1
|
Qiu T, Kong Y, Wei G, Sun K, Wang R, Wang Y, Chen Y, Wang W, Zhang Y, Jiang C, Yang P, Xie T, Chen X. CCDC6-RET fusion protein regulates Ras/MAPK signaling through the fusion- GRB2-SHC1 signal niche. Proc Natl Acad Sci U S A 2024; 121:e2322359121. [PMID: 38805286 PMCID: PMC11161787 DOI: 10.1073/pnas.2322359121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/08/2024] [Indexed: 05/30/2024] Open
Abstract
Rearranged during transfection (RET) rearrangement oncoprotein-mediated Ras/MAPK signaling cascade is constitutively activated in cancers. Here, we demonstrate a unique signal niche. The niche is a ternary complex based on the chimeric RET liquid-liquid phase separation. The complex comprises the rearranged kinase (RET fusion); the adaptor (GRB2), and the effector (SHC1). Together, they orchestrate the Ras/MAPK signal cascade, which is dependent on tyrosine kinase. CCDC6-RET fusion undergoes LLPS requiring its kinase domain and its fusion partner. The CCDC6-RET fusion LLPS promotes the autophosphorylation of RET fusion, with enhanced kinase activity, which is necessary for the formation of the signaling niche. Within the signal niche, the interactions among the constituent components are reinforced, and the signal transduction efficiency is amplified. The specific RET fusion-related signal niche elucidates the mechanism of the constitutive activation of the Ras/MAPK signaling pathway. Beyond just focusing on RET fusion itself, exploration of the ternary complex potentially unveils a promising avenue for devising therapeutic strategies aimed at treating RET fusion-driven diseases.
Collapse
Affiliation(s)
- Ting Qiu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
| | - Yichao Kong
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
| | - Guifeng Wei
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
| | - Kai Sun
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
| | - Ruijie Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
| | - Yang Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
| | - Yiji Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
| | - Wenxin Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
| | - Yun Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- School of Life Sciences, Westlake University, Hangzhou310024, China
| | - Caihong Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
| | - Peiguo Yang
- School of Life Sciences, Westlake University, Hangzhou310024, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
| | - Xiabin Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
| |
Collapse
|
2
|
Conde E, Hernandez S, Rodriguez Carrillo JL, Martinez R, Alonso M, Curto D, Jimenez B, Caminoa A, Benito A, Garrido P, Clave S, Arriola E, Esteban-Rodriguez I, De Castro J, Sansano I, Felip E, Rojo F, Dómine M, Abdulkader I, Garcia-Gonzalez J, Teixido C, Reguart N, Compañ D, Insa A, Mancheño N, Palanca S, Juan-Vidal O, Baixeras N, Nadal E, Cebollero M, Calles A, Martin P, Salas C, Provencio M, Aranda I, Massuti B, Lopez-Vilaro L, Majem M, Paz-Ares L, Lopez-Rios F. RET Fusion Testing in Patients With NSCLC: The RETING Study. JTO Clin Res Rep 2024; 5:100653. [PMID: 38525319 PMCID: PMC10957499 DOI: 10.1016/j.jtocrr.2024.100653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/31/2024] [Accepted: 02/18/2024] [Indexed: 03/26/2024] Open
Abstract
Introduction RET inhibitors with impressive overall response rates are now available for patients with NSCLC, yet the identification of RET fusions remains a difficult challenge. Most guidelines encourage the upfront use of next-generation sequencing (NGS), or alternatively, fluorescence in situ hybridization (FISH) or reverse transcriptase-polymerase chain reaction (RT-PCR) when NGS is not possible or available. Taken together, the suboptimal performance of single-analyte assays to detect RET fusions, although consistent with the notion of encouraging universal NGS, is currently widening some of the clinical practice gaps in the implementation of predictive biomarkers in patients with advanced NSCLC. Methods This situation prompted us to evaluate several RET assays in a large multicenter cohort of RET fusion-positive NSCLC (n = 38) to obtain real-world data. In addition to RNA-based NGS (the criterion standard method), all positive specimens underwent break-apart RET FISH with two different assays and were also tested by an RT-PCR assay. Results The most common RET partners were KIF5B (78.9%), followed by CCDC6 (15.8%). The two RET NGS-positive but FISH-negative samples contained a KIF5B(15)-RET(12) fusion. The three RET fusions not identified with RT-PCR were AKAP13(35)-RET(12), KIF5B(24)-RET(9) and KIF5B(24)-RET(11). All three false-negative RT-PCR cases were FISH-positive, exhibited a typical break-apart pattern, and contained a very high number of positive tumor cells with both FISH assays. Signet ring cells, psammoma bodies, and pleomorphic features were frequently observed (in 34.2%, 39.5%, and 39.5% of tumors, respectively). Conclusions In-depth knowledge of the advantages and disadvantages of the different RET testing methodologies could help clinical and molecular tumor boards implement and maintain sensible algorithms for the rapid and effective detection of RET fusions in patients with NSCLC. The likelihood of RET false-negative results with both FISH and RT-PCR reinforces the need for upfront NGS in patients with NSCLC.
Collapse
Affiliation(s)
- Esther Conde
- Hospital Universitario 12 de Octubre, Madrid, Spain
- Universidad Complutense, Madrid, Spain
- Research Institute Hospital 12 de Octubre (i+12), Madrid, Spain
- Centro de Investigación Biomedica en Red Cancer (CIBERONC), Madrid, Spain
| | - Susana Hernandez
- Hospital Universitario 12 de Octubre, Madrid, Spain
- Research Institute Hospital 12 de Octubre (i+12), Madrid, Spain
| | | | | | - Marta Alonso
- Hospital Universitario 12 de Octubre, Madrid, Spain
- Research Institute Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Daniel Curto
- Hospital Universitario 12 de Octubre, Madrid, Spain
| | | | | | | | - Pilar Garrido
- Centro de Investigación Biomedica en Red Cancer (CIBERONC), Madrid, Spain
- Hospital Universitario Ramon y Cajal, Madrid, Spain
| | - Sergi Clave
- Centro de Investigación Biomedica en Red Cancer (CIBERONC), Madrid, Spain
- Hospital del Mar, Barcelona, Spain
| | - Edurne Arriola
- Centro de Investigación Biomedica en Red Cancer (CIBERONC), Madrid, Spain
- Hospital del Mar, Barcelona, Spain
| | | | - Javier De Castro
- Centro de Investigación Biomedica en Red Cancer (CIBERONC), Madrid, Spain
- Hospital Universitario La Paz, Madrid, Spain
- Instituto de Investigacion Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Irene Sansano
- Hospital Universitario Vall d'Hebron, Barcelona, Spain
| | | | - Federico Rojo
- Centro de Investigación Biomedica en Red Cancer (CIBERONC), Madrid, Spain
- Instituto de Investigacion Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Madrid, Spain
| | - Manuel Dómine
- Instituto de Investigacion Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Madrid, Spain
- Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - Ihab Abdulkader
- Hospital Clinico Universitario de Santiago, Santiago de Compostela, Spain
| | | | - Cristina Teixido
- Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Noemi Reguart
- Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | | | - Amelia Insa
- Hospital Clinico Universitario, Valencia, Spain
| | - Nuria Mancheño
- Hospital Universitario y Politecnico La Fe, Valencia, Spain
| | - Sarai Palanca
- Hospital Universitario y Politecnico La Fe, Valencia, Spain
| | | | - Nuria Baixeras
- Hospital Universitari de Bellvitge, L’Hospitalet, Barcelona, Spain
| | - Ernest Nadal
- Catalan Institute of Oncology, L’Hospitalet, Barcelona, Spain
| | - Maria Cebollero
- Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Antonio Calles
- Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Paloma Martin
- Centro de Investigación Biomedica en Red Cancer (CIBERONC), Madrid, Spain
- Instituto de Investigación Sanitaria Hospital Universitario Puerta de Hierro, Madrid, Spain
| | - Clara Salas
- Hospital Universitario Puerta de Hierro, Madrid, Spain
| | | | - Ignacio Aranda
- Hospital General Universitario Dr. Balmis – Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Bartomeu Massuti
- Hospital General Universitario Dr. Balmis – Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | | | | | - Luis Paz-Ares
- Hospital Universitario 12 de Octubre, Madrid, Spain
- Universidad Complutense, Madrid, Spain
- Research Institute Hospital 12 de Octubre (i+12), Madrid, Spain
- Centro de Investigación Biomedica en Red Cancer (CIBERONC), Madrid, Spain
| | - Fernando Lopez-Rios
- Hospital Universitario 12 de Octubre, Madrid, Spain
- Universidad Complutense, Madrid, Spain
- Research Institute Hospital 12 de Octubre (i+12), Madrid, Spain
- Centro de Investigación Biomedica en Red Cancer (CIBERONC), Madrid, Spain
| |
Collapse
|
3
|
Gouda MA, Subbiah V. Tissue-Agnostic Cancer Therapy Approvals. Surg Oncol Clin N Am 2024; 33:243-264. [PMID: 38401908 DOI: 10.1016/j.soc.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2024]
Abstract
Tumor-agnostic, or histology-agnostic, cancer therapy marks a groundbreaking evolution in the realm of precision oncology. In stark contrast to conventional cancer treatments that categorize malignancies based on their tissue of origin (eg, breast, lung, renal cell, etc), tumor-agnostic therapies transcend histologic boundaries, honing in on the genetic and molecular attributes of tumors, regardless of their location. This article offers a comprehensive review of the current landscape of tissue-agnostic cancer therapies and provides clinical insights to empower surgical oncologists with a deeper understanding of these innovative therapeutic approaches.
Collapse
Affiliation(s)
- Mohamed A Gouda
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 455, Houston, TX, USA
| | - Vivek Subbiah
- Early-Phase Drug Development, Sarah Cannon Research Institute, 335 24th Avenue North Suite 300, Nashville, TN 37203, USA.
| |
Collapse
|
4
|
Shen H, Zhu R, Liu Y, Hong Y, Ge J, Xuan J, Niu W, Yu X, Qin JJ, Li Q. Radioiodine-refractory differentiated thyroid cancer: Molecular mechanisms and therapeutic strategies for radioiodine resistance. Drug Resist Updat 2024; 72:101013. [PMID: 38041877 DOI: 10.1016/j.drup.2023.101013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 12/04/2023]
Abstract
Radioiodine-refractory differentiated thyroid cancer (RAIR-DTC) is difficult to treat with radioactive iodine because of the absence of the sodium iodide transporter in the basement membrane of thyroid follicular cells for iodine uptake. This is usually due to the mutation or rearrangement of genes and the aberrant activation of signal pathways, which result in abnormal expression of thyroid-specific genes, leading to resistance of differentiated thyroid cancer cells to radioiodine therapy. Therefore, inhibiting the proliferation and growth of RAIR-DTC with multikinase inhibitors and other drugs or restoring its differentiation and then carrying out radioiodine therapy have become the first-line treatment strategies and main research directions. The drugs that regulate these kinases or signaling pathways have been studied in clinical and preclinical settings. In this review, we summarized the major gene mutations, gene rearrangements and abnormal activation of signaling pathways that led to radioiodine resistance of RAIR-DTC, as well as the medicine that have been tested in clinical and preclinical trials.
