1
|
Bai J, Yang G, Yu Q, Chi Q, Zeng X, Qi W. SATB1 in cancer progression and metastasis: mechanisms and therapeutic potential. Front Oncol 2025; 15:1535929. [PMID: 40071088 PMCID: PMC11893431 DOI: 10.3389/fonc.2025.1535929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 02/06/2025] [Indexed: 03/14/2025] Open
Abstract
Cancer remains a major global health challenge, with prostate cancer, lung cancer, colorectal cancer, and breast cancer accounting for nearly half of all diagnoses. Despite advancements in cancer treatment, metastasis to distant organs continues to be the leading cause of cancer-related mortality. The progression of cancer involves the alteration of numerous genes, with dynamic changes in chromatin organization and histone modifications playing a critical role in regulating cancer-associated genes. Special AT-rich sequence-binding protein 1 (SATB1), a critical chromatin organizer, plays a pivotal role in cancer progression by regulating gene expression, chromatin remodeling, and cell signaling pathways. SATB1 binds to AT-rich DNA sequences, acting as a scaffold for chromatin-modifying enzymes and transcription factors, thus coordinating the regulation of extensive gene networks. Its overexpression has been implicated in a wide range of cancers and is associated with poor prognosis, aggressive tumor phenotypes, and enhanced epithelial-mesenchymal transition (EMT). Moreover, SATB1's activity is modulated by microRNAs (miRNAs) and post-translational modifications, further contributing to its complex regulatory functions. Given its crucial involvement in cancer progression and metastasis, SATB1 has emerged as a promising target for novel therapeutic strategies. This review delves into the molecular mechanisms of SATB1 in cancer and explores potential therapeutic approaches for targeting this key regulator in cancer treatment.
Collapse
Affiliation(s)
- Jinping Bai
- Department of Bioscience, Changchun Normal University, Changchun, China
| | - Gege Yang
- Department of Bioscience, Changchun Normal University, Changchun, China
| | - Qi Yu
- Department of Bioscience, Changchun Normal University, Changchun, China
| | - Qianya Chi
- Department of Bioscience, Changchun Normal University, Changchun, China
| | - Xianlu Zeng
- Key Laboratory of Molecular Epigenetics of Ministry of Education, College of Life Sciences, Northeast Normal University, Changchun, China
| | - Wenjing Qi
- Department of Bioscience, Changchun Normal University, Changchun, China
- Key Laboratory of Molecular Epigenetics of Ministry of Education, College of Life Sciences, Northeast Normal University, Changchun, China
| |
Collapse
|
2
|
Sun L, Wang F, Wang X, Zhang F, Ma S, Lv J. SATB1 mediated tumor colonization and β-catenin nuclear localization are associated with colorectal cancer progression. Cancer Biol Ther 2024; 25:2320307. [PMID: 38385627 PMCID: PMC10885174 DOI: 10.1080/15384047.2024.2320307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/14/2024] [Indexed: 02/23/2024] Open
Abstract
Colorectal cancer (CRC) is a malignancy with high incidence and poor prognosis. It is urgent to identify valuable biomarkers for early diagnosis and potent therapeutic targets. It has been reported that SATB1 is associated with the malignant progression in CRC. To explore the role of SATB1 in CRC progression and the underlying mechanism, we evaluated the expression of SATB1 in the paired CRC tissues with immunohistochemistry. The results showed that the expression of SATB1 in lymph node metastasis was higher than that in primary lesion, and that in distant organ metastasis was higher than that in primary lesion. The retrospective analysis showed that patients with high expression of SATB1 had a significantly worse prognosis than those with negative and moderate expression. In vitro experiments that employing SATB1 over-expressing and depleted CRC cell lines confirmed that SATB1 contributes to cell proliferation and colonization, while inhibiting cell motility. Furthermore, the tissue immunofluorescence assay, Co-IP and Western blot were conducted to reveal that SATB1 induced translocation of β-catenin and formed a protein complex with it in the nuclei. In conclusion, SATB1 mediated tumor colonization and β-catenin nuclear localization are associated with the malignant progression and poor prognosis of CRC.
Collapse
Affiliation(s)
- Luan Sun
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Feng Wang
- Department of Pathology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, P.R. China
| | - Xufei Wang
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Feiying Zhang
- The second Clinical Medical School of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Sujuan Ma
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Jinghuan Lv
- Department of Pathology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, P.R. China
| |
Collapse
|
3
|
Vicelić Čutura L, Vujčić M, Galušić D, Blaslov V, Petrić M, Miljak A, Lozić M, Benzon B, Vukojević K, Bubić T, Kunac N, Zjačić Puljiz D, Delić Jukić IK, Križanac M, Lozić B. SATB1 and p16 Expression and Prognostic Value in Croatian Hodgkin Lymphoma Patients: A Unicentric Study. Cells 2024; 13:1323. [PMID: 39195213 PMCID: PMC11352626 DOI: 10.3390/cells13161323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024] Open
Abstract
Hodgkin lymphoma (HL) is a rare lymphoid neoplasm in which Hodgkin/Reed-Stenberg (HRS) cells are admixed with a population of non-neoplastic inflammatory cells and fibrosis. Dysregulated expressions of cell cycle regulators and transcription factors have been proven as one of the hallmarks of HL. In that context, SATB1 and p16 have been reported as potential regulators of HL progression and survival. However, to date, no studies have assessed the expression levels of SATB1 and p16 in HL in Croatian patients or their prognostic values. Therefore, we investigated the expression pattern of SATB1 and p16 in paraffin-embedded lymph node biopsies using standard immunohistochemistry. We found that 21% of the patients stained positive for SATB1, while 15% of the patients displayed positive staining for p16. Furthermore, we aimed to understand the prognostic value of each protein through the analysis of the overall survival (OS) and progression-free survival (PFS). SATB1 showed a significantly positive correlation with better OS and PFS, while p16 expression had no impact. Interestingly, when patients were stratified by a combination of the two studied markers, we found that patients in the SATB1+/p16- group tended to have the best prognosis in HL, according to statistical significance. In conclusion, SATB1 and p16 might be potentially useful as diagnostic and prognostic markers for HL.
