
- College of Life Sciences, Wuhan University, Wuhan 430000, China
| | - Zhanpeng Yuan
- School of Public Health, Wuhan University, Wuhan 430000, China
- Hubei Provincial Key Laboratory of Applied Toxicology, D1 Safety Assessment Center, Bio-City Innovation Park, Wuhan 430000, China
| |
Collapse
|
4
|
Luo H, Zhang Q, Niu Y, Kan H, Chen R. Fine particulate matter and cardiorespiratory health in China: A systematic review and meta-analysis of epidemiological studies. J Environ Sci (China) 2023; 123:306-316. [PMID: 36521994 DOI: 10.1016/j.jes.2022.04.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 06/17/2023]
Abstract
This review aimed to systematically summarize the epidemiological literature on the cardiorespiratory effects of PM2.5 published during the 13th Five-Year Plan period (2016-2020) in China. Original articles published between January 1, 2016 and June 30, 2021 were searched in PubMed, Web of Science, the China National Knowledge Internet Database and Wanfang Database. Random- or fixed-effects models were used to pool effect estimates where appropriate. Of 8558 records identified, 145 met the full eligibility criteria. A 10 µg/m³ increase in short-term PM2.5 exposure was significantly associated with increases of 0.70%, 0.86%, 0.38% and 0.96% in cardiovascular mortality, respiratory mortality, cardiovascular morbidity, and respiratory morbidity, respectively. The specific diseases with significant associations included stroke, ischemic heart disease, heart failure, arrhythmia, chronic obstructive pulmonary disease, pneumonia and allergic rhinitis. The pooled estimates per 10 µg/m³ increase in long-term PM2.5 exposure were 15.1%, 11.9% and 21.0% increases in cardiovascular, stroke and lung cancer mortality, and 17.4%, 11.0% and 4.88% increases in cardiovascular, hypertension and lung cancer incidence respectively. Adverse changes in blood pressure, heart rate variability, systemic inflammation, blood lipids, lung function and airway inflammation were observed for either short-term or long-term PM2.5 exposure, or both. Collectively, we summarized representative exposure-response relationships between short- and long-term PM2.5 exposure and a wide range of cardiorespiratory outcomes applicable to China. The magnitudes of estimates were generally smaller in short-term associations and comparable in long-term associations compared with those in developed countries. Our findings are helpful for future standard revisions and policy formulation. There are still some notable gaps that merit further investigation in China.
Collapse
Affiliation(s)
- Huihuan Luo
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Qingli Zhang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Yue Niu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China.
| |
Collapse
|
5
|
Yan M, Ge H, Zhang L, Chen X, Yang X, Liu F, Shan A, Liang F, Li X, Ma Z, Dong G, Liu Y, Chen J, Wang T, Zhao B, Zeng Q, Lu X, Liu Y, Tang NJ. Long-term PM 2.5 exposure in association with chronic respiratory diseases morbidity: A cohort study in Northern China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114025. [PMID: 36049332 PMCID: PMC10380089 DOI: 10.1016/j.ecoenv.2022.114025] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Several literatures have examined the risk of chronic respiratory diseases in association with short-term ambient PM2.5 exposure in China. However, little evidence has examined the chronic impacts of PM2.5 exposure on morbidity of chronic respiratory diseases in cohorts from high pollution countries. Our study aims to investigate the associations. Based on a retrospective cohort among adults in northern China, a Cox regression model with time-varying PM2.5 exposure and a concentration-response (C-R) curve model were performed to access the relationships between incidence of chronic respiratory diseases and long-term PM2.5 exposure during a mean follow-up time of 9.8 years. Individual annual average PM2.5 estimates were obtained from a satellite-based model with high resolution. The incident date of a chronic respiratory disease was identified according to self-reported physician diagnosis time and/or intake of medication for treatment. Among 38,047 urban subjects analyzed in all-cause chronic respiratory disease cohort, 482 developed new cases. In CB (38,369), asthma (38,783), and COPD (38,921) cohorts, the onsets were 276, 89, and 14, respectively. After multivariable adjustment, hazard ratio and 95% confidence interval for morbidity of all-cause chronic respiratory disease, CB, asthma, and COPD were 1.15 (1.01, 1.31), 1.20 (1.00, 1.42), 0.76 (0.55, 1.04), and 0.66 (0.29, 1.47) with each 10 μg/m3 increment in PM2.5, respectively. Stronger effect estimates were suggested in alcohol drinkers across stratified analyses. Additionally, the shape of C-R curve showed an increasing linear relationship before 75.00 μg/m3 concentrations of PM2.5 for new-onset all-cause chronic respiratory disease, and leveled off at higher levels. These findings indicated that long-term exposure to high-level PM2.5 increased the risks of incident chronic respiratory diseases in China. Further evidence of C-R curves is warranted to clarify the associations of adverse chronic respiratory outcomes involving air pollution.