Collapse
Affiliation(s)
- Huize Shen
- Zhejiang Cancer Hospital, Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China; School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Rui Zhu
- Department of stomatology, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, China
| | - Yanyang Liu
- Zhejiang Cancer Hospital, Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yangjian Hong
- Zhejiang Cancer Hospital, Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jiaming Ge
- Zhejiang Cancer Hospital, Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jie Xuan
- Zhejiang Cancer Hospital, Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Wenyuan Niu
- Zhejiang Cancer Hospital, Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xuefei Yu
- Zhejiang Cancer Hospital, Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China.
| | - Jiang-Jiang Qin
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
| | - Qinglin Li
- Zhejiang Cancer Hospital, Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Marcoux P, Hwang JW, Desterke C, Imeri J, Bennaceur-Griscelli A, Turhan AG. Modeling RET-Rearranged Non-Small Cell Lung Cancer (NSCLC): Generation of Lung Progenitor Cells (LPCs) from Patient-Derived Induced Pluripotent Stem Cells (iPSCs). Cells 2023; 12:2847. [PMID: 38132167 PMCID: PMC10742233 DOI: 10.3390/cells12242847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/03/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
REarranged during Transfection (RET) oncogenic rearrangements can occur in 1-2% of lung adenocarcinomas. While RET-driven NSCLC models have been developed using various approaches, no model based on patient-derived induced pluripotent stem cells (iPSCs) has yet been described. Patient-derived iPSCs hold great promise for disease modeling and drug screening. However, generating iPSCs with specific oncogenic drivers, like RET rearrangements, presents challenges due to reprogramming efficiency and genotypic variability within tumors. To address this issue, we aimed to generate lung progenitor cells (LPCs) from patient-derived iPSCs carrying the mutation RETC634Y, commonly associated with medullary thyroid carcinoma. Additionally, we established a RETC634Y knock-in iPSC model to validate the effect of this oncogenic mutation during LPC differentiation. We successfully generated LPCs from RETC634Y iPSCs using a 16-day protocol and detected an overexpression of cancer-associated markers as compared to control iPSCs. Transcriptomic analysis revealed a distinct signature of NSCLC tumor repression, suggesting a lung multilineage lung dedifferentiation, along with an upregulated signature associated with RETC634Y mutation, potentially linked to poor NSCLC prognosis. These findings were validated using the RETC634Y knock-in iPSC model, highlighting key cancerous targets such as PROM2 and C1QTNF6, known to be associated with poor prognostic outcomes. Furthermore, the LPCs derived from RETC634Y iPSCs exhibited a positive response to the RET inhibitor pralsetinib, evidenced by the downregulation of the cancer markers. This study provides a novel patient-derived off-the-shelf iPSC model of RET-driven NSCLC, paving the way for exploring the molecular mechanisms involved in RET-driven NSCLC to study disease progression and to uncover potential therapeutic targets.
Collapse
Affiliation(s)
- Paul Marcoux
- INSERM UMR-S-1310, Université Paris Saclay, 94800 Villejuif, France; (P.M.); (J.W.H.); (C.D.); (J.I.); (A.B.-G.)
- Faculty of Medicine, Paris-Saclay University, 94270 Le Kremlin Bicetre, France
| | - Jin Wook Hwang
- INSERM UMR-S-1310, Université Paris Saclay, 94800 Villejuif, France; (P.M.); (J.W.H.); (C.D.); (J.I.); (A.B.-G.)
- Faculty of Medicine, Paris-Saclay University, 94270 Le Kremlin Bicetre, France
| | - Christophe Desterke
- INSERM UMR-S-1310, Université Paris Saclay, 94800 Villejuif, France; (P.M.); (J.W.H.); (C.D.); (J.I.); (A.B.-G.)
- Faculty of Medicine, Paris-Saclay University, 94270 Le Kremlin Bicetre, France
| | - Jusuf Imeri
- INSERM UMR-S-1310, Université Paris Saclay, 94800 Villejuif, France; (P.M.); (J.W.H.); (C.D.); (J.I.); (A.B.-G.)
- Faculty of Medicine, Paris-Saclay University, 94270 Le Kremlin Bicetre, France
| | - Annelise Bennaceur-Griscelli
- INSERM UMR-S-1310, Université Paris Saclay, 94800 Villejuif, France; (P.M.); (J.W.H.); (C.D.); (J.I.); (A.B.-G.)
- Faculty of Medicine, Paris-Saclay University, 94270 Le Kremlin Bicetre, France
- APHP Paris Saclay, Department of Hematology, Hôpital Bicêtre, 94270 Le Kremlin Bicetre, France
- Center for IPSC Therapies, CITHERA, INSERM UMS-45, Genopole Campus, 91100 Evry, France
- APHP Paris Saclay, Department of Hematology, Hôpital Paul Brousse, 94800 Villejuif, France
| | - Ali G. Turhan
- INSERM UMR-S-1310, Université Paris Saclay, 94800 Villejuif, France; (P.M.); (J.W.H.); (C.D.); (J.I.); (A.B.-G.)
- Faculty of Medicine, Paris-Saclay University, 94270 Le Kremlin Bicetre, France
- APHP Paris Saclay, Department of Hematology, Hôpital Bicêtre, 94270 Le Kremlin Bicetre, France
- Center for IPSC Therapies, CITHERA, INSERM UMS-45, Genopole Campus, 91100 Evry, France
- APHP Paris Saclay, Department of Hematology, Hôpital Paul Brousse, 94800 Villejuif, France
| |
Collapse
|
6
|
Gouda MA, Subbiah V. Precision oncology with selective RET inhibitor selpercatinib in RET-rearranged cancers. Ther Adv Med Oncol 2023; 15:17588359231177015. [PMID: 37360768 PMCID: PMC10288430 DOI: 10.1177/17588359231177015] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/02/2023] [Indexed: 06/28/2023] Open
Abstract
Rearranged during transfection (RET) is a protooncogene that encodes for receptor tyrosine kinase with downstream effects on multiple cellular pathways. Activating RET alterations can occur and lead to uncontrolled cellular proliferation as a hallmark of cancer development. Oncogenic RET fusions are present in nearly 2% of patients with non-small cell lung cancer (NSCLC), 10-20% of patients with thyroid cancer, and <1% across the pan-cancer spectrum. In addition, RET mutations are drivers in 60% of sporadic medullary thyroid cancers and 99% of hereditary thyroid cancers. The discovery, rapid clinical translation, and trials leading to FDA approvals of selective RET inhibitors, selpercatinib and pralsetinib, have revolutionized the field of RET precision therapy. In this article, we review the current status on the use of the selective RET inhibitor, selpercatinib, in RET fusion-positive tumors: NSCLC, thyroid cancers, and the more recent tissue-agnostic activity leading to FDA approval.
Collapse
Affiliation(s)
- Mohamed A. Gouda
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center. Houston, TX, USA
| | - Vivek Subbiah
- Sarah Cannon Research Institute, 1100 Dr. Martin L. King Jr. Blvd. Suite 800. Nashville, TN 37203, USA
| |
Collapse
|
7
|
RET rearrangements in non-small cell lung cancer: Evolving treatment landscape and future challenges. Biochim Biophys Acta Rev Cancer 2022; 1877:188810. [DOI: 10.1016/j.bbcan.2022.188810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022]
|
8
|
Kucharczyk T, Krawczyk P, Kowalski DM, Płużański A, Kubiatowski T, Kalinka E. RET Proto-Oncogene-Not Such an Obvious Starting Point in Cancer Therapy. Cancers (Basel) 2022; 14:5298. [PMID: 36358717 PMCID: PMC9657474 DOI: 10.3390/cancers14215298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/26/2023] Open
Abstract
Mutations and fusions of RET (rearranged during transfection) gene are detected in a few common types of tumors including thyroid or non-small cells lung cancers. Multiple kinase inhibitors (MKIs) do not show spectacular effectiveness in patients with RET-altered tumors. Hence, recently, two novel RET-specific inhibitors were registered in the US and in Europe. Selpercatinib and pralsetinib showed high efficacy in clinical trials, with fewer adverse effects, in comparison to previously used MKIs. However, the effectiveness of these new drugs may be reduced by the emergence of resistance mutations in RET gene and activation of different activating signaling pathways. This review presents the function of the normal RET receptor, types of molecular disturbances of the RET gene in patients with various cancers, methods of detecting these abnormalities, and the effectiveness of modern anticancer therapies (ranging from immunotherapies, through MKIs, to RET-specific inhibitors).
Collapse
Affiliation(s)
- Tomasz Kucharczyk
- Chair and Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-059 Lublin, Poland
| | - Paweł Krawczyk
- Chair and Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-059 Lublin, Poland
| | - Dariusz M. Kowalski
- Department of Lung and Thoracic Tumours, Maria Skłodowskiej-Curie National Research Institute, 02-718 Warsaw, Poland
| | - Adam Płużański
- Department of Lung and Thoracic Tumours, Maria Skłodowskiej-Curie National Research Institute, 02-718 Warsaw, Poland
| | - Tomasz Kubiatowski
- Oncology and Immunology Clinic, Warmian-Masurian Cancer Center of the Ministry of the Interior and Administration’s Hospital, 10-228 Olsztyn, Poland
| | - Ewa Kalinka
- Department of Oncology, Polish Mother’s Memorial Hospital-Research Institute, 90-302 Lodz, Poland
| |
Collapse
|
9
|
Abstract
For molecular diagnostics of lung cancer samples, often only a small amount of material is available. The ever-increasing number of biomarker testing is in contrast to the amount of material obtained. In that case, cytological specimens, such as serous effusion samples, are one possible option. Effusion samples were prepared as sediment smears or cytospins or as a cell block if needed. Suitable tumor cells areas were marked by a cytopathologist and used for molecular diagnostics, including fast track analysis, parallel sequencing, and/or fluorescence in situ hybridization. In 62 cases of malignant effusion with cells of pulmonary adenocarcinoma, molecular diagnostics were carried out. A fast-track result with the high-resolution melting method for hotspot mutation of KRAS Exon 2 and EGFR exon 21 and fragment length analysis of EGFR exon 19 was available for 43 out of 47 samples (92%). Parallel sequencing was successful for 56 out of 60 samples (93.3%). In the same period, 108 FISH analyses were performed for MET amplification, followed by ROS1, RET, and ALK translocation analysis. If only a limited amount of tissue/biopsy is available, a malignant effusion is advisable to perform on the molecular diagnostics with a high success rate.
Collapse
|
10
|
Acquired Mechanisms of Resistance to Osimertinib-The Next Challenge. Cancers (Basel) 2022; 14:cancers14081931. [PMID: 35454838 PMCID: PMC9027936 DOI: 10.3390/cancers14081931] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Osimertinib has revolutionized the treatment of EGFR-mutated tumors. Its current applications include the first-line setting, second-line setting, as well as the adjuvant setting. Although it represents a milestone in the context of targeted therapy, inevitably all tumors develop an acquired resistance, some mechanisms involve EGFR, others do so through alternative pathways leading to a bypass in osimertinib inhibition. It is key to understand these acquired mechanisms of resistance, both in the clinical setting, as well as in preclinical models, in order to develop and contribute to the identification of possible therapeutic strategies to overcome this acquired resistance. Abstract EGFR-mutated tumors represent a significant percentage of non-small cell lung cancer. Despite the increasing use of osimertinib, a treatment that has demonstrated an outstanding clinical benefit with a tolerable toxicity profile, EGFR tumors eventually acquire mechanisms of resistance. In the last years, multiple mechanisms of resistance have been identified; however, after progressing on osimertinib, treatment options remain bleak. In this review, we cover the most frequent alterations and potential therapeutic strategies to overcome them.
Collapse
|
11
|
Nacchio M, Pisapia P, Pepe F, Russo G, Vigliar E, Porcelli T, Luongo C, Iaccarino A, Pagni F, Salvatore D, Troncone G, Malapelle U, Bellevicine C. Predictive molecular pathology in metastatic thyroid cancer: the role of RET fusions. Expert Rev Endocrinol Metab 2022; 17:167-178. [PMID: 35404189 DOI: 10.1080/17446651.2022.2060819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/29/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Rearranged during transfection (RET) gene fusions are detected in 10-20% of thyroid cancer patients. Recently, RET fusion-positive metastatic thyroid cancers have attracted much attention owing to the FDA approval of two highly selective anti-RET tyrosine kinase inhibitors, namely, selpercatinib, and pralsetinib. AREAS COVERED This review summarizes the available evidence on the biological and predictive role of RET gene fusions in thyroid carcinoma patients and the latest screening assays currently used to detect these genomic alterations in histological and cytological specimens. EXPERT OPINION Management of advanced thyroid carcinoma has significantly evolved over the last decade thanks to the approval of three multikinase inhibitors, i.e. sorafenib, lenvatinib, cabozantinib, and of two selective RET-tyrosine inhibitors, i.e. selpercatinib and pralsetinib. In this setting, the detection of RET-fusions in advanced thyroid cancer specimens through the use of next-generation sequencing has become a commonly used strategy in clinical practice to select the best treatment options.