Collapse
Affiliation(s)
- Lučana Vicelić Čutura
- Department of Internal Medicine, Division of Haematology, University Hospital of Split, 21000 Split, Croatia; (L.V.Č.); (M.V.); (M.P.)
| | - Milan Vujčić
- Department of Internal Medicine, Division of Haematology, University Hospital of Split, 21000 Split, Croatia; (L.V.Č.); (M.V.); (M.P.)
| | - Davor Galušić
- Department of Internal Medicine, Division of Haematology, University Hospital of Split, 21000 Split, Croatia; (L.V.Č.); (M.V.); (M.P.)
| | - Viktor Blaslov
- Department of Internal Medicine, Division of Haematology, University Hospital of Split, 21000 Split, Croatia; (L.V.Č.); (M.V.); (M.P.)
| | - Marija Petrić
- Department of Internal Medicine, Division of Haematology, University Hospital of Split, 21000 Split, Croatia; (L.V.Č.); (M.V.); (M.P.)
| | - Antonija Miljak
- Department of Internal Medicine, Division of Haematology, University Hospital of Split, 21000 Split, Croatia; (L.V.Č.); (M.V.); (M.P.)
| | - Mirela Lozić
- Department of Biochemistry and Medical Chemistry, University of Split School of Medicine, 21000 Split, Croatia
| | - Benjamin Benzon
- Department of Anatomy Histology and Embryology, University of Split School of Medicine, 21000 Split, Croatia
| | - Katarina Vukojević
- Department of Anatomy Histology and Embryology, University of Split School of Medicine, 21000 Split, Croatia
- Laboratory of Morphology, Department of Histology and Embryology, School of Medicine, University of Mostar, 8800 Mostar, Bosnia and Herzegovina
- Faculty of Health Studies, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
- Department of Anatomy, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
- Center for Translational Research in Biomedicine, University of Split School of Medicine, 21000 Split, Croatia
| | - Toni Bubić
- Department of Pathology, Judicial Medicine, and Cytology, Division of Pathology, University Hospital of Split, 21000 Split, Croatia; (T.B.)
| | - Nenad Kunac
- Department of Pathology, Judicial Medicine, and Cytology, Division of Pathology, University Hospital of Split, 21000 Split, Croatia; (T.B.)
| | - Danijela Zjačić Puljiz
- Department of Internal Medicine, Division of Nephrology and Haemodialysis, University Hospital of Split, 21000 Split, Croatia
| | - Ivana Kristina Delić Jukić
- Department of Internal Medicine, Division of Nephrology and Haemodialysis, University Hospital of Split, 21000 Split, Croatia
| | - Marinela Križanac
- Department of Pediatric Disease, Division of Haematology, Oncology, Clinical Immunology and Genetics, University Hospital of Split, 21000 Split, Croatia; (M.K.); (B.L.)
| | - Bernarda Lozić
- Department of Pediatric Disease, Division of Haematology, Oncology, Clinical Immunology and Genetics, University Hospital of Split, 21000 Split, Croatia; (M.K.); (B.L.)
- University of Split School of Medicine, 21000 Split, Croatia
| |
Collapse
|
4
|
Qi W, Bai J, Wang R, Zeng X, Zhang L. SATB1, senescence and senescence-related diseases. J Cell Physiol 2024; 239:e31327. [PMID: 38801120 DOI: 10.1002/jcp.31327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/06/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
Aging leads to an accumulation of cellular mutations and damage, increasing the risk of senescence, apoptosis, and malignant transformation. Cellular senescence, which is pivotal in aging, acts as both a guard against cellular transformation and as a check against cancer progression. It is marked by stable cell cycle arrest, widespread macromolecular changes, a pro-inflammatory profile, and altered gene expression. However, it remains to be determined whether these differing subsets of senescent cells result from unique intrinsic programs or are influenced by their environmental contexts. Multiple transcription regulators and chromatin modifiers contribute to these alterations. Special AT-rich sequence-binding protein 1 (SATB1) stands out as a crucial regulator in this process, orchestrating gene expression by structuring chromatin into loop domains and anchoring DNA elements. This review provides an overview of cellular senescence and delves into the role of SATB1 in senescence-related diseases. It highlights SATB1's potential in developing antiaging and anticancer strategies, potentially contributing to improved quality of life and addressing aging-related diseases.
Collapse
Affiliation(s)
- Wenjing Qi
- Department of Bioscience, Changchun Normal University, Changchun, Jilin, China
- Key Laboratory of Molecular Epigenetics of Ministry of Education, College of Life Sciences, Northeast Normal University, Changchun, Jilin, China
| | - Jinping Bai
- Department of Bioscience, Changchun Normal University, Changchun, Jilin, China
| | - Ruoxi Wang
- Center for Cell Structure and Function, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, China
| | - Xianlu Zeng
- Key Laboratory of Molecular Epigenetics of Ministry of Education, College of Life Sciences, Northeast Normal University, Changchun, Jilin, China
| | - Lihui Zhang
- Department of Bioscience, Changchun Normal University, Changchun, Jilin, China
| |
Collapse
|
5
|
Xu H, Xiong W, Liu X, Wang Y, Shi M, Shi Y, Shui J, Yu Y. Long noncoding RNA LINC00921 serves as a predictive biomarker for lung adenocarcinoma: An observational study. Medicine (Baltimore) 2024; 103:e37179. [PMID: 38363898 PMCID: PMC10869092 DOI: 10.1097/md.0000000000037179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/17/2024] [Indexed: 02/18/2024] Open
Abstract
Lung adenocarcinoma (LUAD) is usually diagnosed at advanced stages. Hence, there is an urgent need to seek an effective biomarker to predict LUAD status. Long noncoding RNAs (lncRNAs) play key roles in the development of tumors. However, the relationship between LINC00921 and LUAD remains unclear. The gene expression data of LUAD were downloaded from the Cancer Genome Atlas database to investigate the expression level of LINC00921 in LUAD. Diagnostic ability analysis, survival analysis, tumor mutational burden analysis, and immune cell infiltration analysis of LINC00921 in LUAD patients were performed simultaneously. According to the median expression value of LINC00921, patients were divided into LINC00921 high- and low-expression groups. The function of LINC00921 in LUAD was identified through difference analysis and enrichment analysis. Moreover, drugs that may be relevant to LUAD treatment were screened. Finally, blood samples were collected for real-time polymerase chain reaction. LINC00921 was significantly lower in LUAD tumor tissues. Notably, patients with low expression of LINC00921 had a shorter median survival time. Decreased immune cell infiltration in the tumor microenvironment in the low LINC00921 expression group may contribute to poorer patient outcomes. Tumor mutational burden was significantly different in survival between the LINC00921 high- and low-expression groups. In addition, LINC00921 may exert an influence on cancer development through its regulation of target genes transcription. Glyceraldehyde-3-phosphate dehydrogenase-related drugs may be more likely to be therapeutically effective in LUAD. LINC00921 was able to be used as the potential diagnostic indicator for LUAD.
