1
|
Baris E, Topaloglu I, Akalin E, Hamurtekin E, Kabaran S, Gelal A, Ucku R, Arici MA. Serum choline, leptin and interleukin-6 levels in fibromyalgia syndrome-induced pain: a case-control study. BMC Musculoskelet Disord 2025; 26:97. [PMID: 39893410 PMCID: PMC11786483 DOI: 10.1186/s12891-025-08337-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 01/21/2025] [Indexed: 02/04/2025] Open
Abstract
BACKGROUND Fibromyalgia Syndrome (FMS) predominantly affects middle-aged women, characterized by musculoskeletal pain, fatigue, and cognitive issues. Choline, an endogenous molecule, may influence FMS due to its analgesic and anti-inflammatory properties. This study compared choline, leptin, and interleukin-6 (IL-6) levels in FMS patients and controls and examining their association with pain severity. METHODS Volunteers with FMS were clinically diagnosed at a Physical Medicine and Rehabilitation Department. The control group included pain-free volunteers. Pain severity was gauged using a numeric scale, dietary choline intake through a questionnaire. Serum choline, leptin and (interleukin)IL-6 levels were measured from fasting blood samples of volunteers with enzyme-linked immunosorbent assays (ELISA). RESULTS All FMS patients (n = 38) and healthy volunteers (n = 38) were female. Pain score in patients with FMS was 7.6 ± 0.2. Dietary choline intake was lower in patients with FMS than the controls (p = 0.036). Serum choline and leptin levels were lower in the FMS group compared to control (p = 0.03). Serum IL-6 levels were higher in the FMS group than in the control (p < 0.001). There was weak positive correlation between IL-6 levels and pain scores and there were no correlation between leptin levels and pain scores in FMS. CONCLUSIONS This research highlights FMS's complex nature, involving neurochemical, immunological, and nutritional factors. It suggests the significance of choline's anti-inflammatory effect, leptin's metabolic function, and IL-6's role in FMS pathology. The results suggest that reduced dietary choline might influence serum choline, leptin, and IL-6 levels, potentially impacting FMS-related pain. This points to the potential of supplementary choline intake in FMS management. TRIAL REGISTRATION Not applicable (Non-interventional study).
Collapse
Affiliation(s)
- Elif Baris
- Izmir University of Economics, Faculty of Medicine, Department of Medical Pharmacology, Izmir, Turkey
| | - Izel Topaloglu
- Dokuz Eylul University Faculty of Medicine, Department of Physical Therapy and Rehabilitation, Izmir, Turkey
| | - Elif Akalin
- Dokuz Eylul University Faculty of Medicine, Department of Physical Therapy and Rehabilitation, Izmir, Turkey
| | - Emre Hamurtekin
- Eastern Mediterranean University Faculty of Pharmacy Department of Pharmacology, Turkish Republic of Northern Cyprus, Turkey
| | - Seray Kabaran
- Eastern Mediterranean University Faculty of Health Sciences Department of Nutrition and Dietetics, Turkish Republic of Northern Cyprus, Turkey
| | - Ayse Gelal
- Dokuz Eylul University Faculty of Medicine, Department of Medical Pharmacology, Division of Clinical Pharmacology, Izmir, Turkey
| | - Reyhan Ucku
- Dokuz Eylul University, Faculty of Medicine, Department of Public Health, Izmir, Turkey
| | - Mualla Aylin Arici
- Dokuz Eylul University Faculty of Medicine, Department of Medical Pharmacology, Division of Clinical Pharmacology, Izmir, Turkey.
| |
Collapse
|
2
|
Petrescu AD, Venter J, Danilenko DD, Medina D, Grant S, An SY, Williams E, Mireles P, Rhodes K, Tjahja M, DeMorrow S. Exposure to Gulf war illness-related chemicals exacerbates alcohol-induced liver damage in rodents. Sci Rep 2024; 14:14981. [PMID: 38951546 PMCID: PMC11217429 DOI: 10.1038/s41598-024-65638-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 06/21/2024] [Indexed: 07/03/2024] Open
Abstract
Gulf War Illness (GWI) describes a series of symptoms suffered by veterans of the Gulf war, consisting of cognitive, neurological and gastrointestinal dysfunctions. Two chemicals associated with GWI are the insecticide permethrin (PER) and the nerve gas prophylactic pyridostigmine-bromide (PB). In this study we assessed the effects of PER and PB exposure on the pathology and subsequent alcohol (EtOH)-induced liver injury, and the influence of a macrophage depletor, PLX3397, on EtOH-induced liver damage in PER/PB-treated mice. Male C57BL/6 mice were injected daily with vehicle or PER/PB for 10 days, followed by 4 months recovery, then treatment with PLX3397 and a chronic-plus-single-binge EtOH challenge for 10 days. PER/PB exposure resulted in the protracted increase in liver transaminases in the serum and induced chronic low-level microvesicular steatosis and inflammation in GWI vs Naïve mice up to 4 months after cessation of exposure. Furthermore, prior exposure to PER/PB also resulted in exacerbated response to EtOH-induced liver injury, with enhanced steatosis, ductular reaction and fibrosis. The enhanced EtOH-induced liver damage in GWI-mice was attenuated by strategies designed to deplete macrophages in the liver. Taken together, these data suggest that exposure to GWI-related chemicals may alter the liver's response to subsequent ethanol exposure.