Collapse
Affiliation(s)
- Mengfan Yan
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Han Ge
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Liwen Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Xi Chen
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Xueli Yang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Fangchao Liu
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Anqi Shan
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Fengchao Liang
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xuejun Li
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Zhao Ma
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Guanghui Dong
- Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yamin Liu
- School of Medicine and Life Sciences, Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Jie Chen
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Tong Wang
- School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Baoxin Zhao
- Taiyuan Center for Disease Control and Prevention, Taiyuan 030001, China
| | - Qiang Zeng
- Tianjin Center for Disease Control and Prevention, Tianjin 300011, China
| | - Xiangfeng Lu
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Yang Liu
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Nai-Jun Tang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China.
| |
Collapse
|
6
|
Markozannes G, Pantavou K, Rizos EC, Sindosi OΑ, Tagkas C, Seyfried M, Saldanha IJ, Hatzianastassiou N, Nikolopoulos GK, Ntzani E. Outdoor air quality and human health: An overview of reviews of observational studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119309. [PMID: 35469927 DOI: 10.1016/j.envpol.2022.119309] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/15/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
The epidemiological evidence supporting putative associations between air pollution and health-related outcomes continues to grow at an accelerated pace with a considerable heterogeneity and with varying consistency based on the outcomes assessed, the examined surveillance system, and the geographic region. We aimed to evaluate the strength of this evidence base, to identify robust associations as well as to evaluate effect variation. An overview of reviews (umbrella review) methodology was implemented. PubMed and Scopus were systematically screened (inception-3/2020) for systematic reviews and meta-analyses examining the association between air pollutants, including CO, NOX, NO2, O3, PM10, PM2.5, and SO2 and human health outcomes. The quality of systematic reviews was evaluated using AMSTAR. The strength of evidence was categorized as: strong, highly suggestive, suggestive, or weak. The criteria included statistical significance of the random-effects meta-analytical estimate and of the effect estimate of the largest study in a meta-analysis, heterogeneity between studies, 95% prediction intervals, and bias related to small study effects. Seventy-five systematic reviews of low to moderate methodological quality reported 548 meta-analyses on the associations between outdoor air quality and human health. Of these, 57% (N = 313) were not statistically significant. Strong evidence supported 13 associations (2%) between elevated PM2.5, PM10, NO2, and SO2 concentrations and increased risk of cardiorespiratory or pregnancy/birth-related outcomes. Twenty-three (4%) highly suggestive associations were identified on elevated PM2.5, PM10, O3, NO2, and SO2 concentrations and increased risk of cardiorespiratory, kidney, autoimmune, neurodegenerative, cancer or pregnancy/birth-related outcomes. Sixty-seven (12%), and 132 (24%) meta-analyses were graded as suggestive, and weak, respectively. Despite the abundance of research on the association between outdoor air quality and human health, the meta-analyses of epidemiological studies in the field provide evidence to support robust associations only for cardiorespiratory or pregnancy/birth-related outcomes.