Collapse
Affiliation(s)
- Hongyu Xu
- Department of Oncology, 363 Hospital, Chengdu, Sichuan 610041, P.R. China
| | - Weijie Xiong
- Cancer Prevention and Treatment Institute of Chengdu, Department of Oncology, Chengdu Fifth People’s Hospital (The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, Sichuan, 610031, P.R. China
| | - Xianguo Liu
- Department of Oncology, 363 Hospital, Chengdu, Sichuan 610041, P.R. China
| | - Yang Wang
- Department of Oncology, 363 Hospital, Chengdu, Sichuan 610041, P.R. China
| | - Maolin Shi
- Department of Oncology, 363 Hospital, Chengdu, Sichuan 610041, P.R. China
| | - Yuhui Shi
- Department of Oncology, 363 Hospital, Chengdu, Sichuan 610041, P.R. China
| | - Jia Shui
- Department of Oncology, 363 Hospital, Chengdu, Sichuan 610041, P.R. China
| | - Yanxin Yu
- Department of Oncology, 363 Hospital, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
6
|
Kablar B. Skeletal Muscle's Role in Prenatal Inter-organ Communication: A Phenogenomic Study with Qualitative Citation Analysis. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2023; 236:1-19. [PMID: 37955769 DOI: 10.1007/978-3-031-38215-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Gene targeting in mice allows for a complete elimination of skeletal (striated or voluntary) musculature in the body, from the beginning of its development, resulting in our ability to study the consequences of this ablation on other organs. Here I focus on the relationship between the muscle and lung, motor neurons, skeleton, and special senses. Since the inception of my independent laboratory, in 2000, with my team, we published more than 30 papers (and a book chapter), nearly 400 pages of data, on these specific relationships. Here I trace, using Web of Science, nearly 600 citations of this work, to understand its impact. The current report contains a summary of our work and its impact, NCBI's Gene Expression Omnibus accession numbers of all our microarray data, and three clear future directions doable by anyone using our publicly available data. Together, this effort furthers our understanding of inter-organ communication during prenatal development.
Collapse
Affiliation(s)
- Boris Kablar
- Department of Medical Neuroscience, Anatomy and Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
7
|
Nätkin R, Pennanen P, Syvälä H, Bläuer M, Kesseli J, Tammela TLJ, Nykter M, Murtola TJ. Adaptive and non-adaptive gene expression responses in prostate cancer during androgen deprivation. PLoS One 2023; 18:e0281645. [PMID: 36809527 PMCID: PMC9942993 DOI: 10.1371/journal.pone.0281645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 01/30/2023] [Indexed: 02/23/2023] Open
Abstract
Androgen deprivation therapy is the cornerstone treatment of advanced prostate cancer. Eventually prostate cancer cells overcome androgen deprivation therapy, giving rise to castration resistant prostate cancer (CRPC) characterized by increased androgen receptor (AR) activity. Understanding the cellular mechanisms leading to CRPC is needed for development of novel treatments. We used long-term cell cultures to model CRPC; a testosterone-dependent cell line (VCaP-T) and cell line adapted to grow in low testosterone (VCaP-CT). These were used to uncover persistent and adaptive responses to testosterone level. RNA was sequenced to study AR-regulated genes. Expression level changed due to testosterone depletion in 418 genes in VCaP-T (AR-associated genes). To evaluate significance for CRPC growth, we compared which of them were adaptive i.e., restored expression level in VCaP-CT. Adaptive genes were enriched to steroid metabolism, immune response and lipid metabolism. The Cancer Genome Atlas Prostate Adenocarcinoma data were used to assess the association with cancer aggressiveness and progression-free survival. Expressions of 47 AR-associated or association gaining genes were statistically significant markers for progression-free survival. These included genes related to immune response, adhesion and transport. Taken together, we identified and clinically validated multiple genes being linked with progression of prostate cancer and propose several novel risk genes. Possible use as biomarkers or therapeutic targets should be studied further.