Collapse
Affiliation(s)
- Mariantonia Nacchio
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Pasquale Pisapia
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Francesco Pepe
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Gianluca Russo
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Elena Vigliar
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Tommaso Porcelli
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Cristina Luongo
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Antonino Iaccarino
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Fabio Pagni
- Department of Medicine and Surgery, San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy
| | - Domenico Salvatore
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Giancarlo Troncone
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Umberto Malapelle
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Claudio Bellevicine
- Department of Public Health, University of Naples Federico II, Naples, Italy
| |
Collapse
|
12
|
Kazdal D, Hofman V, Christopoulos P, Ilié M, Stenzinger A, Hofman P. Fusion-positive non-small cell lung carcinoma: Biological principles, clinical practice, and diagnostic implications. Genes Chromosomes Cancer 2022; 61:244-260. [PMID: 34997651 DOI: 10.1002/gcc.23022] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/26/2021] [Accepted: 12/27/2021] [Indexed: 12/11/2022] Open
Abstract
Based on superior efficacy and tolerability, targeted therapy is currently preferred over chemotherapy and/or immunotherapy for actionable gene fusions that occur in late-stage non-small cell lung carcinoma (NSCLC). Consequently, current clinical practice guidelines mandate testing for ALK, ROS1, NTRK, and RET gene fusions in all patients with newly diagnosed advanced non-squamous NSCLC (NS-NSCLC). Gene fusions can be detected using different approaches, but today RNA next-generation sequencing (NGS) or combined DNA/RNA NGS is the method of choice. The discovery of other gene fusions (involving, eg, NRG1, NUT, FGFR1, FGFR2, MET, BRAF, EGFR, SMARC fusions) and their partners has increased progressively in recent years, leading to the development of new and promising therapies and mandating the development and implementation of comprehensive detection methods. The purpose of this review is to focus on recent data concerning the main gene fusions identified in NSCLC, followed by the discussion of major challenges in this domain.
Collapse
Affiliation(s)
- Daniel Kazdal
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,Translational Lung Research Center (TLRC) Heidelberg, Heidelberg, Germany.,German Center for Lung Research (DZL), Heidelberg, Germany
| | - Véronique Hofman
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Université Côte d'Azur, FHU OncoAge, Nice, France.,Centre Antoine Lacassagne Cancer Center, Université Côte d'Azur, CNRS, INSERM, IRCAN, FHU OncoAge, Nice, France.,Hospital-Integrated Biobank BB-0033-00025, Université Côte d'Azur, CHU Nice, FHU OncoAge, Nice, France
| | - Petros Christopoulos
- Translational Lung Research Center (TLRC) Heidelberg, Heidelberg, Germany.,German Center for Lung Research (DZL), Heidelberg, Germany.,Thoraxklinik and National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Marius Ilié
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Université Côte d'Azur, FHU OncoAge, Nice, France.,Centre Antoine Lacassagne Cancer Center, Université Côte d'Azur, CNRS, INSERM, IRCAN, FHU OncoAge, Nice, France.,Hospital-Integrated Biobank BB-0033-00025, Université Côte d'Azur, CHU Nice, FHU OncoAge, Nice, France
| | - Albrecht Stenzinger
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,German Center for Lung Research (DZL), Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Paul Hofman
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Université Côte d'Azur, FHU OncoAge, Nice, France.,Centre Antoine Lacassagne Cancer Center, Université Côte d'Azur, CNRS, INSERM, IRCAN, FHU OncoAge, Nice, France.,Hospital-Integrated Biobank BB-0033-00025, Université Côte d'Azur, CHU Nice, FHU OncoAge, Nice, France
| |
Collapse
|
13
|
Saha D, Ryan KR, Lakkaniga NR, Acharya B, Garcia NG, Smith EL, Frett B. Targeting Rearranged during Transfection in Cancer: A Perspective on Small-Molecule Inhibitors and Their Clinical Development. J Med Chem 2021; 64:11747-11773. [PMID: 34402300 DOI: 10.1021/acs.jmedchem.0c02167] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Rearranged during transfection (RET) is a receptor tyrosine kinase essential for the normal development and maturation of a diverse range of tissues. Aberrant RET signaling in cancers, due to RET mutations, gene fusions, and overexpression, results in the activation of downstream pathways promoting survival, growth, and metastasis. Pharmacological manipulation of RET is effective in treating RET-driven cancers, and efforts toward developing RET-specific therapies have increased over the last 5 years. In 2020, RET-selective inhibitors pralsetinib and selpercatinib achieved clinical approval, which marked the first approvals for kinase inhibitors specifically developed to target the RET oncoprotein. This Perspective discusses current development and clinical applications for RET precision medicine by providing an overview of the incremental improvement of kinase inhibitors for use in RET-driven malignancies.
Collapse
Affiliation(s)
- Debasmita Saha
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205 United States
| | - Katie Rose Ryan
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205 United States
| | - Naga Rajiv Lakkaniga
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205 United States
| | - Baku Acharya
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205 United States
| | - Noemi Garcia Garcia
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205 United States
| | - Erica Lane Smith
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205 United States
| | - Brendan Frett
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205 United States
| |
Collapse
|
14
|
What Is New in Biomarker Testing at Diagnosis of Advanced Non-Squamous Non-Small Cell Lung Carcinoma? Implications for Cytology and Liquid Biopsy. JOURNAL OF MOLECULAR PATHOLOGY 2021. [DOI: 10.3390/jmp2020015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The discovery and clinical validation of biomarkers predictive of the response of non-squamous non-small-cell lung carcinomas (NS-NSCLC) to therapeutic strategies continue to provide new data. The evaluation of novel treatments is based on molecular analyses aimed at determining their efficacy. These tests are increasing in number, but the tissue specimens are smaller and smaller and/or can have few tumor cells. Indeed, in addition to tissue samples, complementary cytological and/or blood samples can also give access to these biomarkers. To date, it is recommended and necessary to look for the status of five genomic molecular biomarkers (EGFR, ALK, ROS1, BRAFV600, NTRK) and of a protein biomarker (PD-L1). However, the short- and more or less long-term emergence of new targeted treatments of genomic alterations on RET and MET, but also on others’ genomic alteration, notably on KRAS, HER2, NRG1, SMARCA4, and NUT, have made cellular and blood samples essential for molecular testing. The aim of this review is to present the interest in using cytological and/or liquid biopsies as complementary biological material, or as an alternative to tissue specimens, for detection at diagnosis of new predictive biomarkers of NS-NSCLC.
Collapse
|
15
|
Salvatore D, Santoro M, Schlumberger M. The importance of the RET gene in thyroid cancer and therapeutic implications. Nat Rev Endocrinol 2021; 17:296-306. [PMID: 33603219 DOI: 10.1038/s41574-021-00470-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/15/2021] [Indexed: 02/07/2023]
Abstract
Since the discovery of the RET receptor tyrosine kinase in 1985, alterations of this protein have been found in diverse thyroid cancer subtypes. RET gene rearrangements are observed in papillary thyroid carcinoma, which result in RET fusion products. By contrast, single amino acid substitutions and small insertions and/or deletions are typical of hereditary and sporadic medullary thyroid carcinoma. RET rearrangements and mutations of extracellular cysteines facilitate dimerization and kinase activation, whereas mutations in the RET kinase coding domain drive dimerization-independent kinase activation. Thus, RET kinase inhibition is an attractive therapeutic target in patients with RET alterations. This approach was initially achieved using multikinase inhibitors, which affect multiple deregulated pathways that include RET kinase. In clinical practice, use of multikinase inhibitors in patients with advanced thyroid cancer resulted in therapeutic efficacy, which was associated with frequent and sometimes severe adverse effects. However, remarkable progress has been achieved with the identification of novel potent and selective RET kinase inhibitors for the treatment of advanced thyroid cancer. Although expanded clinical validation in future trials is needed, the sustained antitumoural activity and the improved safety profile of these novel compounds is opening a new exciting era in precision oncology for RET-driven cancers.
Collapse
Affiliation(s)
- Domenico Salvatore
- Department of Public Health, University of Naples "Federico II", Naples, Italy
| | - Massimo Santoro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Martin Schlumberger
- Département de Médecine Nucléaire et Cancérologie Endocrinienne, Gustave Roussy, Université Paris-Saclay, Villejuif, France.
| |
Collapse
|
16
|
Rebuzzi SE, Zullo L, Rossi G, Grassi M, Murianni V, Tagliamento M, Prelaj A, Coco S, Longo L, Dal Bello MG, Alama A, Dellepiane C, Bennicelli E, Malapelle U, Genova C. Novel Emerging Molecular Targets in Non-Small Cell Lung Cancer. Int J Mol Sci 2021; 22:ijms22052625. [PMID: 33807876 PMCID: PMC7961376 DOI: 10.3390/ijms22052625] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 12/11/2022] Open
Abstract
In the scenario of systemic treatment for advanced non-small cell lung cancer (NSCLC) patients, one of the most relevant breakthroughs is represented by targeted therapies. Throughout the last years, inhibitors of the epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK), c-Ros oncogene 1 (ROS1), and V-raf murine sarcoma viral oncogene homolog B (BRAF) have been approved and are currently used in clinical practice. However, other promising molecular drivers are rapidly emerging as therapeutic targets. This review aims to cover the molecular alterations with a potential clinical impact in NSCLC, including amplifications or mutations of the mesenchymal–epithelial transition factor (MET), fusions of rearranged during transfection (RET), rearrangements of the neurotrophic tyrosine kinase (NTRK) genes, mutations of the Kirsten rat sarcoma viral oncogene (KRAS) and phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha (PIK3CA), as well as amplifications or mutations of human epidermal growth factor receptor 2 (HER2). Additionally, we summarized the current status of targeted agents under investigation for such alterations. This revision of the current literature on emerging molecular targets is needed as the evolving knowledge on novel actionable oncogenic drivers and targeted agents is expected to increase the proportion of patients who will benefit from tailored therapeutic approaches.
Collapse
Affiliation(s)
- Sara Elena Rebuzzi
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (M.G.); (V.M.)
- Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genoa, 16132 Genoa, Italy; (M.T.); (C.G.)
- Correspondence:
| | - Lodovica Zullo
- Lung Cancer Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (L.Z.); (S.C.); (L.L.); (M.G.D.B.); (A.A.); (C.D.); (E.B.)
| | - Giovanni Rossi
- Medical Oncology Department, Ospedale Padre Antero Micone, 16153 Genoa, Italy;
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Via Roma 151, 07100 Sassari, Italy
| | - Massimiliano Grassi
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (M.G.); (V.M.)
| | - Veronica Murianni
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (M.G.); (V.M.)
| | - Marco Tagliamento
- Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genoa, 16132 Genoa, Italy; (M.T.); (C.G.)
- Lung Cancer Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (L.Z.); (S.C.); (L.L.); (M.G.D.B.); (A.A.); (C.D.); (E.B.)
| | - Arsela Prelaj
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy;
- Department of Electronics, Information, and Bioengineering, Polytechnic University of Milan, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Simona Coco
- Lung Cancer Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (L.Z.); (S.C.); (L.L.); (M.G.D.B.); (A.A.); (C.D.); (E.B.)
| | - Luca Longo
- Lung Cancer Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (L.Z.); (S.C.); (L.L.); (M.G.D.B.); (A.A.); (C.D.); (E.B.)
| | - Maria Giovanna Dal Bello
- Lung Cancer Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (L.Z.); (S.C.); (L.L.); (M.G.D.B.); (A.A.); (C.D.); (E.B.)
| | - Angela Alama
- Lung Cancer Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (L.Z.); (S.C.); (L.L.); (M.G.D.B.); (A.A.); (C.D.); (E.B.)
| | - Chiara Dellepiane
- Lung Cancer Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (L.Z.); (S.C.); (L.L.); (M.G.D.B.); (A.A.); (C.D.); (E.B.)
| | - Elisa Bennicelli
- Lung Cancer Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (L.Z.); (S.C.); (L.L.); (M.G.D.B.); (A.A.); (C.D.); (E.B.)
| | - Umberto Malapelle
- Department of Public Health, University of Naples Federico II, 80138 Naples, Italy;
| | - Carlo Genova
- Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genoa, 16132 Genoa, Italy; (M.T.); (C.G.)
- UO Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
17
|
Fancelli S, Caliman E, Mazzoni F, Brugia M, Castiglione F, Voltolini L, Pillozzi S, Antonuzzo L. Chasing the Target: New Phenomena of Resistance to Novel Selective RET Inhibitors in Lung Cancer. Updated Evidence and Future Perspectives. Cancers (Basel) 2021; 13:cancers13051091. [PMID: 33806299 PMCID: PMC7961559 DOI: 10.3390/cancers13051091] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/13/2021] [Accepted: 02/26/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary REarranged during Transfection (RET) is an emerging target for several types of cancer, including non-small cell lung cancer (NSCLC). The recent U.S. FDA approval of pralsetinib and selpercatinib raises issues regarding the emergence of secondary mutations and amplifications involved in parallel signaling pathways and receptors, liable for resistance mechanisms. The aim of this review is to explore recent knowledge on RET resistance in NSCLC in pre-clinic and in clinical settings and accordingly, the state-of-the-art in new drugs or combination of drugs development. Abstract The potent, RET-selective tyrosine kinase inhibitors (TKIs) pralsetinib and selpercatinib, are effective against the RET V804L/M gatekeeper mutants, however, adaptive mutations that cause resistance at the solvent front RET G810 residue have been found, pointing to the need for the development of the next-generation of RET-specific TKIs. Also, as seen in EGFR- and ALK-driven NSCLC, the rising of the co-occurring amplifications of KRAS and MET could represent other escaping mechanisms from direct inhibition. In this review, we summarize actual knowledge on RET fusions, focusing on those involved in NSCLC, the results of main clinical trials of approved RET-inhibition drugs, with particular attention on recent published results of selective TKIs, and finally, pre-clinical evidence regarding resistance mechanisms and suggestion on hypothetical and feasible drugs combinations and strategies viable in the near future.