Collapse
Affiliation(s)
- Georgios Markozannes
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece; Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | | | - Evangelos C Rizos
- Department of Internal Medicine, University Hospital of Ioannina, Ioannina, Greece; School of Medicine, European University Cyprus, Nicosia, Cyprus; Hellenic Open University, Patra, Greece
| | - Ourania Α Sindosi
- Laboratory of Meteorology, Department of Physics, University of Ioannina, Ioannina, Greece
| | - Christos Tagkas
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Maike Seyfried
- Faculty of Medicine, University of Tuebingen, Tuebingen, Germany
| | - Ian J Saldanha
- Center for Evidence Synthesis in Health, Department of Health Services, Policy, and Practice, and Department of Epidemiology, School of Public Health, Brown University, RI, USA
| | - Nikos Hatzianastassiou
- Laboratory of Meteorology, Department of Physics, University of Ioannina, Ioannina, Greece
| | | | - Evangelia Ntzani
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece; Center for Evidence Synthesis in Health, Department of Health Services, Policy, and Practice, and Department of Epidemiology, School of Public Health, Brown University, RI, USA.
| |
Collapse
|
7
|
Li N, Ma J, Ji K, Wang L. Association of PM2.5 and PM10 with Acute Exacerbation of Chronic Obstructive Pulmonary Disease at lag0 to lag7: A Systematic Review and Meta-Analysis. COPD 2022; 19:243-254. [PMID: 35616887 DOI: 10.1080/15412555.2022.2070062] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
This study aimed to conduct a meta-analysis to investigate whether short-term exposure to fine (PM2.5) and coarse (PM10) particulate matter was associated with acute exacerbation of chronic obstructive pulmonary disease (AECOPD) hospitalization, emergency room visit, and outpatient visit at different lag values. PubMed, Embase, and the Cochrane Library were searched for relevant papers published up to March 2021. For studies reporting results per 1-µg/m3 increase in PM2.5, the results were recalculated as per 10-µg/m3 increase. We manually calculated the RRs for these two studies and transferred the RRs to estimate 10 µg/m3 increases in PM2.5. Automation tools were initially used to remove ineligible studies. Two reviewers independently screened the remaining records and retrieved reports. Twenty-six studies (28 datasets; 7,018,419 patients) were included. There was a significant association between PM2.5 and AECOPD events on lag0 (ES = 1.01, 95%CI: 1.01-1.02, p < 0.001; I2=88.6%, Pheterogeneity<0.001), lag1 (ES = 1.00, 95%CI: 1.00-1.01, p < 0.001; I2=82.5%, Pheterogeneity<0.001), lag2 (ES = 1.01, 95%CI: 1.01-1.01, p < 0.001; I2=90.6%, Pheterogeneity<0.001), lag3 (ES = 1.01, 95%CI: 1.00-1.01, p < 0.001; I2=88.9%, Pheterogeneity<0.001), lag4 (ES = 1.00, 95%CI: 1.00-1.01, p < 0.001; I2=83.7%, Pheterogeneity<0.001), and lag7 (ES = 1.00, 95%CI: 1.00-1.00, p < 0.001; I2=0.0%, Pheterogeneity=0.743). The subgroup analyses showed that PM2.5 influenced the rates of hospitalization, emergency room visits, and outpatient visits. Similar trends were observed with PM10. The risk of AECOPD events (hospitalization, emergency room visit, and outpatient visit) was significantly increased with a 10-µg/m3 increment in PM2.5 and PM10 from lag0 to lag7.List Of Abbreviations: particulate matter (PM2.5 and PM10); acute exacerbation of chronic obstructive pulmonary disease (AECOPD); Chronic obstructive pulmonary disease (COPD); Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA); Effect sizes [48]; confidence intervals (CIs).