Collapse
Affiliation(s)
- Reetta Nätkin
- Faculty of Medicine and Health Technology, Prostate Cancer Research Center, Tampere University and Tays Cancer Center, Tampere, Finland
- * E-mail: (RN); (TJM)
| | - Pasi Pennanen
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Heimo Syvälä
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Merja Bläuer
- Tampere University Hospital and Faculty of Medicine and Health Technology, Tampere Pancreas Laboratory and Department of Gastroenterology and Alimentary Tract Surgery, Tampere University, Tampere, Finland
| | - Juha Kesseli
- Faculty of Medicine and Health Technology, Prostate Cancer Research Center, Tampere University and Tays Cancer Center, Tampere, Finland
| | - Teuvo L. J. Tammela
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Urology, Tays Cancer Center, Tampere, Finland
| | - Matti Nykter
- Faculty of Medicine and Health Technology, Prostate Cancer Research Center, Tampere University and Tays Cancer Center, Tampere, Finland
| | - Teemu J. Murtola
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Urology, Tays Cancer Center, Tampere, Finland
- * E-mail: (RN); (TJM)
| |
Collapse
|
8
|
Parker AL, Bowman E, Zingone A, Ryan BM, Cooper WA, Kohonen-Corish M, Harris CC, Cox TR. Extracellular matrix profiles determine risk and prognosis of the squamous cell carcinoma subtype of non-small cell lung carcinoma. Genome Med 2022; 14:126. [PMID: 36404344 PMCID: PMC9677915 DOI: 10.1186/s13073-022-01127-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 10/14/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Squamous cell carcinoma (SqCC) is a subtype of non-small cell lung cancer for which patient prognosis remains poor. The extracellular matrix (ECM) is critical in regulating cell behavior; however, its importance in tumor aggressiveness remains to be comprehensively characterized. METHODS Multi-omics data of SqCC human tumor specimens was combined to characterize ECM features associated with initiation and recurrence. Penalized logistic regression was used to define a matrix risk signature for SqCC tumors and its performance across a panel of tumor types and in SqCC premalignant lesions was evaluated. Consensus clustering was used to define prognostic matreotypes for SqCC tumors. Matreotype-specific tumor biology was defined by integration of bulk RNAseq with scRNAseq data, cell type deconvolution, analysis of ligand-receptor interactions and enriched biological pathways, and through cross comparison of matreotype expression profiles with aging and idiopathic pulmonary fibrosis lung profiles. RESULTS This analysis revealed subtype-specific ECM signatures associated with tumor initiation that were predictive of premalignant progression. We identified an ECM-enriched tumor subtype associated with the poorest prognosis. In silico analysis indicates that matrix remodeling programs differentially activate intracellular signaling in tumor and stromal cells to reinforce matrix remodeling associated with resistance and progression. The matrix subtype with the poorest prognosis resembles ECM remodeling in idiopathic pulmonary fibrosis and may represent a field of cancerization associated with elevated cancer risk. CONCLUSIONS Collectively, this analysis defines matrix-driven features of poor prognosis to inform precision medicine prevention and treatment strategies towards improving SqCC patient outcome.
Collapse
Affiliation(s)
- Amelia L. Parker
- grid.415306.50000 0000 9983 6924Matrix and Metastasis Lab, Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, 384 Victoria St, Darlinghurst, NSW 2052 Australia ,grid.1005.40000 0004 4902 0432School of Clinical Medicine, UNSW Sydney, Sydney, 2052 Australia
| | - Elise Bowman
- grid.48336.3a0000 0004 1936 8075Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892 USA
| | - Adriana Zingone
- grid.48336.3a0000 0004 1936 8075Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892 USA
| | - Brid M. Ryan
- grid.48336.3a0000 0004 1936 8075Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892 USA ,Present address: MiNA Therapeutics, London, UK
| | - Wendy A. Cooper
- grid.413249.90000 0004 0385 0051Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW 2050 Australia ,grid.1013.30000 0004 1936 834XSydney Medical School, University of Sydney, Sydney, NSW 2050 Australia ,grid.1029.a0000 0000 9939 5719Discipline of Pathology, School of Medicine, Western Sydney University, Liverpool, NSW 2170 Australia
| | - Maija Kohonen-Corish
- grid.417229.b0000 0000 8945 8472Woolcock Institute of Medical Research, Sydney, NSW 2037 Australia ,grid.1005.40000 0004 4902 0432Microbiome Research Centre, School of Clinical Medicine, UNSW Sydney, Sydney, 2052 Australia ,grid.415306.50000 0000 9983 6924Garvan Institute of Medical Research, Darlinghurst, NSW 2010 Australia
| | - Curtis C. Harris
- grid.48336.3a0000 0004 1936 8075Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892 USA
| | - Thomas R. Cox
- grid.415306.50000 0000 9983 6924Matrix and Metastasis Lab, Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, 384 Victoria St, Darlinghurst, NSW 2052 Australia ,grid.1005.40000 0004 4902 0432School of Clinical Medicine, UNSW Sydney, Sydney, 2052 Australia
| |
Collapse
|
9
|
SATB1, genomic instability and Gleason grading constitute a novel risk score for prostate cancer. Sci Rep 2021; 11:24446. [PMID: 34961766 PMCID: PMC8712510 DOI: 10.1038/s41598-021-03702-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 11/23/2021] [Indexed: 12/09/2022] Open
Abstract
Current prostate cancer risk classifications rely on clinicopathological parameters resulting in uncertainties for prognostication. To improve individual risk stratification, we examined the predictive value of selected proteins with respect to tumor heterogeneity and genomic instability. We assessed the degree of genomic instability in 50 radical prostatectomy specimens by DNA-Image-Cytometry and evaluated protein expression in related 199 tissue-microarray (TMA) cores. Immunohistochemical data of SATB1, SPIN1, TPM4, VIME and TBB5 were correlated with the degree of genomic instability, established clinical risk factors and overall survival. Genomic instability was associated with a GS ≥ 7 (p = 0.001) and worse overall survival (p = 0.008). A positive SATB1 expression was associated with a GS ≤ 6 (p = 0.040), genomic stability (p = 0.027), and was a predictor for increased overall survival (p = 0.023). High expression of SPIN1 was also associated with longer overall survival (p = 0.048) and lower preoperative PSA-values (p = 0.047). The combination of SATB1 expression, genomic instability, and GS lead to a novel Prostate Cancer Prediction Score (PCP-Score) which outperforms the current D’Amico et al. stratification for predicting overall survival. Low SATB1 expression, genomic instability and GS ≥ 7 were identified as markers for poor prognosis. Their combination overcomes current clinical risk stratification regimes.