Collapse
Affiliation(s)
- Sara Fancelli
- Medical Oncology Unit, Careggi University Hospital, 50134 Florence, Italy; (S.F.); (E.C.); (F.M.); (M.B.); (S.P.)
| | - Enrico Caliman
- Medical Oncology Unit, Careggi University Hospital, 50134 Florence, Italy; (S.F.); (E.C.); (F.M.); (M.B.); (S.P.)
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy;
| | - Francesca Mazzoni
- Medical Oncology Unit, Careggi University Hospital, 50134 Florence, Italy; (S.F.); (E.C.); (F.M.); (M.B.); (S.P.)
| | - Marco Brugia
- Medical Oncology Unit, Careggi University Hospital, 50134 Florence, Italy; (S.F.); (E.C.); (F.M.); (M.B.); (S.P.)
| | - Francesca Castiglione
- Pathological Histology and Molecular Diagnostics Unit, Careggi University Hospital, 50134 Florence, Italy;
| | - Luca Voltolini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy;
- Thoraco-Pulmonary Surgery Unit, Careggi University Hospital, 50134 Florence, Italy
| | - Serena Pillozzi
- Medical Oncology Unit, Careggi University Hospital, 50134 Florence, Italy; (S.F.); (E.C.); (F.M.); (M.B.); (S.P.)
| | - Lorenzo Antonuzzo
- Medical Oncology Unit, Careggi University Hospital, 50134 Florence, Italy; (S.F.); (E.C.); (F.M.); (M.B.); (S.P.)
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy;
- Correspondence: ; Tel.: +39-055-7948406
| |
Collapse
|
18
|
Radonic T, Geurts-Giele WRR, Samsom KG, Roemen GMJM, von der Thüsen JH, Thunnissen E, Meijssen IC, Sleddens HFBM, Dinjens WNM, Boelens MC, Weijers K, Speel EJM, Finn SP, O'Brien C, van Wezel T, Cohen D, Monkhorst K, Roepman P, Dubbink HJ. RET Fluorescence In Situ Hybridization Analysis Is a Sensitive but Highly Unspecific Screening Method for RET Fusions in Lung Cancer. J Thorac Oncol 2021; 16:798-806. [PMID: 33588111 DOI: 10.1016/j.jtho.2021.01.1619] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/09/2021] [Accepted: 01/19/2021] [Indexed: 12/31/2022]
Abstract
INTRODUCTION RET gene fusions are established oncogenic drivers in 1% of NSCLC. Accurate detection of advanced patients with RET fusions is essential to ensure optimal therapy choice. We investigated the performance of fluorescence in situ hybridization (FISH) as a diagnostic test for detecting functional RET fusions. METHODS Between January 2016 and November 2019, a total of 4873 patients with NSCLC were routinely screened for RET fusions using either FISH (n = 2858) or targeted RNA next-generation sequencing (NGS) (n = 2015). If sufficient material was available, positive cases were analyzed by both methods (n = 39) and multiple FISH assays (n = 17). In an independent cohort of 520 patients with NSCLC, whole-genome sequencing data were investigated for disruptive structural variations and functional fusions in the RET and compared with ALK and ROS1 loci. RESULTS FISH analysis revealed RET rearrangement in 48 of 2858 cases; of 30 rearranged cases double tested with NGS, only nine had a functional RET fusion. RNA NGS yielded RET fusions in 14 of 2015 cases; all nine cases double tested by FISH had RET locus rearrangement. Of these 18 verified RET fusion cases, 16 had a split signal and two a complex rearrangement by FISH. By whole-genome sequencing, the prevalence of functional fusions compared with all disruptive events was lower in the RET (4 of 9, 44%) than the ALK (27 of 34, 79%) and ROS1 (9 of 12, 75%) loci. CONCLUSIONS FISH is a sensitive but unspecific technique for RET screening, always requiring a confirmation using an orthogonal technique, owing to frequently occurring RET rearrangements not resulting in functional fusions in NSCLC.
Collapse
Affiliation(s)
- Teodora Radonic
- Department of Pathology, Cancer Center Amsterdam, Vrije University, Amsterdam University Medical Center, Amsterdam, The Netherlands.
| | - W R R Geurts-Giele
- Department of Pathology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Kris G Samsom
- Department of Pathology, Antoni van Leeuwenhoek Hospital, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Guido M J M Roemen
- Department of Pathology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Jan H von der Thüsen
- Department of Pathology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Erik Thunnissen
- Department of Pathology, Cancer Center Amsterdam, Vrije University, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Isabelle C Meijssen
- Department of Pathology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Hein F B M Sleddens
- Department of Pathology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Winand N M Dinjens
- Department of Pathology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Mirjam C Boelens
- Department of Pathology, Antoni van Leeuwenhoek Hospital, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Karin Weijers
- Department of Pathology, Cancer Center Amsterdam, Vrije University, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Ernst Jan M Speel
- Department of Pathology, Maastricht University Medical Center, Maastricht, The Netherlands; School for Oncology and Developmental Biology (GROW), Maastricht, The Netherlands
| | - Stephen P Finn
- Department of Histopathology, St. James's Hospital and Trinity College Dublin, Dublin, Ireland; Cancer Molecular Diagnostics, St. James's Hospital and Trinity College Dublin, Dublin, Ireland; Thoracic Oncology Research Group, Trinity Translational Medical Institute, St. James's Hospital and Trinity College Dublin, Dublin, Ireland
| | - Cathal O'Brien
- Department of Histopathology, St. James's Hospital and Trinity College Dublin, Dublin, Ireland; Cancer Molecular Diagnostics, St. James's Hospital and Trinity College Dublin, Dublin, Ireland; Thoracic Oncology Research Group, Trinity Translational Medical Institute, St. James's Hospital and Trinity College Dublin, Dublin, Ireland
| | - Tom van Wezel
- Department of Pathology, Antoni van Leeuwenhoek Hospital, Netherlands Cancer Institute, Amsterdam, The Netherlands; Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Danielle Cohen
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Kim Monkhorst
- Department of Pathology, Antoni van Leeuwenhoek Hospital, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Paul Roepman
- Hartwig Medical Foundation, Amsterdam, The Netherlands
| | - H J Dubbink
- Department of Pathology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| |
Collapse
|
19
|
Herbst RS, Aisner DL, Sonett JR, Turk AT, Weintraub JL, Lindeman NI. Practical Considerations Relating to Routine Clinical Biomarker Testing for Non-small Cell Lung Cancer: Focus on Testing for RET Fusions. Front Med (Lausanne) 2021; 7:562480. [PMID: 33553195 PMCID: PMC7859651 DOI: 10.3389/fmed.2020.562480] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 11/03/2020] [Indexed: 11/15/2022] Open
Abstract
For patients with advanced non–small cell lung cancer, genomic profiling of tumors to identify potentially targetable alterations and thereby inform treatment selection is now part of standard care. While molecular analyses are primarily focused on actionable biomarkers associated with regulatory agency-approved therapies, there are a number of emerging biomarkers linked to investigational agents in advanced stages of clinical development will become approved agents. A particularly timely example is the reported data and US Food and Drug Administration approval of highly specific small molecule inhibitors of the proto-oncogene tyrosine-protein kinase receptor RET indicate that testing for tumor RET gene fusions in patients with NSCLC has become clinically important. As the number of biomarkers to be tested in NSCLC grows, it becomes increasingly important to optimize and prioritize the use of biopsy tissue, in order to both continue to allow accurate histopathological diagnosis and also to support concurrent genomic profiling to identify perhaps relatively uncommon genetic events. In order to provide practical expert consensus guidance to optimize processes facilitating genomic testing in NSCLC and to overcome barriers to access and implementation, a multidisciplinary advisory board was held in New York, on January 30, 2019. The panel comprised physicians involved in sample procurement (interventional radiologists and a thoracic surgeon), surgical pathologists specializing in the lung, molecular pathologists, and thoracic oncologists. Particular consideration was given to the key barriers faced by these experts in establishing institutional genomic screening programs for NSCLC. Potential solutions have been devised in the form of consensus opinions that might be used to help resolve such issues.
Collapse
Affiliation(s)
- Roy S Herbst
- Section of Medical Oncology, Department of Internal Medicine, Yale Cancer Center, Yale School of Medicine, New Haven, CT, United States
| | - Dara L Aisner
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Joshua R Sonett
- Division of Thoracic Surgery, Lung Transplant Program, Columbia University Medical Center, New York, NY, United States
| | - Andrew T Turk
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Joshua L Weintraub
- Division of Interventional Radiology, Columbia University Irving Medical Center, New York, NY, United States
| | - Neal I Lindeman
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, United States
| |
Collapse
|
20
|
Lu C, Zhou Q. Diagnostics, therapeutics and RET inhibitor resistance for RET fusion-positive non-small cell lung cancers and future perspectives. Cancer Treat Rev 2021; 96:102153. [PMID: 33773204 DOI: 10.1016/j.ctrv.2021.102153] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/08/2020] [Accepted: 01/02/2021] [Indexed: 12/17/2022]
Abstract
Selective RET inhibitors is the current hot topic, making multikinase inhibitors a thing of the past. However, the limitation of various test approaches, coupled with lack of knowledge of acquired resistance mechanisms, and specific patient groups that bear special consideration, remains a challenge. Herein, we outline utility of various diagnostic techniques, provide evidence to guide management of RET-fusion-positive Non-Small Cell Lung Cancer (NSCLC) patients, including specific patient groups, such as EGFR-mutant NSCLC patients who acquired RET fusions after resisting EGFR TKIs, and offer a compendium of mechanisms of acquired resistance to RET targeted therapies. This review further provides a list of ongoing clinical trials and summarizes perspectives to guide future development of drugs and trials for this population.
Collapse
Affiliation(s)
- Chang Lu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, and Guangdong Academy of Medical Sciences, Guangzhou, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Qing Zhou
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, and Guangdong Academy of Medical Sciences, Guangzhou, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
21
|
Zhou H, Ma R, Gao L, Zhang J, Zhang A, Zhang X, Ren F, Zhang W, Liao L, Yang Q, Xu S, Otieno Ogutu C, Zhao J, Yu M, Jiang Q, Korban SS, Han Y. A 1.7-Mb chromosomal inversion downstream of a PpOFP1 gene is responsible for flat fruit shape in peach. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:192-205. [PMID: 32722872 PMCID: PMC7769229 DOI: 10.1111/pbi.13455] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/16/2020] [Indexed: 05/06/2023]
Abstract
Flat peaches have become popular worldwide due to their novelty and convenience. The peach flat fruit trait is genetically controlled by a single gene at the S locus, but its genetic basis remains unclear. Here, we report a 1.7-Mb chromosomal inversion downstream of a candidate gene encoding OVATE Family Protein, designated PpOFP1, as the causal mutation for the peach flat fruit trait. Genotyping of 727 peach cultivars revealed an occurrence of this large inversion in flat peaches, but absent in round peaches. Ectopic overexpression of PpOFP1 resulted in oval-shaped leaves and shortened siliques in Arabidopsis, suggesting its role in repressing cell elongation. Transcriptional activation of PpOFP1 by the chromosomal inversion may repress vertical elongation in flat-shaped fruits at early stages of development, resulting in the flat fruit shape. Moreover, PpOFP1 can interact with fruit elongation activator PpTRM17, suggesting a regulatory network controlling fruit shape in peach. Additionally, screening of peach wild relatives revealed an exclusive presence of the chromosomal inversion in P. ferganensis, supporting that this species is the ancestor of the domesticated peach. This study provides new insights into mechanisms underlying fruit shape evolution and molecular tools for genetic improvement of fruit shape trait in peach breeding programmes.