Collapse
Affiliation(s)
- Niuniu Li
- Department of Respiration, Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Jianling Ma
- Department of Respiration, Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Kun Ji
- Department of Respiration, Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Liyun Wang
- Department of Respiration, Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
8
|
Peng W, Li H, Peng L, Wang Y, Wang W. Effects of particulate matter on hospital admissions for respiratory diseases: an ecological study based on 12.5 years of time series data in Shanghai. Environ Health 2022; 21:12. [PMID: 35027064 PMCID: PMC8756174 DOI: 10.1186/s12940-021-00828-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/27/2021] [Indexed: 05/08/2023]
Abstract
BACKGROUND Previous epidemiological studies on the association between short-term exposure to particulate matter (PM) with hospital admission in major cities in China were limited to shorter study periods or a single hospital. The aim of this ecological study based on a 12.5-year time series was to investigate the association of short-term exposure to PM with aerodynamic diameter ≤ 2.5 μm (PM2.5) and aerodynamic diameter ≤ 10 μm (PM10) with hospital admissions for respiratory diseases. METHODS Daily hospital admissions data were from the Shanghai Medical Insurance System for the period January 1, 2008 to July 31, 2020. We estimated the percentage change with its 95% confidence interval (CI) for each 10 μg/m3 increase in the level of PM2.5 and PM10 after adjustment for calendar time, day of the week, public holidays, and meteorological factors applying a generalized additive model with a quasi-Poisson distribution. RESULTS There were 1,960,361 hospital admissions for respiratory diseases in Shanghai during the study period. A 10 μg/m3 increase in the level of each class of PM was associated with increased total respiratory diseases when the lag time was 0 day (PM2.5: 0.755%; 95% CI: 0.422, 1.089%; PM10: 0.250%; 95% CI: 0.042, 0.459%). The PM2.5 and PM10 levels also had positive associations with admissions for COPD, asthma, and pneumonia. Stratified analyses demonstrated stronger effects in patients more than 45 years old and during the cold season. Total respiratory diseases increased linearly with PM concentration from 0 to 100 μg/m3, and increased more slowly at higher PM concentrations. CONCLUSIONS This time-series study suggests that short-term exposure to PM increased the risk for hospital admission for respiratory diseases, even at low concentrations. These findings suggest that reducing atmospheric PM concentrations may reduce hospital admissions for respiratory diseases.
Collapse
Affiliation(s)
- Wenjia Peng
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Hao Li
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Li Peng
- Department of Epidemiology, Shanghai Key Laboratory of Meteorology and Health, Shanghai, 200032, China
| | - Ying Wang
- Key Laboratory of Health Technology Assessment, National Health and Family Planning Commission of the People's Republic of China, Fudan University, Shanghai, China.
- IRDR-ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, 200032, China.
| | - Weibing Wang
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China.
- Department of Epidemiology, Shanghai Key Laboratory of Meteorology and Health, Shanghai, 200032, China.
- Department of Social Medicine, School of Public Health, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
9
|
Abstract
The adverse effects of polluted air on human health have been increasingly appreciated worldwide. It is estimated that outdoor air pollution is associated with the death of 4.2 million people globally each year. Accumulating epidemiological studies indicate that exposure to ambient fine particulate matter (PM2.5), one of the important air pollutants, significantly contributes to respiratory mortality and morbidity. PM2.5 causes lung damage mainly by inducing inflammatory response and oxidative stress. In this paper, we reviewed the research results of our group on the effects of PM2.5 on chronic obstructive pulmonary disease, asthma, and lung cancer. And recent research progress on epidemiological studies and potential mechanisms were also discussed. Reducing air pollution, although remaining a major challenge, is the best and most effective way to prevent the onset and progression of respiratory diseases.
Collapse
|
10
|
Han M, Yang F, Sun H. A bibliometric and visualized analysis of research progress and frontiers on health effects caused by PM 2.5. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:30595-30612. [PMID: 33907954 PMCID: PMC8079165 DOI: 10.1007/s11356-021-14086-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/20/2021] [Indexed: 05/05/2023]
Abstract
Fine particulate matter (PM2.5) is one of the major air pollutants. A large number of epidemiological and experimental studies have shown that PM2.5 pollution can cause adverse health consequences, which has attracted more public attention. In order to have a deeper and more structured understanding of the research progress and frontiers on the impact of PM2.5 on health, in this study, we used the bibliometrics software CiteSpace to analyze the relevant literature in this field. The results show that since 2000, the relevant literature has increased steadily, especially in the last 5 years, and the number of publications in China has increased rapidly. The United States has the most publications. The Chinese Academy of Sciences and Professor Joel Schwartz are the most published institution and author, respectively, and many articles have been published in the journal of Environmental Health Perspectives. Over time, studies on the health effects of PM2.5 have gradually deepened. In addition to a more comprehensive study of its harmful effects, the related molecular mechanisms have also been further explored. We believe that countries and regions should strengthen cooperation and jointly solve the harm caused by PM2.5 through the integration of multiple disciplines and fields. In addition, the adverse health consequences and its related mechanisms caused by exposure to ultrafine particle, different chemical components of PM2.5, as well as the intervention of the health effects caused by PM2.5 need to be further studied.