Collapse
|
10
|
Durślewicz J, Klimaszewska-Wiśniewska A, Jóźwicki J, Antosik P, Smolińska-Świtała M, Gagat M, Kowalewski A, Grzanka D. Prognostic Significance of TLR2, SMAD3 and Localization-dependent SATB1 in Stage I and II Non-Small-Cell Lung Cancer Patients. Cancer Control 2021; 28:10732748211056697. [PMID: 34818944 PMCID: PMC8640983 DOI: 10.1177/10732748211056697] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
This study aimed to explore the prognostic value of SATB1, SMAD3, and TLR2 expression in non-small-cell lung carcinoma patients with clinical stages I-II. To investigate, we evaluated immunohistochemical staining to each of these markers using tissue sections from 69 patients from our cohort and gene expression data for The Cancer Genome Atlas (TCGA) cohort. We found that, in our cohort, high expression levels of nuclear SATB1n and SMAD3 were independent prognostic markers for better overall survival (OS) in NSCLC patients. Interestingly, expression of cytoplasmic SATB1c exhibited a significant but inverse association with survival rate, and it was an independent predictor of unfavorable prognosis. Likewise, TLR2 was a negative outcome biomarker for NSCLC even when adjusting for covariates. Importantly, stratification of NSCLCs with respect to combined expression of the three biomarkers allowed us to identify subgroups of patients with the greatest difference in duration of survival. Specifically, expression profile of SATB1n-high/SMAD3high/TLR2low was associated with the best OS, and it was superior to each single protein alone in predicting patient prognosis. Furthermore, based on the TCGA dataset, we found that overexpression of SATB1 mRNA was significantly associated with better OS, whereas high mRNA levels of SMAD3 and TLR2 with poor OS. In conclusion, the present study identified a set of proteins that may play a significant role in predicting prognosis of NSCLC patients with clinical stages I-II.
Collapse
Affiliation(s)
- Justyna Durślewicz
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, 49577Nicolaus Copernicus University, Toruń, Poland
| | - Anna Klimaszewska-Wiśniewska
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, 49577Nicolaus Copernicus University, Toruń, Poland
| | - Jakub Jóźwicki
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, 49577Nicolaus Copernicus University, Toruń, Poland
| | - Paulina Antosik
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, 49577Nicolaus Copernicus University, Toruń, Poland
| | - Marta Smolińska-Świtała
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, 49577Nicolaus Copernicus University, Toruń, Poland
| | - Maciej Gagat
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, 49577Nicolaus Copernicus University, Toruń, Poland
| | - Adam Kowalewski
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, 49577Nicolaus Copernicus University, Toruń, Poland.,Department of Tumor Pathology and Pathomorphology, Oncology Centre, Prof Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| | - Dariusz Grzanka
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, 49577Nicolaus Copernicus University, Toruń, Poland
| |
Collapse
|
11
|
SATB1 protein is associated with the epithelial‑mesenchymal transition process in non‑small cell lung cancers. Oncol Rep 2021; 45:118. [PMID: 33955522 PMCID: PMC8107643 DOI: 10.3892/or.2021.8069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/25/2021] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is one of the most frequently diagnosed neoplasms and the leading cause of cancer‑related mortality worldwide. Its predominant subtype is non‑small cell lung cancer (NSCLC), which accounts for over 80% of the cases. Surprisingly, the majority of lung cancer‑related deaths are caused not by a primary tumour itself, but by its metastasis to distant organs. Therefore, it becomes especially important to identify the factors involved in lung cancer metastatic spread. Special AT‑rich binding protein 1 (SATB1) is a nuclear matrix protein that mediates chromatin looping and plays the role of global transcriptional regulator. During the past decade, it has received much attention as a factor promoting tumour invasion. In breast, colorectal and prostate cancers, SATB1 has been shown to influence the epithelial‑mesenchymal transition (EMT) process, which is thought to be crucial for cancer metastasis. The aim of this study was to analyse the possible correlations between the expression of SATB1 and major EMT‑associated proteins in NSCLC clinical samples. Additionally, the impact of EMT induction in NSCLC cell lines on SATB1 mRNA expression was also investigated. Immunohistochemistry was used to assess the expression of SATB1, SNAIL, SLUG, Twist1, E‑cadherin, and N‑cadherin in 242 lung cancer clinical samples. EMT was induced by TGF‑β1 treatment in the A549 and NCI‑H1703 lung cancer cell lines. Changes in gene expression profiles were analyzed using real‑time PCR and Droplet Digital PCR. SATB1 expression was positively correlated with the expression of SNAIL (R=0.129; P=0.045), SLUG (R=0.449; P<0.0001), and Twist1 (R=0.264; P<0.0001). Moreover, SATB1 expression significantly increased after in vitro EMT induction in A549 and NCI‑H1703 cell lines. The results obtained may point to the role of SATB1 as one of the regulators of EMT in NSCLC.
Collapse
|
12
|
Lodewijk I, Nunes SP, Henrique R, Jerónimo C, Dueñas M, Paramio JM. Tackling tumor microenvironment through epigenetic tools to improve cancer immunotherapy. Clin Epigenetics 2021; 13:63. [PMID: 33761971 PMCID: PMC7992805 DOI: 10.1186/s13148-021-01046-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/01/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Epigenetic alterations are known contributors to cancer development and aggressiveness. Additional to alterations in cancer cells, aberrant epigenetic marks are present in cells of the tumor microenvironment, including lymphocytes and tumor-associated macrophages, which are often overlooked but known to be a contributing factor to a favorable environment for tumor growth. Therefore, the main aim of this review is to give an overview of the epigenetic alterations affecting immune cells in the tumor microenvironment to provoke an immunosuppressive function and contribute to cancer development. Moreover, immunotherapy is briefly discussed in the context of epigenetics, describing both its combination with epigenetic drugs and the need for epigenetic biomarkers to predict response to immune checkpoint blockage. MAIN BODY Combining both topics, epigenetic machinery plays a central role in generating an immunosuppressive environment for cancer growth, which creates a barrier for immunotherapy to be successful. Furthermore, epigenetic-directed compounds may not only affect cancer cells but also immune cells in the tumor microenvironment, which could be beneficial for the clinical response to immunotherapy. CONCLUSION Thus, modulating epigenetics in combination with immunotherapy might be a promising therapeutic option to improve the success of this therapy. Further studies are necessary to (1) understand in depth the impact of the epigenetic machinery in the tumor microenvironment; (2) how the epigenetic machinery can be modulated according to tumor type to increase response to immunotherapy and (3) find reliable biomarkers for a better selection of patients eligible to immunotherapy.