Collapse
Affiliation(s)
- Hui Zhou
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical GardenThe Innovative Academy of Seed DesignChinese Academy of SciencesWuhanChina
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural CropsInstitute of HorticultureAnhui Academy of Agricultural SciencesHefeiChina
- Center of Economic BotanyCore Botanical GardensChinese Academy of SciencesWuhanChina
| | - Ruijuan Ma
- Institute of HorticultureJiangsu Academy of Agricultural SciencesNanjingChina
| | - Lei Gao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical GardenThe Innovative Academy of Seed DesignChinese Academy of SciencesWuhanChina
- Boyce Thompson Institute for Plant ResearchCornell UniversityIthacaNYUSA
| | - Jinyun Zhang
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural CropsInstitute of HorticultureAnhui Academy of Agricultural SciencesHefeiChina
| | - Aidi Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical GardenThe Innovative Academy of Seed DesignChinese Academy of SciencesWuhanChina
- Center of Economic BotanyCore Botanical GardensChinese Academy of SciencesWuhanChina
| | - Xiujun Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical GardenThe Innovative Academy of Seed DesignChinese Academy of SciencesWuhanChina
- Center of Economic BotanyCore Botanical GardensChinese Academy of SciencesWuhanChina
| | - Fei Ren
- Institute of Forestry and PomologyBeijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Weihan Zhang
- Agricultural Bioinformatics Key Laboratory of Hubei ProvinceCollege of InformaticsHuazhong Agricultural UniversityWuhanChina
| | - Liao Liao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical GardenThe Innovative Academy of Seed DesignChinese Academy of SciencesWuhanChina
- Center of Economic BotanyCore Botanical GardensChinese Academy of SciencesWuhanChina
| | - Qiurui Yang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical GardenThe Innovative Academy of Seed DesignChinese Academy of SciencesWuhanChina
| | - Shengli Xu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical GardenThe Innovative Academy of Seed DesignChinese Academy of SciencesWuhanChina
| | - Collins Otieno Ogutu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical GardenThe Innovative Academy of Seed DesignChinese Academy of SciencesWuhanChina
- Department of Natural Resources and Environmental SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Jianbo Zhao
- Institute of Forestry and PomologyBeijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Mingliang Yu
- Institute of HorticultureJiangsu Academy of Agricultural SciencesNanjingChina
| | - Quan Jiang
- Institute of Forestry and PomologyBeijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Schuyler S. Korban
- Department of Natural Resources and Environmental SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Yuepeng Han
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical GardenThe Innovative Academy of Seed DesignChinese Academy of SciencesWuhanChina
- Center of Economic BotanyCore Botanical GardensChinese Academy of SciencesWuhanChina
- Sino‐African Joint Research CenterChinese Academy of SciencesWuhanChina
| |
Collapse
|
22
|
Hsiao SJ, Ou SHI. Is Retention of the 5' Nononcogenic ALK Fusion Variant a Novel Poor Prognostic Factor in ALK-Positive NSCLC? J Thorac Oncol 2020; 15:1103-1105. [PMID: 32593442 DOI: 10.1016/j.jtho.2020.04.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Susan J Hsiao
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| | - Sai-Hong Ignatius Ou
- Department of Medicine, Chao Family Comprehensive Cancer Center, Division of Hematology-Oncology, University of California Irvine School of Medicine, Orange, California.
| |
Collapse
|
23
|
Nozaki Y, Yamamoto H, Iwasaki T, Sato M, Jiromaru R, Hongo T, Yasumatsu R, Oda Y. Clinicopathological features and immunohistochemical utility of NTRK-, ALK-, and ROS1-rearranged papillary thyroid carcinomas and anaplastic thyroid carcinomas. Hum Pathol 2020; 106:82-92. [PMID: 32980422 DOI: 10.1016/j.humpath.2020.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 02/08/2023]
Abstract
NTRK1/3, ALK, and ROS1 translocations have been reported in a minor subset of papillary thyroid carcinomas (PTCs). We aimed to elucidate the prevalence and clinicopathological characteristics of these gene rearrangements and the utility of immunohistochemistry (IHC) in PTC and anaplastic thyroid carcinoma (ATC). We screened nonradiation-exposed cases of 307 PTCs and 16 ATCs by IHC for pan-Trk, ALK, and ROS1, followed by fluorescence in situ hybridization (FISH). In the PTC group, IHC for pan-Trk, ALK, and ROS1 was positive in 18 cases (5.9%), 1 case (0.3%), and 12 cases (3.9%), respectively. Among the pan-Trk IHC-positive cases (n = 18), 2 cases (11.1%; 0.7% of all PTCs) had NTRK1 or NTRK3 gene rearrangement with conventional PTC histology. The ALK IHC-positive case (n = 1) was the follicular variant of PTC with consistent ALK gene rearrangement. ROS1 gene rearrangement was not detectable in the ROS1 IHC-positive PTCs (0/12) by FISH. Most (approximately 70%) of the pan-Trk or ROS1 IHC-positive/FISH-negative cases had BRAF gene mutation with conventional PTC morphology. In the ATC group, neither ALK nor ROS1 IHC was positive, whereas pan-Trk IHC was positive in 1 case (6.3%) in which NTRK1 gene rearrangement was confirmed by FISH. These results suggest that NTRK, ALK, and ROS1 rearrangements are rare molecular events in nonradiation-exposed Japanese patients with PTC and ATC. Although IHC is not an entirely specific surrogate for these abnormalities and does not serve as a stand-alone companion diagnosis, the combined use of IHC and molecular testing may be helpful for determining promising therapeutic strategies with tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Yui Nozaki
- Department of Anatomic Pathology, Kyushu University, Graduate School of Medical Sciences, Fukuoka, 812-8582, Japan
| | - Hidetaka Yamamoto
- Department of Anatomic Pathology, Kyushu University, Graduate School of Medical Sciences, Fukuoka, 812-8582, Japan
| | - Takeshi Iwasaki
- Department of Anatomic Pathology, Kyushu University, Graduate School of Medical Sciences, Fukuoka, 812-8582, Japan
| | - Masanobu Sato
- Department of Anatomic Pathology, Kyushu University, Graduate School of Medical Sciences, Fukuoka, 812-8582, Japan; Department of Otorhinolaryngology, Kyushu University, Graduate School of Medical Sciences, Fukuoka, 812-8582, Japan
| | - Rina Jiromaru
- Department of Anatomic Pathology, Kyushu University, Graduate School of Medical Sciences, Fukuoka, 812-8582, Japan; Department of Otorhinolaryngology, Kyushu University, Graduate School of Medical Sciences, Fukuoka, 812-8582, Japan
| | - Takahiro Hongo
- Department of Anatomic Pathology, Kyushu University, Graduate School of Medical Sciences, Fukuoka, 812-8582, Japan
| | - Ryuji Yasumatsu
- Department of Otorhinolaryngology, Kyushu University, Graduate School of Medical Sciences, Fukuoka, 812-8582, Japan
| | - Yoshinao Oda
- Department of Otorhinolaryngology, Kyushu University, Graduate School of Medical Sciences, Fukuoka, 812-8582, Japan.
| |
Collapse
|
24
|
Kohno T, Tabata J, Nakaoku T. REToma: a cancer subtype with a shared driver oncogene. Carcinogenesis 2020; 41:123-129. [PMID: 31711124 DOI: 10.1093/carcin/bgz184] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/17/2019] [Accepted: 11/07/2019] [Indexed: 02/06/2023] Open
Abstract
RET (REarranged during Transfection), which encodes a receptor tyrosine kinase for members of the glial cell line-derived neurotrophic factor, plays a role as driver oncogene in a variety of human cancers. Fusion of RET with several partner genes has been detected in papillary thyroid, lung, colorectal, pancreatic and breast cancers, and tyrosine kinase inhibitors (TKIs) for RET (particularly RET-specific inhibitors) show promising therapeutic effects against such cancers. Oncogenic mutations within the extracellular cysteine-rich and intracellular kinase domains of RET drive medullary thyroid carcinogenesis; the same mutations are also observed in a small subset of diverse cancers such as lung, colorectal and breast cancers. Considering the oncogenic nature of RET mutants, lung, colorectal and breast cancers are predicted to respond to RET TKIs in a manner similar to medullary thyroid cancer. In summary, cancers carrying oncogenic RET alterations as a driver mutation could be collectively termed 'REToma' and treated with RET TKIs in a tissue-agnostic manner.
Collapse
Affiliation(s)
- Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, Japan
| | - Junya Tabata
- Division of Genome Biology, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, Japan
| | - Takashi Nakaoku
- Division of Genome Biology, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, Japan
| |
Collapse
|
25
|
Yang SR, Schultheis AM, Yu H, Mandelker D, Ladanyi M, Büttner R. Precision medicine in non-small cell lung cancer: Current applications and future directions. Semin Cancer Biol 2020; 84:184-198. [PMID: 32730814 DOI: 10.1016/j.semcancer.2020.07.009] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/24/2020] [Accepted: 07/13/2020] [Indexed: 12/24/2022]
Abstract
Advances in biomarkers, targeted therapies, and immuno-oncology have transformed the clinical management of patients with advanced NSCLC. For oncogene-driven tumors, there are highly effective targeted therapies against EGFR, ALK, ROS1, BRAF, TRK, RET, and MET. In addition, investigational therapies for KRAS, NRG1, and HER2 have shown promising results and may become standard-of-care in the near future. In parallel, immune-checkpoint therapy has emerged as an indispensable treatment modality, especially for patients lacking actionable oncogenic drivers. While PD-L1 expression has shown modest predictive utility, biomarkers for immune-checkpoint inhibition in NSCLC have remained elusive and represent an area of active investigation. Given the growing importance of biomarkers, optimal utilization of small tissue biopsies and alternative genotyping methods using circulating cell-free DNA have become increasingly integrated into clinical practice. In this review, we will summarize the current landscape and emerging trends in precision medicine for patients with advanced NSCLC with a special focus on predictive biomarker testing.
Collapse
Affiliation(s)
- Soo-Ryum Yang
- Memorial Sloan Kettering Cancer Center, Department of Pathology, United States
| | | | - Helena Yu
- Memorial Sloan Kettering Cancer Center, Department of Medicine, United States
| | - Diana Mandelker
- Memorial Sloan Kettering Cancer Center, Department of Pathology, United States
| | - Marc Ladanyi
- Memorial Sloan Kettering Cancer Center, Department of Pathology, United States
| | - Reinhard Büttner
- University Hospital of Cologne, Department of Pathology, Germany.
| |
Collapse
|
26
|
Stinchcombe TE. Current management of RET rearranged non-small cell lung cancer. Ther Adv Med Oncol 2020; 12:1758835920928634. [PMID: 32782485 PMCID: PMC7385825 DOI: 10.1177/1758835920928634] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/01/2020] [Indexed: 12/14/2022] Open
Abstract
The identification of oncogenic drivers, and the subsequent development of targeted therapies established biomarker-based care for metastatic non-small cell lung cancer (NSCLC). Biomarker testing is standard of care in NSCLC patients with adenocarcinoma because multiple targeted therapies are available. Rearranged during transfection (RET) rearrangements were identified as oncogenic drivers in NSCLC, and are more common among younger patients, adenocarcinoma histology, and patients with a history of never smoking. The prevalence is estimated to be 1–2% among patients with adenocarcinoma histology. The most common rearrangement is between intron 11 of the RET gene and intron 15 of the KIF5B gene, and the next most frequent rearrangement is with the CCDC6 gene. RET rearrangements lead to constitutive activation of the RET tyrosine kinase and increased cell proliferation, migration, and survival. Phase II studies investigated the activity of multi-targeted tyrosine kinase inhibitors in patients with NSCLC with a confirmed RET rearrangement. These agents have limited potency against RET, and activity against the epidermal growth factor receptor and vascular endothelial growth factor pathways. These agents revealed modest activity, and were poorly tolerated due to the off-target toxicities. These struggles contributed to the development of more potent and specific RET tyrosine kinase inhibitors. Preliminary results from early phase trials of selpercatinib (LOXO-292) and pralsetinib (BLU-667) revealed promising efficacy and improved tolerability. The availability of these agents will make routine testing for RET rearrangements a priority.