Collapse
Affiliation(s)
- Ming Han
- College of Environment and Resource, Shanxi University, Taiyuan, 030006, Shanxi, China.
| | - Fengxia Yang
- College of Environment and Resource, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Haifeng Sun
- College of Environment and Resource, Shanxi University, Taiyuan, 030006, Shanxi, China
| |
Collapse
|
11
|
Pegoraro V, Heiman F, Levante A, Urbinati D, Peduto I. An Italian individual-level data study investigating on the association between air pollution exposure and Covid-19 severity in primary-care setting. BMC Public Health 2021; 21:902. [PMID: 33980180 PMCID: PMC8114667 DOI: 10.1186/s12889-021-10949-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Several studies have been focusing on the potential role of atmospheric pollutants in the diffusion and impact on health of Covid-19. This study's objective was to estimate the association between ≤10 μm diameter particulate matter (PM10) exposure and the likelihood of experiencing pneumonia due to Covid-19 using individual-level data in Italy. METHODS Information on Covid-19 patients was retrieved from the Italian IQVIA® Longitudinal Patient Database (LPD), a computerized network of general practitioners (GPs) including anonymous data on patients' consultations and treatments. All patients with a Covid-19 diagnosis during March 18th, 2020 - June 30th, 2020 were included in the study. The date of first Covid-19 registration was the starting point of the 3-month follow-up (Index Date). Patients were classified based on Covid-19-related pneumonia registrations on the Index date and/or during follow-up presence/absence. Each patient was assigned individual exposure by calculating average PM10 during the 30-day period preceding the Index Date, and according to GP's office province. A multiple generalized linear mixed model, mixed-effects logistic regression, was used to assess the association between PM10 exposure tertiles and the likelihood of experiencing pneumonia. RESULTS Among 6483 Covid-19 patients included, 1079 (16.6%) had a diagnosis of pneumonia. Pneumonia patients were older, more frequently men, more health-impaired, and had a higher individual-level exposure to PM10 during the month preceding Covid-19 diagnosis. The mixed-effects model showed that patients whose PM10 exposure level fell in the second tertile had a 30% higher likelihood of having pneumonia than that of first tertile patients, and the risk for those who were in the third tertile was almost doubled. CONCLUSION The consistent findings toward a positive association between PM10 levels and the likelihood of experiencing pneumonia due to Covid-19 make the implementation of new strategies to reduce air pollution more and more urgent.
Collapse
Affiliation(s)
- Valeria Pegoraro
- IQVIA Solutions Italy S.r.l., RWS, Via Fabio Filzi 29, 20124, Milan, Italy.
| | - Franca Heiman
- IQVIA Solutions Italy S.r.l., RWS, Via Fabio Filzi 29, 20124, Milan, Italy
| | - Antonella Levante
- IQVIA Solutions Italy S.r.l., RWS, Via Fabio Filzi 29, 20124, Milan, Italy
| | - Duccio Urbinati
- IQVIA Solutions Italy S.r.l., RWS, Via Fabio Filzi 29, 20124, Milan, Italy
| | - Ilaria Peduto
- IQVIA Solutions Italy S.r.l., RWS, Via Fabio Filzi 29, 20124, Milan, Italy
| |
Collapse
|
12
|
Chen S, Li D, Wu X, Chen L, Zhang B, Tan Y, Yu D, Niu Y, Duan H, Li Q, Chen R, Aschner M, Zheng Y, Chen W. Application of cell-based biological bioassays for health risk assessment of PM2.5 exposure in three megacities, China. ENVIRONMENT INTERNATIONAL 2020; 139:105703. [PMID: 32259755 DOI: 10.1016/j.envint.2020.105703] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/21/2020] [Accepted: 03/29/2020] [Indexed: 05/05/2023]
Abstract
The determination of PM2.5-induced biological response is essential for understanding the adverse health risk associated with PM2.5 exposure. In this study, we conducted cell-based bioassays to measure the toxic effects of PM2.5 exposure, including cytotoxicity, oxidative stress, genotoxicity and inflammatory response. The concentration-response relationship was analyzed by benchmark dose (BMD) modeling and the BMDL10 was used to estimate the biological potency of PM2.5 exposure. PM2.5 samples were collected from three typical megacities of China (Beijing, BJ; Wuhan, WH; Guangzhou, GZ) in typical seasons (winter and summer). The total PM, water-soluble fractions (WSF), and organic extracts (OE) were prepared and subjected to examination of toxic effects. The biological potencies for cytotoxicity, oxidative stress and genotoxicity were generally higher in winter samples, while the inflammatory potency of PM2.5 was higher in summer samples. The relative health risk (RHR) was determined by integration of the biological potencies and the cumulative exposure level, and the ranks of RHR were BJ-W > WH-W > BJ-S > WH-S > GZ-W > GZ-S. Notably, we note that different PM2.5 compositions were associated with distinct biological effects, and the health effects distribution of PM2.5 varied in regions and seasons. These findings demonstrate that the approach of integrated cell-based bioassays could be used for the evaluation of health effects of PM2.5 exposure.
