1
|
Ma J, Wang J, Sun R, Hu Z, Wang Z, Xue J, Wu S, Hu W, Wang J, Yang L, Cai Q, Yang J, Chen J, Liu X. Adeno-Associated Virus-Mediated Dickkopf-1 Gene Transduction Reduces Silica-Induced Oxidative Stress and Silicosis in Mouse Lung. Antioxid Redox Signal 2025; 42:529-546. [PMID: 39531217 DOI: 10.1089/ars.2024.0646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Aims: Silicosis is a lung disease caused by inhalation of silica particles. Both silica-induced oxidative stress and aberrant activation of the Wnt/β-catenin signaling pathway are potential targets in the treatment of pulmonary fibrosis. Dickkopf-1 (Dkk1), an inhibitor of the Wnt/β-catenin signaling pathway, plays regulatory roles in cell fate determination and immune responses. Our previous study demonstrated that adenoviral vector-mediated Dkk1 gene transfer alleviated the silica-induced mouse silicosis. However, the mechanism of therapeutic action of Dkk1 in silicosis is yet completely understood; together with the drawbacks of adenoviral vectors in gene therapy, we investigated the therapeutic effect and mechanisms of Dkk1 by employing an adeno-associated virus (AAV) vector in a silicosis mouse model. Results: The AAV vector could efficiently transduce the Dkk1 gene in silicotic lung during both the early and the late phases of disease, resulting in an alleviation of silicotic lesions, improvement of pulmonary compliance, and radiological findings. Mechanistic studies further demonstrated that the transduction of Dkk1 inhibited the silica-activated Wnt/β-catenin signaling and reduced the silica-induced reactive oxygen species-producing enzyme NADPH oxidase 4, oxidative stress regulator nuclear factor erythroid 2-related factor 2, and signaling molecules binding immunoglobulin protein and C/EBP homologous protein. In addition, shRNA-mediated downregulation of Dkk1 exacerbated the progression of silicosis in mice, whereas the treatment of ROS scavenger n-acetylcysteine showed a comparable mitigation of silicosis that was seen in the AAV-Dkk1 treatment. Innovation and Conclusion: This study provides an insight into the mechanism by which Dkk1 inhibits the silica-induced Wnt signaling and oxidative stress to mitigate the pathogenesis of lung silicosis and evidence of the potential of AAV-mediated Dkk1 gene transfer as an alternative approach in silicosis treatment. Antioxid. Redox Signal. 42, 529-546.
Collapse
Affiliation(s)
- Jia Ma
- Key Laboratory of Ningxia Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Ningxia University, Yinchuan, China
- Department of Pulmonary and Critical Care Medicine, General Hospital of Ningxia Medical University, Ningxia University, Yinchuan, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, College of Life Science, Ningxia University, Yinchuan, China
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa, USA
| | - Jiaqi Wang
- Key Laboratory of Ningxia Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Ningxia University, Yinchuan, China
- Department of Pulmonary and Critical Care Medicine, General Hospital of Ningxia Medical University, Ningxia University, Yinchuan, China
| | - Ruiting Sun
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, National Centre for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zheqing Hu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, College of Life Science, Ningxia University, Yinchuan, China
| | - Zhaojun Wang
- Key Laboratory of Ningxia Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Ningxia University, Yinchuan, China
- Department of Pulmonary and Critical Care Medicine, General Hospital of Ningxia Medical University, Ningxia University, Yinchuan, China
| | - Jing Xue
- Key Laboratory of Ningxia Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Ningxia University, Yinchuan, China
- Department of Pulmonary and Critical Care Medicine, General Hospital of Ningxia Medical University, Ningxia University, Yinchuan, China
| | - Shuang Wu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, College of Life Science, Ningxia University, Yinchuan, China
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa, USA
| | - Wenfeng Hu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, College of Life Science, Ningxia University, Yinchuan, China
| | - Jing Wang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, College of Life Science, Ningxia University, Yinchuan, China
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa, USA
- The Laboratory Centre, Ningxia Institute of Clinical Medicine, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Liyuan Yang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, College of Life Science, Ningxia University, Yinchuan, China
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa, USA
| | - Qian Cai
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health, Ningxia Medical University, Yinchuan, China
| | - Jiali Yang
- The Laboratory Centre, Ningxia Institute of Clinical Medicine, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Juan Chen
- Key Laboratory of Ningxia Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Ningxia University, Yinchuan, China
- Department of Pulmonary and Critical Care Medicine, General Hospital of Ningxia Medical University, Ningxia University, Yinchuan, China
| | - Xiaoming Liu
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
2
|
Sani A, Abdullahi IL, Khan MI, Cao C. Analyses of oxidative DNA damage among coal vendors via single cell gel electrophoresis and quantification of 8-hydroxy-2'-deoxyguanosine. Mol Cell Biochem 2024; 479:2291-2306. [PMID: 37594629 DOI: 10.1007/s11010-023-04826-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/06/2023] [Indexed: 08/19/2023]
Abstract
Looking at the development status of Nigeria and other developing nations, most low-income and rural households often use coal as a source of energy which necessitates its trade very close to the communities. Moreover, the effects of exposure to coal mining activities are rarely explored or yet to be studied, not to mention the numerous street coal vendors in Nigeria. This study investigated the oxidative stress levels in serum and urine through the biomarker 8-OHdG and DNA damage via single cell gel electrophoresis (alkaline comet assay). Blood and urine levels of 8-OHdG from 130 coal vendors and 130 population-based controls were determined by ELISA. Alkaline comet assay was also performed on white blood cells for DNA damage. The average values of 8-OHdG in serum and urine of coal vendors were 22.82 and 16.03 ng/ml respectively, which were significantly greater than those detected in controls (p < 0.001; 15.46 and 10.40 ng/ml of 8-OHdG in serum and urine respectively). The average tail length, % DNA in tail and olive tail moment were 25.06 μm, 18.71% and 4.42 respectively for coal vendors. However, for controls, the average values were 4.72 μm, 3.63% and 1.50 for tail length, % DNA in tail and olive tail moment respectively which were much lower than coal vendors (p < 0.001). Therefore, prolonged exposure to coal dusts could lead to higher serum and urinary 8-OHdG and significant DNA damage in coal vendors observed in tail length, % DNA in tail, and olive tail moment by single cell gel electrophoresis. It is therefore established that coal vendors exhibit a huge risk from oxidative stress and assessment of 8-OHdG with single cell gel electrophoresis has proven to be a feasible tool as biomarkers of DNA damage.