Collapse
|
27
|
Liu X, Hu X, Shen T, Li Q, Mooers BHM, Wu J. RET kinase alterations in targeted cancer therapy. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:472-481. [PMID: 35582449 PMCID: PMC8992479 DOI: 10.20517/cdr.2020.15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 01/29/2023]
Abstract
The rearranged during transfection (RET) gene encodes a protein tyrosine kinase. RET alterations by point mutations and gene fusions were found in diverse cancers. RET fusions allow abnormal expression and activation of the oncogenic kinase, whereas only a few of RET point mutations found in human cancers are known oncogenic drivers. Earlier studies of RET-targeted therapy utilized multi-targeted protein tyrosine kinase inhibitors (TKIs) with RET inhibitor activity. These multi-targeted TKIs often led to high-grade adverse events and were subject to resistance caused by the gatekeeper mutations. Recently, two potent and selective RET TKIs, pralsetinib (BLU-667) and selpercatinib (LOXO-292), were developed. High response rates to these selective RET inhibitors across multiple forms of RET alterations in different types of cancers were observed in clinical trials, demonstrating the RET dependence in human cancers harboring these RET lesions. Pralsetinib and selpercatinib were effective in inhibiting RETV804L/M gatekeeper mutants. However, adaptive mutations that cause resistance to pralsetinib or selpercatinib at the solvent front RETG810 residue have been found, pointing to the need for the development of the next-generation of RET TKIs.
Collapse
Affiliation(s)
- Xuan Liu
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Authors contributed equally
| | - Xueqing Hu
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Medical Oncology and Cancer Institute, ShuGuang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Authors contributed equally
| | - Tao Shen
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Qi Li
- Department of Medical Oncology and Cancer Institute, ShuGuang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Blaine H M Mooers
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Jie Wu
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
28
|
RET Gene Fusions in Malignancies of the Thyroid and Other Tissues. Genes (Basel) 2020; 11:genes11040424. [PMID: 32326537 PMCID: PMC7230609 DOI: 10.3390/genes11040424] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/05/2020] [Accepted: 04/12/2020] [Indexed: 02/07/2023] Open
Abstract
Following the identification of the BCR-ABL1 (Breakpoint Cluster Region-ABelson murine Leukemia) fusion in chronic myelogenous leukemia, gene fusions generating chimeric oncoproteins have been recognized as common genomic structural variations in human malignancies. This is, in particular, a frequent mechanism in the oncogenic conversion of protein kinases. Gene fusion was the first mechanism identified for the oncogenic activation of the receptor tyrosine kinase RET (REarranged during Transfection), initially discovered in papillary thyroid carcinoma (PTC). More recently, the advent of highly sensitive massive parallel (next generation sequencing, NGS) sequencing of tumor DNA or cell-free (cfDNA) circulating tumor DNA, allowed for the detection of RET fusions in many other solid and hematopoietic malignancies. This review summarizes the role of RET fusions in the pathogenesis of human cancer.
Collapse
|
29
|
Subbiah V, Yang D, Velcheti V, Drilon A, Meric-Bernstam F. State-of-the-Art Strategies for Targeting RET-Dependent Cancers. J Clin Oncol 2020; 38:1209-1221. [PMID: 32083997 DOI: 10.1200/jco.19.02551] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Activating receptor tyrosine kinase RET (rarranged during transfection) gene alterations have been identified as oncogenic in multiple malignancies. RET gene rearrangements retaining the kinase domain are oncogenic drivers in papillary thyroid cancer, non-small-cell lung cancer, and multiple other cancers. Activating RET mutations are associated with different phenotypes of multiple endocrine neoplasia type 2 as well as sporadic medullary thyroid cancer. RET is thus an attractive therapeutic target in patients with oncogenic RET alterations. Multikinase inhibitors with RET inhibitor activity, such as cabozantinib and vandetanib, have been explored in the clinic for tumors with activating RET gene alterations with modest clinical efficacy. As a result of the nonselective nature of these multikinase inhibitors, patients had off-target adverse effects, such as hypertension, rash, and diarrhea. This resulted in a narrow therapeutic index of these drugs, limiting ability to dose for clinically effective RET inhibition. In contrast, the recent discovery and clinical validation of highly potent selective RET inhibitors (pralsetinib, selpercatinib) demonstrating improved efficacy and a more favorable toxicity profile are poised to alter the landscape of RET-dependent cancers. These drugs appear to have broad activity across tumors with activating RET alterations. The mechanisms of resistance to these next-generation highly selective RET inhibitors is an area of active research. This review summarizes the current understanding of RET alterations and the state-of-the-art treatment strategies in RET-dependent cancers.
Collapse
Affiliation(s)
- Vivek Subbiah
- Department of Investigational Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX.,Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX.,MD Anderson Cancer Network, Houston, TX
| | - Dong Yang
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Alexander Drilon
- Thoracic Oncology Service, Early Drug Development Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY.,Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX.,Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
30
|
Cerrato A, Morra F, Di Domenico I, Celetti A. NSCLC Mutated Isoforms of CCDC6 Affect the Intracellular Distribution of the Wild Type Protein Promoting Cisplatinum Resistance and PARP Inhibitors Sensitivity in Lung Cancer Cells. Cancers (Basel) 2019; 12:cancers12010044. [PMID: 31877762 PMCID: PMC7016757 DOI: 10.3390/cancers12010044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022] Open
Abstract
CCDC6 is implicated in cell cycle checkpoints and DNA damage repair by homologous recombination (HR). In NSCLC, CCDC6 is barely expressed in about 30% of patients and CCDC6 gene rearrangements with RET and ROS kinases are detected in about 1% of patients. Recently, CCDC6 point-mutations naming E227K, S351Y, N394Y, and T462A have been identified in primary NSCLC. In this work, we analyze the effects exerted by the CCDC6 mutated isoforms on lung cancer cells. By pull-down experiments and immunofluorescence, we evaluated the biochemical and morphological effects of CCDC6 lung-mutants on the CCDC6 wild type protein. By using two HR-reporter assays, we analyzed the effect of CCDC6 lung-mutants in perturbing CCDC6 physiology in the HR process. Finally, by cell-titer assay, we evaluated the response to the treatment with different drugs in lung cancer cells expressing CCDC6 mutants. This work shows that the CCDC6 mutated and truncated isoforms, identified so far in NSCLC, affected the intracellular distribution of the wild type protein and impaired the CCDC6 function in the HR process, ultimately inducing cisplatinum resistance and PARP-inhibitors sensitivity in lung cancer cells. The identification of selected molecular alterations involving CCDC6 gene product might define predictive biomarkers for personalized treatment in NSCLC.
Collapse
|
31
|
Yokoyama TT, Sakamoto Y, Seki M, Suzuki Y, Kasahara M. MoMI-G: modular multi-scale integrated genome graph browser. BMC Bioinformatics 2019; 20:548. [PMID: 31690272 PMCID: PMC6833150 DOI: 10.1186/s12859-019-3145-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/09/2019] [Indexed: 01/30/2023] Open
Abstract
Background Genome graph is an emerging approach for representing structural variants on genomes with branches. For example, representing structural variants of cancer genomes as a genome graph is more natural than representing such genomes as differences from the linear reference genome. While more and more structural variants are being identified by long-read sequencing, many of them are difficult to visualize using existing structural variants visualization tools. To this end, visualization method for large genome graphs such as human cancer genome graphs is demanded. Results We developed MOdular Multi-scale Integrated Genome graph browser, MoMI-G, a web-based genome graph browser that can visualize genome graphs with structural variants and supporting evidences such as read alignments, read depth, and annotations. This browser allows more intuitive recognition of large, nested, and potentially more complex structural variations. MoMI-G has view modules for different scales, which allow users to view the whole genome down to nucleotide-level alignments of long reads. Alignments spanning reference alleles and those spanning alternative alleles are shown in the same view. Users can customize the view, if they are not satisfied with the preset views. In addition, MoMI-G has Interval Card Deck, a feature for rapid manual inspection of hundreds of structural variants. Herein, we describe the utility of MoMI-G by using representative examples of large and nested structural variations found in two cell lines, LC-2/ad and CHM1. Conclusions Users can inspect complex and large structural variations found by long-read analysis in large genomes such as human genomes more smoothly and more intuitively. In addition, users can easily filter out false positives by manually inspecting hundreds of identified structural variants with supporting long-read alignments and annotations in a short time. Software availability MoMI-G is freely available at https://github.com/MoMI-G/MoMI-G under the MIT license.
Collapse
Affiliation(s)
- Toshiyuki T Yokoyama
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Yoshitaka Sakamoto
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Masahide Seki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Masahiro Kasahara
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan.
| |
Collapse
|
32
|
Rich TA, Reckamp KL, Chae YK, Doebele RC, Iams WT, Oh M, Raymond VM, Lanman RB, Riess JW, Stinchcombe TE, Subbiah V, Trevarthen DR, Fairclough S, Yen J, Gautschi O. Analysis of Cell-Free DNA from 32,989 Advanced Cancers Reveals Novel Co-occurring Activating RET Alterations and Oncogenic Signaling Pathway Aberrations. Clin Cancer Res 2019; 25:5832-5842. [PMID: 31300450 DOI: 10.1158/1078-0432.ccr-18-4049] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 05/06/2019] [Accepted: 07/02/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE RET is an emerging oncogenic target showing promise in phase I/II clinical trials. An understudied aspect of RET-driven cancers is the extent to which co-occurring genomic alterations exist and how they may impact prognosis or therapeutic response. EXPERIMENTAL DESIGN Somatic activating RET alterations were identified among 32,989 consecutive patients with metastatic solid tumors tested with a clinical cell-free circulating tumor DNA (cfDNA) assay. This comprehensive next-generation sequencing (NGS) assay evaluates single-nucleotide variants, and select indels, fusions, and copy number gains in 68-73 clinically relevant cancer genes. RESULTS A total of 176 somatic activating RET alterations were detected in 170 patients (143 fusions and 33 missense mutations). Patients had non-small cell lung (NSCLC, n = 125), colorectal (n = 15), breast (n = 8), thyroid (n = 8), or other (n = 14) cancers. Alterations in other oncogenic signaling pathway genes were frequently identified in RET-positive samples and varied by specific RET fusion gene partner. RET fusions involving partners other than KIF5B were enriched for alterations in MAPK pathway genes and other bona fide oncogenic drivers of NSCLC, particularly EGFR. Molecular and clinical data revealed that these variants emerged later in the genomic evolution of the tumor as mechanisms of resistance to EGFR tyrosine kinase inhibitors. CONCLUSIONS In the largest cancer cohort with somatic activating RET alterations, we describe novel co-occurrences of oncogenic signaling pathway aberrations. We find that KIF5B-RET fusions are highly specific for NSCLC. In our study, only non-KIF5B-RET fusions contributed to anti-EGFR therapy resistance. Knowledge of specific RET fusion gene partner may have clinical significance.
Collapse
Affiliation(s)
| | - Karen L Reckamp
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Young Kwang Chae
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Robert C Doebele
- Medical Oncology/Department of Medicine, University of Colorado Cancer Center, Aurora, Colorado
| | - Wade T Iams
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Michael Oh
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | | | - Jonathan W Riess
- Division of Hematology/Oncology, University of California Davis Comprehensive Cancer Center, Sacramento, California
| | | | - Vivek Subbiah
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David R Trevarthen
- Department of Hematology/Oncology, Comprehensive Cancer Care and Research Institute of Colorado, Englewood, Colorado
| | | | | | - Oliver Gautschi
- University of Berne and Department of Medicine, Cantonal Hospital Lucerne, Lucerne, Switzerland
| |
Collapse
|
33
|
Laxmi A, Gupta P, Gupta J. CCDC6, a gene product in fusion with different protoncogenes, as a potential chemotherapeutic target. Cancer Biomark 2019; 24:383-393. [PMID: 30909182 DOI: 10.3233/cbm-181601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Aishwarya Laxmi
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Pawan Gupta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
- Department of Research and Development, Lovely Professional University, Phagwara, Punjab 144411, India
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Jeena Gupta
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| |
Collapse
|
34
|
A computational tool to detect DNA alterations tailored to formalin-fixed paraffin-embedded samples in cancer clinical sequencing. Genome Med 2018; 10:44. [PMID: 29880027 PMCID: PMC5992758 DOI: 10.1186/s13073-018-0547-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 05/07/2018] [Indexed: 12/16/2022] Open
Abstract
Advanced cancer genomics technologies are now being employed in clinical sequencing, where next-generation sequencers are used to simultaneously identify multiple types of DNA alterations for prescription of molecularly targeted drugs. However, no computational tool is available to accurately detect DNA alterations in formalin-fixed paraffin-embedded (FFPE) samples commonly used in hospitals. Here, we developed a computational tool tailored to the detection of single nucleotide variations, indels, fusions, and copy number alterations in FFPE samples. Elaborated multilayer noise filters reduced the inherent noise while maintaining high sensitivity, as evaluated in tumor-unmatched normal samples using orthogonal technologies. This tool, cisCall, should facilitate clinical sequencing in everyday diagnostics. It is available at https://www.ciscall.org.