Collapse
Affiliation(s)
- Iris Lodewijk
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales Y Tecnológicas (CIEMAT), 28040 Madrid, Spain
- Biomedical Research Institute I+12, University Hospital “12 de Octubre”, 28041 Madrid, Spain
| | - Sandra P. Nunes
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales Y Tecnológicas (CIEMAT), 28040 Madrid, Spain
- Biomedical Research Institute I+12, University Hospital “12 de Octubre”, 28041 Madrid, Spain
- Cancer Biology and Epigenetics Group – Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), 4200-072 Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group – Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), 4200-072 Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar – University of Porto (ICBAS-UP), 4050-313 Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group – Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar – University of Porto (ICBAS-UP), 4050-313 Porto, Portugal
| | - Marta Dueñas
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales Y Tecnológicas (CIEMAT), 28040 Madrid, Spain
- Biomedical Research Institute I+12, University Hospital “12 de Octubre”, 28041 Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Jesús M. Paramio
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales Y Tecnológicas (CIEMAT), 28040 Madrid, Spain
- Biomedical Research Institute I+12, University Hospital “12 de Octubre”, 28041 Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| |
Collapse
|
13
|
Liao L, Zhang L, Yang M, Wang X, Huang W, Wu X, Pan H, Yuan L, Huang W, Wu Y, Guan J. Expression profile of SYNE3 and bioinformatic analysis of its prognostic value and functions in tumors. J Transl Med 2020; 18:355. [PMID: 32948197 PMCID: PMC7501639 DOI: 10.1186/s12967-020-02521-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022] Open
Abstract
Background Spectrin repeat containing nuclear envelope family member 3 (SYNE3) encodes an essential component of the linker of the cytoskeleton and nucleoskeleton (LINC) complex, namely nesprin-3. In a tumor, invasiveness and metastasis rely on the integrity of the LINC complex, while the role of SYNE3/nesprin-3 in cancer is rarely studied. Methods Here, we explored the expression pattern, prognostic value, and related mechanisms of SYNE3 through both experimental and bioinformatic methods. We first detected SYNE3 in BALB/c mice, normal human tissues, and the paired tumor tissues, then used bioinformatics databases to verify our results. We further analyzed the prognostic value of SYNE3. Next, we predicted miRNA targeting SYNE3 and built a competing endogenous RNA (ceRNA) network and a transcriptional network by analyzing data from the cancer genome atlas (TCGA) database. Interacting genes of SYNE3 were predicted, and we further performed GO and KEGG enrichment analysis on these genes. Besides, the relationship between SYNE3 and immune infiltration was also investigated. Results SYNE3 exhibited various expressions in different tissues, mainly located on nuclear and in cytoplasm sometimes. SYNE3 expression level had prognostic value in tumors, possibly by stabilizing nucleus, promoting tumor cells apoptosis, and altering tumor microenvironment. Additionally, we constructed a RP11-2B6.2-miR-149-5p-/RP11-67L2.2-miR-330-3p-SYNE3 ceRNA network and a SATB1-miR-149-5p-SYNE3 transcriptional network in lung adenocarcinoma to support the tumor-suppressing role of SYNE3. Conclusions Our study explored novel anti-tumor functions and mechanisms of SYNE3, which might be useful for future cancer therapy.
Collapse
Affiliation(s)
- Liwei Liao
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Longshan Zhang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Mi Yang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoqing Wang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Weiqiang Huang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xixi Wu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Hua Pan
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Lu Yuan
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wenqi Huang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuting Wu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jian Guan
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
14
|
Zilenaite D, Rasmusson A, Augulis R, Besusparis J, Laurinaviciene A, Plancoulaine B, Ostapenko V, Laurinavicius A. Independent Prognostic Value of Intratumoral Heterogeneity and Immune Response Features by Automated Digital Immunohistochemistry Analysis in Early Hormone Receptor-Positive Breast Carcinoma. Front Oncol 2020; 10:950. [PMID: 32612954 PMCID: PMC7308549 DOI: 10.3389/fonc.2020.00950] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 05/14/2020] [Indexed: 12/11/2022] Open
Abstract
Immunohistochemistry (IHC) for ER, PR, HER2, and Ki67 is used to predict outcome and therapy response in breast cancer patients. The current IHC assessment, visual or digital, is based mostly on global biomarker expression levels in the tissue sample. In our study, we explored the prognostic value of digital image analysis of conventional breast cancer IHC biomarkers supplemented with their intratumoral heterogeneity and tissue immune response indicators. Surgically excised tumor samples from 101 female patients with hormone receptor-positive breast cancer (HRBC) were stained for ER, PR, HER2, Ki67, SATB1, CD8, and scanned at 20x. Digital image analysis was performed using the HALO™ platform. Subsequently, hexagonal tiling was used to compute intratumoral heterogeneity indicators for ER, PR and Ki67 expression. Multiple Cox regression analysis revealed three independent predictors of the patient's overall survival: Haralick's texture entropy of PR (HR = 0.19, p = 0.0005), Ki67 Ashman's D bimodality (HR = 3.0, p = 0.01), and CD8+SATB1+ cell density in tumor tissue (HR = 0.32, p = 0.02). Remarkably, the PR and Ki67 intratumoral heterogeneity indicators were prognostically more informative than the rates of their expression. In particular, a distinct non-linear relationship between the rate of PR expression and its intratumoral heterogeneity was observed and revealed a non-linear prognostic effect of PR expression. The independent prognostic significance of CD8+SATB1+ cells infiltrating the tumor could indicate their role in anti-tumor immunity. In conclusion, we suggest that prognostic modeling, based entirely on the computational image-based IHC biomarkers, is possible in HRBC patients. The intratumoral heterogeneity and immune response indicators outperformed both conventional breast cancer IHC and clinicopathological variables while markedly increasing the power of the model.