Collapse
Affiliation(s)
- Anca D Petrescu
- Division of Pharmacology and Toxicology, College of Pharmacy, Dell Medical School, The University of Texas at Austin, 1601 Trinity St Bldg. B, Austin, TX, 78701, USA
- Department of Internal Medicine, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Juliet Venter
- Division of Pharmacology and Toxicology, College of Pharmacy, Dell Medical School, The University of Texas at Austin, 1601 Trinity St Bldg. B, Austin, TX, 78701, USA
- Department of Internal Medicine, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Daria D Danilenko
- Division of Pharmacology and Toxicology, College of Pharmacy, Dell Medical School, The University of Texas at Austin, 1601 Trinity St Bldg. B, Austin, TX, 78701, USA
| | - Daniela Medina
- Department of Health and Societies, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Stephanie Grant
- Division of Pharmacology and Toxicology, College of Pharmacy, Dell Medical School, The University of Texas at Austin, 1601 Trinity St Bldg. B, Austin, TX, 78701, USA
- Department of Internal Medicine, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Su Yeon An
- Division of Pharmacology and Toxicology, College of Pharmacy, Dell Medical School, The University of Texas at Austin, 1601 Trinity St Bldg. B, Austin, TX, 78701, USA
- Department of Internal Medicine, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Elaina Williams
- Division of Pharmacology and Toxicology, College of Pharmacy, Dell Medical School, The University of Texas at Austin, 1601 Trinity St Bldg. B, Austin, TX, 78701, USA
- Department of Internal Medicine, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Patrick Mireles
- Division of Pharmacology and Toxicology, College of Pharmacy, Dell Medical School, The University of Texas at Austin, 1601 Trinity St Bldg. B, Austin, TX, 78701, USA
| | - Kathryn Rhodes
- Division of Pharmacology and Toxicology, College of Pharmacy, Dell Medical School, The University of Texas at Austin, 1601 Trinity St Bldg. B, Austin, TX, 78701, USA
| | - Matthew Tjahja
- Department of Internal Medicine, Baylor Scott & White Health, Temple, TX, 76502, USA
| | - Sharon DeMorrow
- Division of Pharmacology and Toxicology, College of Pharmacy, Dell Medical School, The University of Texas at Austin, 1601 Trinity St Bldg. B, Austin, TX, 78701, USA.
- Department of Internal Medicine, Dell Medical School, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
3
|
Marshall-Gradisnik S, Martini Sasso E, Eaton-Fitch N, Smith P, Baraniuk JN, Muraki K. Novel characterization of endogenous transient receptor potential melastatin 3 ion channels from Gulf War Illness participants. PLoS One 2024; 19:e0305704. [PMID: 38917121 PMCID: PMC11198784 DOI: 10.1371/journal.pone.0305704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/04/2024] [Indexed: 06/27/2024] Open
Abstract
Gulf War Illness (GWI) is a chronic condition characterized by multisystem symptoms that still affect up to one-third of veterans who engaged in combat in the Gulf War three decades ago. The aetiology of GWI is mainly explained by exposure to multiple toxic agents, vaccines, and medications. As there is a significant overlap in symptoms between GWI and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS), the objective of this study was to investigate a biomarker widely reported in Natural Killer (NK) cells from ME/CFS patients, the Transient Receptor Potential Melastatin 3 (TRPM3) ion channel. NK cells from 6 healthy controls (HC) and 6 GWI participants were isolated, and TRPM3 function was assessed through whole-cell patch-clamp. As demonstrated by prior studies, NK cells from HC expressed typical TRPM3 function after pharmacomodulation. In contrast, this pilot investigation demonstrates a dysfunctional TRPM3 in NK cells from GWI participants through application of a TRPM3 agonist and confirmed by a TRPM3 antagonist. There was a significant reduction in TRPM3 function from GWI than results measured in HC. This study provides an unprecedented research field to investigate the involvement of TRP ion channels in the pathomechanism and potential medical interventions to improve GWI quality of life.