Collapse
Affiliation(s)
- Shen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Daochuan Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaonen Wu
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Liping Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Bin Zhang
- Wuhan Children's Hospital & Wuhan Maternal and Child Healthcare Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430015, China
| | - Yafei Tan
- Wuhan Children's Hospital & Wuhan Maternal and Child Healthcare Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430015, China
| | - Dianke Yu
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao 266021, China
| | - Yong Niu
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Huawei Duan
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Qiong Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Rui Chen
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Yuxin Zheng
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao 266021, China
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
13
|
Chan SL, Ho AFW, Ding H, Liu N, Earnest A, Koh MS, Chuah JST, Lau ZY, Tan KB, Zheng H, Morgan GG, Ong MEH. Impact of Air Pollution and Trans-Boundary Haze on Nation-Wide Emergency
Department Visits and Hospital Admissions in Singapore. ANNALS ACADEMY OF MEDICINE SINGAPORE 2020. [DOI: 10.47102/annals-acadmedsg.2019209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Introduction: Air pollution is associated with adverse health outcomes. However,
its impact on emergency health services is less well understood. We investigated the
impact of air pollution on nation-wide emergency department (ED) visits and hospital
admissions to public hospitals in Singapore. Materials and Methods: Anonymised
administrative and clinical data of all ED visits to public hospitals in Singapore from
January 2010 to December 2015 were retrieved and analysed. Primary and secondary
outcomes were defined as ED visits and hospital admissions, respectively. Conditional
Poisson regression was used to model the effect of Pollutant Standards Index (PSI)
on each outcome. Both outcomes were stratified according to subgroups defined a
priori based on age, diagnosis, gender, patient acuity and time of day. Results: There
were 5,791,945 ED visits, of which 1,552,187 resulted in hospital admissions. No
significant association between PSI and total ED visits (Relative risk [RR], 1.002; 99.2%
confidence interval [CI], 0.995–1.008; P = 0.509) or hospital admissions (RR, 1.005;
99.2% CI, 0.996–1.014; P = 0.112) was found. However, for every 30-unit increase in
PSI, significant increases in ED visits (RR, 1.023; 99.2% CI, 1.011–1.036; P = 1.24 ×
10˗6) and hospital admissions (RR, 1.027; 99.2% CI, 1.010–1.043; P = 2.02 × 10˗5) for
respiratory conditions were found. Conclusion: Increased PSI was not associated with
increase in total ED visits and hospital admissions, but was associated with increased
ED visits and hospital admissions for respiratory conditions in Singapore.
Key words: Epidemiology, Healthcare utilisation, PSI, Public health, Time series
Collapse
Affiliation(s)
| | - Andrew FW Ho
- NUS Medical School, Singapore.Singapore General Hospital, Singapore
| | | | - Nan Liu
- Singapore Health Services, Singapore. NUS Medical School, Singapore
| | - Arul Earnest
- Monash University School of Public Health and Preventive Medicine, Australia
| | - Mariko S Koh
- Singapore General Hospital, Singapore. NUS Medical School, Singapore
| | | | | | - Kelvin Bryan Tan
- Ministry of Health, Singapore. National University of Singapore, Singapor
| | | | | | - Marcus EH Ong
- Singapore Health Services, Singapore. NUS Medical School, Singapore. Singapore General Hospital, Singapore
| |
Collapse
|