Collapse
Affiliation(s)
- Dovile Zilenaite
- Department of Pathology, Forensic Medicine and Pharmacology, Faculty of Medicine, Institute of Biomedical Sciences, Vilnius University, Vilnius, Lithuania.,National Centre of Pathology, Affiliate of Vilnius University Hospital Santaros Clinics, Vilnius, Lithuania
| | - Allan Rasmusson
- Department of Pathology, Forensic Medicine and Pharmacology, Faculty of Medicine, Institute of Biomedical Sciences, Vilnius University, Vilnius, Lithuania.,National Centre of Pathology, Affiliate of Vilnius University Hospital Santaros Clinics, Vilnius, Lithuania
| | - Renaldas Augulis
- Department of Pathology, Forensic Medicine and Pharmacology, Faculty of Medicine, Institute of Biomedical Sciences, Vilnius University, Vilnius, Lithuania.,National Centre of Pathology, Affiliate of Vilnius University Hospital Santaros Clinics, Vilnius, Lithuania
| | - Justinas Besusparis
- Department of Pathology, Forensic Medicine and Pharmacology, Faculty of Medicine, Institute of Biomedical Sciences, Vilnius University, Vilnius, Lithuania.,National Centre of Pathology, Affiliate of Vilnius University Hospital Santaros Clinics, Vilnius, Lithuania
| | - Aida Laurinaviciene
- Department of Pathology, Forensic Medicine and Pharmacology, Faculty of Medicine, Institute of Biomedical Sciences, Vilnius University, Vilnius, Lithuania.,National Centre of Pathology, Affiliate of Vilnius University Hospital Santaros Clinics, Vilnius, Lithuania
| | - Benoit Plancoulaine
- Department of Pathology, Forensic Medicine and Pharmacology, Faculty of Medicine, Institute of Biomedical Sciences, Vilnius University, Vilnius, Lithuania.,ANTICIPE, Inserm (UMR 1086), Cancer Center F. Baclesse, Normandy University, Caen, France
| | - Valerijus Ostapenko
- Department of Breast Surgery and Oncology, National Cancer Institute, Vilnius, Lithuania
| | - Arvydas Laurinavicius
- Department of Pathology, Forensic Medicine and Pharmacology, Faculty of Medicine, Institute of Biomedical Sciences, Vilnius University, Vilnius, Lithuania.,National Centre of Pathology, Affiliate of Vilnius University Hospital Santaros Clinics, Vilnius, Lithuania
| |
Collapse
|
15
|
Zhou LY, Zhang FW, Tong J, Liu F. MiR-191-5p inhibits lung adenocarcinoma by repressing SATB1 to inhibit Wnt pathway. Mol Genet Genomic Med 2019; 8:e1043. [PMID: 31724324 PMCID: PMC6978255 DOI: 10.1002/mgg3.1043] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 10/08/2019] [Accepted: 10/11/2019] [Indexed: 12/19/2022] Open
Abstract
Background To investigate the function of miR‐191‐5p in lung adenocarcinoma and its possible mechanism. Methods QRT‐PCR was adopted for the detection of the expression levels of miR‐191‐5p and SATB1 (HGNC: 10541). The effects of miR‐191‐5p and SATB1 on cell proliferation and migration were examined through the CCK‐8 and Transwell assays. Subsequently, the binding relationships between miR‐191‐5p and SATB1 were confirmed by dual‐luciferase reporter gene assay. Finally, the potential mechanisms of action of miR‐191‐5p were explored through a serious of in vivo and in vitro experiments. Results Lung adenocarcinoma patients had a notably lower expression level of miR‐191‐5p than controls, patients with metastasis had a lower level than those without metastasis, and the level in patients with lung adenocarcinoma in stage III‐IV was lower than that in patients with lung adenocarcinoma in stage I‐II. Overexpression of miR‐191‐5p repressed the migration and proliferation of lung cancer A549/H1650 cells. According to the reporter gene assay, miR‐191‐5p could bind to SATB1. Besides, SATB1 was significantly overexpressed in cancer tissues of patients with lung adenocarcinoma, and SATB1 overexpression accelerated the migration and proliferation of A549/H1650 cells and reversed inhibition on cell migration and proliferation by miR‐191‐5p. Conclusion Overexpression of miR‐191‐5p is capable of blocking the migration and proliferation of lung cancer cells, and its mechanism may be through targeting SATB1 thus downregulating Wnt signaling.