Collapse
|
35
|
|
36
|
A secondary RET mutation in the activation loop conferring resistance to vandetanib. Nat Commun 2018; 9:625. [PMID: 29434222 PMCID: PMC5809600 DOI: 10.1038/s41467-018-02994-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 01/08/2018] [Indexed: 01/09/2023] Open
Abstract
Resistance to vandetanib, a type I RET kinase inhibitor, developed in a patient with metastatic lung adenocarcinoma harboring a CCDC6-RET fusion that initially exhibited a response to treatment. The resistant tumor acquired a secondary mutation resulting in a serine-to-phenylalanine substitution at codon 904 in the activation loop of the RET kinase domain. The S904F mutation confers resistance to vandetanib by increasing the ATP affinity and autophosphorylation activity of RET kinase. A reduced interaction with the drug is also observed in vitro for the S904F mutant by thermal shift assay. A crystal structure of the S904F mutant reveals a small hydrophobic core around F904 likely to enhance basal kinase activity by stabilizing an active conformer. Our findings indicate that missense mutations in the activation loop of the kinase domain are able to increase kinase activity and confer drug resistance through allosteric effects. Mechanisms of acquired resistance to RET tyrosine kinase inhibitors in lung cancers are largely unknown. Here, the authors report in a lung adenocarcinoma patient harboring a CCDC6-RET mutation in the RET kinase (S904F) that results in resistance to the kinase inhibitor vandetanib by increasing the ATP affinity and autophosphorylation activity of RET kinase.
Collapse
|
37
|
Targeting RET-driven cancers: lessons from evolving preclinical and clinical landscapes. Nat Rev Clin Oncol 2017; 15:151-167. [PMID: 29134959 DOI: 10.1038/nrclinonc.2017.175] [Citation(s) in RCA: 243] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The gene encoding the receptor-tyrosine kinase RET was first discovered more than three decades ago, and activating RET rearrangements and mutations have since been identified as actionable drivers of oncogenesis. Several multikinase inhibitors with activity against RET have been explored in the clinic, and confirmed responses to targeted therapy with these agents have been observed in patients with RET-rearranged lung cancers or RET-mutant thyroid cancers. Nevertheless, response rates to RET-directed therapy are modest compared with those achieved using targeted therapies matched to other oncogenic drivers of solid tumours, such as sensitizing EGFR or BRAFV600E mutations, or ALK or ROS1 rearrangements. To date, no RET-directed targeted therapeutic has received regulatory approval for the treatment of molecularly defined populations of patients with RET-mutant or RET-rearranged solid tumours. In this Review, we discuss how emerging data have informed the debate over whether the limited success of multikinase inhibitors with activity against RET can be attributed to the tractability of RET as a drug target or to the lack, until 2017, of highly specific inhibitors of this oncoprotein in the clinic. We emphasize that novel approaches to targeting RET-dependent tumours are necessary to improve the clinical efficacy of single-agent multikinase inhibition and, thus, hasten approvals of RET-directed targeted therapies.
Collapse
|
38
|
Clinical and Translational Implications of RET Rearrangements in Non-Small Cell Lung Cancer. J Thorac Oncol 2017; 13:27-45. [PMID: 29128428 DOI: 10.1016/j.jtho.2017.10.021] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/08/2017] [Accepted: 10/12/2017] [Indexed: 01/11/2023]
Abstract
Since the discovery in 2012 of rearranged during transfection proto-oncogene gene (RET) rearrangements in NSCLC, at least 12 different fusion variants have been identified, with kinesin family member 5B gene (KIF5B)-RET being the most frequent and the best characterized. Unlike ALK receptor tyrosine kinase gene (ALK) and ROS1 rearrangements, RET fusion genes cannot be adequately detected by immunohistochemistry (IHC), although fluorescence in situ hybridization and reverse transcriptase polymerase chain reaction are fully complementary diagnostic tools. In large retrospective studies, RET rearrangements correlate with adenocarcinoma histologic subtype, never-smoking status, younger age, more advanced disease stage, potentially higher chemosensitivity (in particular, to pemetrexed-based regimens), and coexistence of other genomic alterations. To date, several preclinical models, clinical trials, and retrospective studies have investigated multitarget inhibitors with anti-rearranged during transfection proto-oncogene (RET) activity in patients with RET-rearranged lung cancer. In the clinical setting, the benefit in terms of response (16%-47%) and progression-free survival (2-7 months) is clearly not comparable to that seen with other targeted agents in oncogene-addicted NSCLC. Furthermore, multikinase agents showed high rates of severe toxicities, leading to frequent dose reduction and drug discontinuation. To date, no definitive conclusions about a potentially different impact of anti-RET therapies according to RET fusion variants have been drawn on account of discordant data coming mostly from small subgroup analyses. Importantly, the absence of a striking clinical benefit in RET oncogene-addicted NSCLC underscores the clear need for development of more selective and potent RET inhibitors and for better characterization of concomitant genomic alterations and mechanisms of resistance to RET inhibition in patients with lung cancer.
Collapse
|
39
|
Cerrato A, Merolla F, Morra F, Celetti A. CCDC6: the identity of a protein known to be partner in fusion. Int J Cancer 2017; 142:1300-1308. [PMID: 29044514 DOI: 10.1002/ijc.31106] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/07/2017] [Accepted: 10/05/2017] [Indexed: 12/19/2022]
Abstract
Coiled Coil Domain Containing 6 gene, CCDC6, was initially isolated as part of a tumorigenic DNA originated by the fusion of CCDC6 with the tyrosine kinase of RET receptor, following a paracentric inversion of chromosome 10. For a long time, CCDC6 has been considered as an accidental partner of the RET protooncogene, providing the promoter and the first 101 aa necessary for the constitutive activation of the oncogenic Tyrosine Kinase (TK) RET in thyroid cells. With the advent of more refined diagnostic tools and bioinformatic algorithms, an exponential growth in fusion genes discoveries has allowed the identification of CCDC6 as partner of genes other than RET in different tumor types. CCDC6 gene product has a proper role in sustaining the DNA damage checkpoints in response to DNA damage. The inactivation of CCDC6 secondary to chromosomal rearrangements or gene mutations could enhance tumor progression by impairing the apoptotic response upon the DNA damage exposure, contributing to the generation of radio- and chemoresistance. Preclinical studies indicate that the attenuation of CCDC6 in cancer, while conferring a resistance to cisplatinum, sensitizes the cancer cells to the small molecule inhibitors of Poly (ADP-ribose) polymerase (PARP1/2) with a synthetic lethal effect. Several CCDC6 mutations and gene rearrangements have been described so far in different types of cancer and CCDC6 may represent a possible predictive biomarker of tumor resistance to the conventional anticancer treatments. Nevertheless, the detection of a CCDC6 impairment in cancer patients may help to select, in future clinical trials, those patients who could benefit of PARP-inhibitors treatment alone or in combination with other treatments.
Collapse
Affiliation(s)
- Aniello Cerrato
- Institute for Experimental Endocrinology and Oncology, Research National Council, Naples, Italy
| | - Francesco Merolla
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Francesco Morra
- Institute for Experimental Endocrinology and Oncology, Research National Council, Naples, Italy
| | - Angela Celetti
- Institute for Experimental Endocrinology and Oncology, Research National Council, Naples, Italy
| |
Collapse
|
40
|
Dugay F, Llamas-Gutierrez F, Gournay M, Medane S, Mazet F, Chiforeanu DC, Becker E, Lamy R, Léna H, Rioux-Leclercq N, Belaud-Rotureau MA, Cabillic F. Clinicopathological characteristics of ROS1- and RET-rearranged NSCLC in caucasian patients: Data from a cohort of 713 non-squamous NSCLC lacking KRAS/EGFR/HER2/BRAF/PIK3CA/ALK alterations. Oncotarget 2017; 8:53336-53351. [PMID: 28881815 PMCID: PMC5581114 DOI: 10.18632/oncotarget.18408] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 05/13/2017] [Indexed: 01/16/2023] Open
Abstract
Targeted therapies have substantially changed the management of non-small cell lung cancer (NSCLC) patients with driver oncogenes. Given the high frequency, EGFR and ALK aberrations were the first to be detected and paved the way for tyrosine kinase inhibitor (TKI) treatments. Other kinases such as ROS1 and more recently RET have emerged as promising targets, and ROS1 and RET TKIs are already available for precision medicine. We screened a large cohort of 713 Caucasian non-squamous NSCLC patients lacking EGFR/KRAS/BRAF/HER2/PI3KCA/ALK aberrations for ROS1 and RET rearrangements using fluorescence in situ hybridization to determine the frequency and clinicopathological characteristics of ROS1- and RET-positive patients. Frequencies of ROS1 and RET rearrangements were 2.1% and 2.52%, respectively. Contrary to common belief, both ROS1 and RET rearrangements were detected in patients with a history of smoking, and the RET-positive patients were not younger than the negative patients. Moreover, RET but not ROS1 rearrangement was associated with the female gender. Nearly half of the ROS1-rearranged patients were successfully treated with ROS1 TKIs. In contrast, only 5/18 RET-positive patients received off-label RET TKIs. Two patients had stable disease, and three experienced disease progression. In addition to the 18 RET-positive cases, 10 showed isolated 5' signals. The clinical relevance is unknown but if the frequency is confirmed by other groups, the question whether these patients are eligible to TKIs will arise. More potent RET TKIs are under development and may improve the response rate in RET-positive patients. Therefore, we recommend the routine implementation of RET testing in non-squamous NSCLC patients, including those with a history of smoking.
Collapse
Affiliation(s)
- Frédéric Dugay
- Department of Cytogenetics and Cell Biology, CHU de Rennes, Rennes, France.,IRSET UMR INSERM 1085, Faculté de Médecine, Université de Rennes 1, Rennes, France
| | | | - Marjory Gournay
- Department of Cytogenetics and Cell Biology, CHU de Rennes, Rennes, France
| | - Sarah Medane
- Department of Cytogenetics and Cell Biology, CHU de Rennes, Rennes, France
| | - François Mazet
- Department of Cytogenetics and Cell Biology, CHU de Rennes, Rennes, France
| | | | - Emmanuelle Becker
- IRSET UMR INSERM 1085, Faculté de Médecine, Université de Rennes 1, Rennes, France
| | - Régine Lamy
- Department of Pneumology, CHU de Lorient, Lorient, France
| | - Hervé Léna
- Department of Pneumology, CHU de Rennes, Rennes, France
| | - Nathalie Rioux-Leclercq
- IRSET UMR INSERM 1085, Faculté de Médecine, Université de Rennes 1, Rennes, France.,Department of Pathology, CHU de Rennes, Rennes, France
| | - Marc-Antoine Belaud-Rotureau
- Department of Cytogenetics and Cell Biology, CHU de Rennes, Rennes, France.,IRSET UMR INSERM 1085, Faculté de Médecine, Université de Rennes 1, Rennes, France
| | - Florian Cabillic
- Department of Cytogenetics and Cell Biology, CHU de Rennes, Rennes, France.,INSERM, INRA, Université de Rennes 1, Université Bretagne Loire, Nutrition Metabolisms and Cancer, Rennes, France
| |
Collapse
|
41
|
Sarfaty M, Moore A, Neiman V, Dudnik E, Ilouze M, Gottfried M, Katznelson R, Nechushtan H, Sorotsky HG, Paz K, Katz A, Saute M, Wolner M, Moskovitz M, Miller V, Elvin J, Lipson D, Ali S, Gutman LS, Dvir A, Gordon N, Peled N. RET Fusion Lung Carcinoma: Response to Therapy and Clinical Features in a Case Series of 14 Patients. Clin Lung Cancer 2016; 18:e223-e232. [PMID: 28082048 DOI: 10.1016/j.cllc.2016.09.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/04/2016] [Accepted: 09/06/2016] [Indexed: 11/18/2022]
Abstract
BACKGROUND RET (rearranged during transfection) fusions have been reported in 1% to 2% of lung adenocarcinoma (LADC) cases. In contrast, KIF5B-RET and CCDC6-RET fusion genes have been identified in 70% to 90% and 10% to 25% of tumors, respectively. The natural history and management of RET-rearranged LADC are still being delineated. MATERIALS AND METHODS We present a series of 14 patients with RET-rearranged LADC. The response to therapy was assessed by the clinical response and an avatar model in 2 cases. Patients underwent chemotherapy, targeted therapy, and immunotherapy. RESULTS A total of 14 patients (8 women; 10 never smokers; 4 light smokers; mean age, 57 years) were included. KIF5B-RET and CCDC6-RET variants were diagnosed in 10 and 4 cases, respectively. Eight patients had an early disseminated manifestation, seven with KIF5B-RET rearranged tumor. The features of this subset included bilateral miliary lung metastases, bone metastases, and unusual early visceral abdominal involvement. One such patient demonstrated an early and durable complete response to cabozantinib for 7 months. Another 2 patients treated with cabozantinib experienced a partial response, with rapid significant clinical improvement. Four patients with tumors harboring CCDC6-RET and KIF5B-RET fusions showed pronounced and durable responses to platinum-based chemotherapy that lasted for 8 to 15 months. Two patients' tumors showed programmed cell death ligand 1-positive staining but did not respond to pembrolizumab. The median overall survival was 22.8 months. CONCLUSION RET-rearranged LADC in our series tended to occur as bilateral disease with early visceral involvement, especially with KIF5B fusion. Treatment with cabozantinib achieved responses, including 1 complete response. However, further studies are required in this group of patients.