Collapse
Affiliation(s)
- Ali Sani
- Department of Instrument Science and Engineering, School of Electronic, Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
- Department of Biological Sciences, Faculty of Life Sciences, Bayero University, Kano, 3011, Nigeria.
| | - Ibrahim Lawal Abdullahi
- Department of Biological Sciences, Faculty of Life Sciences, Bayero University, Kano, 3011, Nigeria
| | - Muhammad Idrees Khan
- Department of Instrument Science and Engineering, School of Electronic, Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - ChengXi Cao
- Department of Instrument Science and Engineering, School of Electronic, Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| |
Collapse
|
3
|
Abstract
PURPOSE OF REVIEW There has been a rapid increase in silicosis cases, particularly related to artificial stone. The key to management is avoidance of silica exposure. Despite this, many develop progressive disease and there are no routinely recommended treatments. This review provides a summary of the literature pertaining to pharmacological therapies for silicosis and examines the plausibility of success of such treatments given the disease pathogenesis. RECENT FINDINGS In-vitro and in-vivo models demonstrate potential efficacy for drugs, which target inflammasomes, cytokines, effector cells, fibrosis, autophagy, and oxidation. SUMMARY There is some evidence for potential therapeutic targets in silicosis but limited translation into human studies. Treatment of silicosis likely requires a multimodal approach, and there is considerable cross-talk between pathways; agents that modulate both inflammation, fibrosis, autophagy, and ROS production are likely to be most efficacious.
Collapse
Affiliation(s)
- Hayley Barnes
- Monash Centre for Occupational and Environmental Health, Monash University
- Department of Respiratory Medicine, Alfred Health
- Central Clinical School, Monash University, Melbourne
| | - Maggie Lam
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton
- Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia
| | - Michelle D Tate
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton
- Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia
| | - Ryan Hoy
- Monash Centre for Occupational and Environmental Health, Monash University
- Department of Respiratory Medicine, Alfred Health
| |
Collapse
|
4
|
Ergün R, Ergün D, Özkan E, Kurt OK, Bacanli M, Körez MK. Can Serum Chitotriosidase Levels, Immune, and Oxidative Stress Parameters Be Early Diagnostic Indicators in Patients With Silicosis? J Occup Environ Med 2023; 65:e752-e758. [PMID: 37733997 DOI: 10.1097/jom.0000000000002973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
OBJECTIVE We aimed to evaluate the enzyme activity of chitotriosidase as a biomarker in early diagnosis silicosis and to investigate immune system response and oxidative stress caused by silica exposure. MATERIALS AND METHODS Silicosis patients (n = 116), exposed to silica without disease (n = 76), and healthy individuals (n = 55) were included. Serum levels of chitotriosidase, proinflammatory cytokines, oxidant-antioxidant, and immune parameters were measured. RESULTS Serum chitotriosidase enzyme levels in the silicosis group were statistically significantly higher than the exposure and control groups. Inflammatory biomarkers and 8-hydroxy-2-deoxyguanosine levels were found to be statistically significantly higher in the silicosis and exposure group compared with the controls, while superoxide dismutase and glutathione peroxidase were lower. CONCLUSIONS Increased serum chitotriosidase level emerged as a biomarker that can not only distinguish silicosis from exposure and healthy controls but also indicate early pulmonary effects of silica.
Collapse
Affiliation(s)
- Recai Ergün
- From the Department of Pulmonary Medicine, Selcuk University, Faculty of Medicine, Konya, Turkey (R.E., D.E.); Rush University Medical Center, Chicago, Illinois (E.Ö.); Department of Pulmonary Medicine and Occupational Medicine, Yedikule Chest Diseases and Thoracic Surgery Training and Research Hospital, Istanbul, Turkey (O.K.K.); Department of Pharmaceutical Toxicology, University of Health Sciences Turkey, Gulhane Faculty of Pharmacy, Ankara, Turkey (M.B.); and Selcuk University Faculty of Medicine, Konya, Turkey (M.K.K.)
| | | | | | | | | | | |
Collapse
|