Collapse
Affiliation(s)
- Sonya Marshall-Gradisnik
- The National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
- Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
| | - Etianne Martini Sasso
- The National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
- Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - Natalie Eaton-Fitch
- The National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
- Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
| | - Peter Smith
- Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
- Clinical Medicine, Griffith University, Gold Coast, QLD, Australia
| | - James N. Baraniuk
- Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
- Department of Medicine, Georgetown University, Washington, DC, United States of America
| | - Katsuhiko Muraki
- Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
- Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya, Japan
| |
Collapse
|
4
|
Di Ciaula A, Liberale L, Portincasa P, Khalil M, Galerati I, Farella I, Noto A, JohnBritto S, Moriero M, Michelauz C, Frè F, Olivero C, Bertolotto M, Montecucco F, Carbone F, Bonfrate L. Neutrophil degranulation, endothelial and metabolic dysfunction in unvaccinated long COVID patients. Eur J Clin Invest 2024; 54:e14155. [PMID: 38226472 DOI: 10.1111/eci.14155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND Long COVID symptoms are widely diffused and have a poorly understood pathophysiology, with possible involvement of inflammatory cytokines. MATERIALS AND METHODS A prospective follow-up study involved 385 unvaccinated patients, started 1 month after SARS-CoV-2 infection and continued for up to 12 months. We compared circulating biomarkers of neutrophil degranulation, endothelial and metabolic dysfunction in subjects with long COVID symptoms and in asymptomatic post-COVID controls. RESULTS The highest occurrence of symptoms (71%) was after 3 months from the infection, decreasing to 62.3% and 29.4% at 6 and 12 months, respectively. Compared to controls, long COVID patients had increased levels of the neutrophilic degranulation indices MMP-8 and MPO, of endothelial dysfunction indices L-selectin and P-selectin. Among indices of metabolic dysfunction, leptin levels were higher in long COVID patients than in controls. CONCLUSION In unvaccinated patients, symptoms may persist up to 1 year after acute COVID infection, with increased indices of neutrophil degranulation, endothelial and metabolic dysfunction. The clinical implications of specific inflammatory biomarkers require further attention, especially in individuals with fatigue and long COVID-linked cognitive dysfunctions.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- Clinica Medica "A. Murri", Division of Internal Medicine, Department of Preventive and Regenerative Medicine and Ionian Area (DiMePrev-J), University of Bari Aldo Moro, Bari, Italy
| | - Luca Liberale
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, Genoa, Italy
| | - Piero Portincasa
- Clinica Medica "A. Murri", Division of Internal Medicine, Department of Preventive and Regenerative Medicine and Ionian Area (DiMePrev-J), University of Bari Aldo Moro, Bari, Italy
| | - Mohamad Khalil
- Clinica Medica "A. Murri", Division of Internal Medicine, Department of Preventive and Regenerative Medicine and Ionian Area (DiMePrev-J), University of Bari Aldo Moro, Bari, Italy
| | - Ilaria Galerati
- Clinica Medica "A. Murri", Division of Internal Medicine, Department of Preventive and Regenerative Medicine and Ionian Area (DiMePrev-J), University of Bari Aldo Moro, Bari, Italy
| | - Ilaria Farella
- Clinica Medica "A. Murri", Division of Internal Medicine, Department of Preventive and Regenerative Medicine and Ionian Area (DiMePrev-J), University of Bari Aldo Moro, Bari, Italy
| | - Antonino Noto
- Clinica Medica "A. Murri", Division of Internal Medicine, Department of Preventive and Regenerative Medicine and Ionian Area (DiMePrev-J), University of Bari Aldo Moro, Bari, Italy
| | - Stephy JohnBritto
- Clinica Medica "A. Murri", Division of Internal Medicine, Department of Preventive and Regenerative Medicine and Ionian Area (DiMePrev-J), University of Bari Aldo Moro, Bari, Italy
| | - Margherita Moriero
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Cristina Michelauz
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Federica Frè
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Chiara Olivero
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Maria Bertolotto
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, Genoa, Italy
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, Genoa, Italy
| | - Leonilde Bonfrate
- Clinica Medica "A. Murri", Division of Internal Medicine, Department of Preventive and Regenerative Medicine and Ionian Area (DiMePrev-J), University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
5
|
Petrescu A, Venter J, Danilenko DD, Medina D, Grant S, An SY, Williams E, Mireles P, Tjahja M, DeMorrow S. Exposure to Gulf war illness-related chemicals exacerbates alcohol- induced liver damage in rodents. RESEARCH SQUARE 2024:rs.3.rs-3838282. [PMID: 38313276 PMCID: PMC10836102 DOI: 10.21203/rs.3.rs-3838282/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Gulf War Illness (GWI) describes a series of symptoms suffered by veterans of the Gulf war consisting of cognitive, neurological and gastrointestinal dysfunctions. Two chemicals associated with GWI are the insecticide permethrin (PER) and the nerve gas prophylactic pyridostigmine-bromide (PB). In this study we assessed the effects of PER and PB exposure on pathology and subsequent alcohol (EtOH)-induced liver injury, and the influence of a macrophage depletor, PLX3397, on EtOH-induced liver damage in PER/PB- treated mice. Male C57BL/6 mice were injected daily with vehicle or PER/PB for 10 days, followed by 4 months recovery, then treatment with PLX3397 and a chronic-plus-single-binge EtOH challenge for 10 days. PER/PB exposure resulted in the protracted increase in liver transaminases in the serum and induced chronic low-level microvesicular steatosis and inflammation in GWI vs Naïve mice up to 4 months after cessation of exposure. Furthermore, prior exposure to PER/PB also resulted in exacerbated response to EtOH-induced liver injury, with enhanced steatosis, ductular reaction and fibrosis. The enhanced EtOH-induced liver damage in GWI-mice was attenuated by strategies designed to deplete macrophages in the liver. Taken together, these data suggest that exposure to GWI-related chemicals may alter the liver's response to subsequent ethanol exposure.
Collapse
|