Collapse
Affiliation(s)
- Michal Sarfaty
- Institute of Oncology, Davidoff Cancer Center, Rabin Medical Center, Petah Tikva, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Assaf Moore
- Institute of Oncology, Davidoff Cancer Center, Rabin Medical Center, Petah Tikva, Israel
| | - Victoria Neiman
- Institute of Oncology, Davidoff Cancer Center, Rabin Medical Center, Petah Tikva, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Elizabeth Dudnik
- Institute of Oncology, Davidoff Cancer Center, Rabin Medical Center, Petah Tikva, Israel
| | - Maya Ilouze
- Institute of Oncology, Davidoff Cancer Center, Rabin Medical Center, Petah Tikva, Israel
| | - Maya Gottfried
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Institute of Oncology, Meir Medical Center, Kfar Saba, Israel
| | - Rivka Katznelson
- Institute of Oncology, Kaplan Medical Center, Rehovot, Israel; Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - Hovav Nechushtan
- Faculty of Medicine, Hebrew University, Jerusalem, Israel; Sharett Institute of Oncology, Hadassah Medical Center, Jerusalem, Israel
| | | | | | | | - Milton Saute
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Cardiothoracic Surgery, Rabin Medical Center, Petah Tikva, Israel
| | - Mira Wolner
- Institute of Oncology, Rambam Health Care Campus, Haifa, Israel; Ruth and Bruce Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Mor Moskovitz
- Institute of Oncology, Rambam Health Care Campus, Haifa, Israel
| | | | | | | | | | | | - Addie Dvir
- Teva Pharmaceutical Industries Ltd, Petah Tikva, Israel
| | - Noa Gordon
- Institute of Oncology, Davidoff Cancer Center, Rabin Medical Center, Petah Tikva, Israel
| | - Nir Peled
- Institute of Oncology, Davidoff Cancer Center, Rabin Medical Center, Petah Tikva, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
42
|
Saito M, Shiraishi K, Kunitoh H, Takenoshita S, Yokota J, Kohno T. Gene aberrations for precision medicine against lung adenocarcinoma. Cancer Sci 2016; 107:713-20. [PMID: 27027665 PMCID: PMC4968599 DOI: 10.1111/cas.12941] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/28/2016] [Accepted: 03/29/2016] [Indexed: 12/17/2022] Open
Abstract
Lung adenocarcinoma (LADC), the most frequent histological type of lung cancer, is often triggered by an aberration in a driver oncogene in tumor cells. Examples of such aberrations are EGFR mutation and ALK fusion. Lung adenocarcinoma harboring such mutations can be treated with anticancer drugs that target the aberrant gene products. Additional oncogene aberrations, including RET,ROS1, and NRG1 fusions, skipping of exon 14 of MET, and mutations in BRAF,HER2,NF1, and MEK1, were recently added to the list of such “druggable” driver oncogene aberrations, and their responses to targeted therapies are currently being evaluated in clinical trials. However, approximately 30% and 50% of LADCs in patients in Japan and Europe/USA, respectively, lack the driver oncogene aberrations listed above. Therefore, novel therapeutic strategies, such as those that exploit the vulnerabilities of cancer cells with non‐oncogene aberrations, are urgently required. This review summarizes the current status of research on precision medicine against LADC and enumerates the research priorities for the near future.
Collapse
Affiliation(s)
- Motonobu Saito
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan.,Department of Organ Regulatory Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Kouya Shiraishi
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan
| | - Hideo Kunitoh
- Department of Medical Oncology, Japanese Red Cross Medical Center, Tokyo, Japan
| | - Seiichi Takenoshita
- Department of Organ Regulatory Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Jun Yokota
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan.,Cancer Genome Biology Group, Institute of Predictive and Personalized Medicine of Cancer, Barcelona, Spain
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
43
|
Multiplex Diagnosis of Oncogenic Fusion and MET Exon Skipping by Molecular Counting Using Formalin-Fixed Paraffin Embedded Lung Adenocarcinoma Tissues. J Thorac Oncol 2016; 11:203-12. [DOI: 10.1016/j.jtho.2015.10.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/23/2015] [Accepted: 10/13/2015] [Indexed: 01/07/2023]
|
44
|
Seki Y, Mizukami T, Kohno T. Molecular Process Producing Oncogene Fusion in Lung Cancer Cells by Illegitimate Repair of DNA Double-Strand Breaks. Biomolecules 2015; 5:2464-76. [PMID: 26437441 PMCID: PMC4693243 DOI: 10.3390/biom5042464] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/10/2015] [Accepted: 09/14/2015] [Indexed: 01/19/2023] Open
Abstract
Constitutive activation of oncogenes by fusion to partner genes, caused by chromosome translocation and inversion, is a critical genetic event driving lung carcinogenesis. Fusions of the tyrosine kinase genes ALK (anaplastic lymphoma kinase), ROS1 (c-ros oncogene 1), or RET (rearranged during transfection) occur in 1%–5% of lung adenocarcinomas (LADCs) and their products constitute therapeutic targets for kinase inhibitory drugs. Interestingly, ALK, RET, and ROS1 fusions occur preferentially in LADCs of never- and light-smokers, suggesting that the molecular mechanisms that cause these rearrangements are smoking-independent. In this study, using previously reported next generation LADC genome sequencing data of the breakpoint junction structures of chromosome rearrangements that cause oncogenic fusions in human cancer cells, we employed the structures of breakpoint junctions of ALK, RET, and ROS1 fusions in 41 LADC cases as “traces” to deduce the molecular processes of chromosome rearrangements caused by DNA double-strand breaks (DSBs) and illegitimate joining. We found that gene fusion was produced by illegitimate repair of DSBs at unspecified sites in genomic regions of a few kb through DNA synthesis-dependent or -independent end-joining pathways, according to DSB type. This information will assist in the understanding of how oncogene fusions are generated and which etiological factors trigger them.
Collapse
Affiliation(s)
- Yoshitaka Seki
- Division of Genome Biology, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan.
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Minato-ku, Tokyo 105-8471, Japan.
| | - Tatsuji Mizukami
- Division of Genome Biology, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan.
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan.
| |
Collapse
|
45
|
Klempner SJ, Bazhenova LA, Braiteh FS, Nikolinakos PG, Gowen K, Cervantes CM, Chmielecki J, Greenbowe JR, Ross JS, Stephens PJ, Miller VA, Ali SM, Ou SHI. Emergence of RET rearrangement co-existing with activated EGFR mutation in EGFR -mutated NSCLC patients who had progressed on first- or second-generation EGFR TKI. Lung Cancer 2015; 89:357-9. [DOI: 10.1016/j.lungcan.2015.06.021] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 06/24/2015] [Indexed: 10/23/2022]
|
46
|
Kohno T, Nakaoku T, Tsuta K, Tsuchihara K, Matsumoto S, Yoh K, Goto K. Beyond ALK-RET, ROS1 and other oncogene fusions in lung cancer. Transl Lung Cancer Res 2015; 4:156-64. [PMID: 25870798 DOI: 10.3978/j.issn.2218-6751.2014.11.11] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 10/28/2014] [Indexed: 01/08/2023]
Abstract
Fusions of the RET and ROS1 protein tyrosine kinase oncogenes with several partner genes were recently identified as new targetable genetic aberrations in cases of non-small cell lung cancer (NSCLC) lacking activating EGFR, KRAS, ALK, BRAF, or HER2 oncogene aberrations. RET and ROS1 fusion-positive tumors are mainly observed in young, female, and/or never smoking patients. Studies based on in vitro and in vivo (i.e., mouse) models and studies of several fusion-positive patients indicate that inhibiting the kinase activity of the RET and ROS1 fusion proteins is a promising therapeutic strategy. Accordingly, there are several ongoing clinical trials aimed at examining the efficacy of tyrosine kinase inhibitors (TKIs) against RET and ROS1 proteins in patients with fusion-positive lung cancer. Other gene fusions (NTRK1, NRG1, and FGFR1/2/3) that are targetable by existing TKIs have also been identified in NSCLCs. Options for personalized lung cancer therapy will be increased with the help of multiplex diagnosis systems able to detect multiple druggable gene fusions.
Collapse
Affiliation(s)
- Takashi Kohno
- 1 Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan ; 2 Division of Translational Research, Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo and Chiba, Japan ; 3 Division of Thoracic Oncology, National Cancer Center Hospital East, Chiba, Japan ; 4 Division of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | - Takashi Nakaoku
- 1 Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan ; 2 Division of Translational Research, Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo and Chiba, Japan ; 3 Division of Thoracic Oncology, National Cancer Center Hospital East, Chiba, Japan ; 4 Division of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | - Koji Tsuta
- 1 Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan ; 2 Division of Translational Research, Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo and Chiba, Japan ; 3 Division of Thoracic Oncology, National Cancer Center Hospital East, Chiba, Japan ; 4 Division of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | - Katsuya Tsuchihara
- 1 Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan ; 2 Division of Translational Research, Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo and Chiba, Japan ; 3 Division of Thoracic Oncology, National Cancer Center Hospital East, Chiba, Japan ; 4 Division of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | - Shingo Matsumoto
- 1 Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan ; 2 Division of Translational Research, Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo and Chiba, Japan ; 3 Division of Thoracic Oncology, National Cancer Center Hospital East, Chiba, Japan ; 4 Division of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | - Kiyotaka Yoh
- 1 Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan ; 2 Division of Translational Research, Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo and Chiba, Japan ; 3 Division of Thoracic Oncology, National Cancer Center Hospital East, Chiba, Japan ; 4 Division of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | - Koichi Goto
- 1 Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan ; 2 Division of Translational Research, Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo and Chiba, Japan ; 3 Division of Thoracic Oncology, National Cancer Center Hospital East, Chiba, Japan ; 4 Division of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
47
|
Fisher KE, Pillai RN, Kudchadkar RR, Rossi MR. Section IV: non-small cell lung cancer and malignant melanoma. Curr Probl Cancer 2014; 38:180-98. [PMID: 25281457 DOI: 10.1016/j.currproblcancer.2014.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
48
|
Saito M, Ishigame T, Tsuta K, Kumamoto K, Imai T, Kohno T. A mouse model of KIF5B-RET fusion-dependent lung tumorigenesis. Carcinogenesis 2014; 35:2452-6. [PMID: 25064355 DOI: 10.1093/carcin/bgu158] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Oncogenic fusion of the RET (rearranged during transfection) gene was recently identified as a novel driver gene aberration not only for the development of thyroid carcinoma but also of lung adenocarcinoma, the most frequent histological type of lung cancer. This study constructed and analyzed transgenic mice expressing KIF5B-RET, the predominant form of RET fusion gene specific for lung adenocarcinoma, under the control of the SPC (surfactant protein C) gene promoter. The mice expressed the KIF5B-RET fusion gene specifically in lung alveolar epithelial cells, and developed multiple tumors in the lungs. Treatment of the transgenic mice with vandetanib, which is a RET tyrosine kinase inhibitor approved by the U.S. Food and Drug Administration for the treatment of thyroid carcinoma, for 8 or 20 weeks led to a marked reduction in the number of lung tumors (3.3 versus 0 and 6.5 versus 0.2 per tissue section, respectively; P < 0.01, t-test). The results suggest that the RET fusion functions as a driver for the development of lung tumors, whose growth is inhibited by RET tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Motonobu Saito
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo 104-0045, Japan, Department of Organ Regulatory Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Teruhide Ishigame
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo 104-0045, Japan, Department of Organ Regulatory Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Koji Tsuta
- Division of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan and
| | - Kensuke Kumamoto
- Department of Organ Regulatory Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Toshio Imai
- Central Animal Division, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo 104-0045, Japan,
| |
Collapse
|
49
|
|