Collapse
Affiliation(s)
- Lai-Yong Zhou
- Department of Cardiothoracic surgery, The People's Hospital of Bao'an Shenzhen, The Affiliated Bao'an Hospital of Southern Medical University, Shenzhen, China
| | - Fu-Wei Zhang
- Department of Cardiothoracic surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Tong
- Department of Cardiothoracic surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Fang Liu
- Department of Pathology, The People's Hospital of Bao'an Shenzhen, The Affiliated Bao'an Hospital of Southern Medical University, Shenzhen, China
| |
Collapse
|
16
|
HER2, NF- κB, and SATB1 Expression Patterns in Gastric Cancer and Their Correlation with Clinical and Pathological Parameters. DISEASE MARKERS 2019; 2019:6315936. [PMID: 31737131 PMCID: PMC6815548 DOI: 10.1155/2019/6315936] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/15/2019] [Accepted: 09/07/2019] [Indexed: 02/07/2023]
Abstract
Gastric cancer (GC) is currently recognized as one of the most common and fatal tumor worldwide. The identification of novel biomarkers in relation to clinical information as well as extending the knowledge on a multiple crosstalk between various oncogenic pathways implicated in GC carcinogenesis seems pivotal to limit the disease-associated mortality. Therefore, we assessed the expression of HER2, NF-κB, and SATB1 in a total of 104 gastric adenocarcinomas and 30 normal gastric samples and correlated the expression patterns with each other and with some clinicopathological variables. Protein expression was examined by immunohistochemistry (IHC) on tissue microarrays (TMAs), and fluorescence in situ hybridization (FISH) was employed to detect HER2 amplification. In the studied group, HER2 and SATB1 were found to be overexpressed in gastric cancer tissue in comparison to normal gastric mucosa. The expression status of the former protein was seen to differ according to some clinicopathological features, but without statistical significance, whereas the expression of the latter was not importantly associated with any of them. In turn, the NF-κB protein level was significantly related to the presence of lymph node metastasis. HER2 expression was not significantly correlated with that of other proteins, but a positive correlation was found between the expression of SATB1 and NF-κB. Further studies with a larger group of patients combined with in vitro mechanistic experiments are required to fully elucidate the role and relationship of HER2, NF-κB, and SATB1 expression in gastric cancer progression. However, to the best of our knowledge, this study is the first look at a simultaneous evaluation of these three markers in the samples of gastric cancer patients.
Collapse
|
17
|
Glatzel-Plucińska N, Piotrowska A, Dzięgiel P, Podhorska-Okołów M. The Role of SATB1 in Tumour Progression and Metastasis. Int J Mol Sci 2019; 20:E4156. [PMID: 31450715 PMCID: PMC6747166 DOI: 10.3390/ijms20174156] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/16/2019] [Accepted: 08/23/2019] [Indexed: 12/12/2022] Open
Abstract
Carcinogenesis is a long-drawn, multistep process, in which metastatic spread is an unequivocal hallmark of a poor prognosis. The progression and dissemination of epithelial cancers is commonly thought to rely on the epidermal-mesenchymal transition (EMT) process. During EMT, epithelial cells lose their junctions and apical-basal polarity, and they acquire a mesenchymal phenotype with its migratory and invasive capabilities. One of the proteins involved in cancer progression and EMT may be SATB1 (Special AT-Rich Binding Protein 1)-a chromatin organiser and a global transcriptional regulator. SATB1 organizes chromatin into spatial loops, providing a "docking site" necessary for the binding of further transcription factors and chromatin modifying enzymes. SATB1 has the ability to regulate whole sets of genes, even those located on distant chromosomes. SATB1 was found to be overexpressed in numerous malignancies, including lymphomas, breast, colorectal, prostate, liver, bladder and ovarian cancers. In the solid tumours, an elevated SATB1 level was observed to be associated with an aggressive phenotype, presence of lymph node, distant metastases, and a poor prognosis. In this review, we briefly describe the prognostic significance of SATB1 expression in most common human cancers, and analyse its impact on EMT and metastasis.
Collapse
Affiliation(s)
- Natalia Glatzel-Plucińska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland.
| | - Aleksandra Piotrowska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Department of Physiotherapy, Wroclaw University School of Physical Education, 51-612 Wroclaw, Poland
| | | |
Collapse
|
18
|
Gagat M, Grzanka D, Krajewski A. Ambiguous Role of SATB1 Expression in Malignant Tumors. J Invest Dermatol 2019; 139:1608-1610. [DOI: 10.1016/j.jid.2019.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 12/30/2018] [Accepted: 01/02/2019] [Indexed: 01/13/2023]
|
19
|
Naik R, Galande S. SATB family chromatin organizers as master regulators of tumor progression. Oncogene 2019; 38:1989-2004. [PMID: 30413763 DOI: 10.1038/s41388-018-0541-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/30/2018] [Accepted: 09/02/2018] [Indexed: 02/07/2023]
Abstract
SATB (Special AT-rich binding protein) family proteins have emerged as key regulators that integrate higher-order chromatin organization with the regulation of gene expression. Studies over the past decade have elucidated the specific roles of SATB1 and SATB2, two closely related members of this family, in cancer progression. SATB family chromatin organizers play diverse and important roles in regulating the dynamic equilibrium of apoptosis, cell invasion, metastasis, proliferation, angiogenesis, and immune modulation. This review highlights cellular and molecular events governed by SATB1 influencing the structural organization of chromatin and interacting with several co-activators and co-repressors of transcription towards tumor progression. SATB1 expression across tumor cell types generates cellular and molecular heterogeneity culminating in tumor relapse and metastasis. SATB1 exhibits dynamic expression within intratumoral cell types regulated by the tumor microenvironment, which culminates towards tumor progression. Recent studies suggested that cell-specific expression of SATB1 across tumor recruited dendritic cells (DC), cytotoxic T lymphocytes (CTL), T regulatory cells (Tregs) and tumor epithelial cells along with tumor microenvironment act as primary determinants of tumor progression and tumor inflammation. In contrast, SATB2 is differentially expressed in an array of cancer types and is involved in tumorigenesis. Survival analysis for patients across an array of cancer types correlated with expression of SATB family chromatin organizers suggested tissue-specific expression of SATB1 and SATB2 contributing to disease prognosis. In this context, it is pertinent to understand molecular players, cellular pathways, genetic and epigenetic mechanisms governed by cell types within tumors regulated by SATB proteins. We propose that patient survival analysis based on the expression profile of SATB chromatin organizers would facilitate their unequivocal establishment as prognostic markers and therapeutic targets for cancer therapy.
Collapse
Affiliation(s)
- Rutika Naik
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Sanjeev Galande
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India.
| |
Collapse
|
20
|
Zhao L, Zheng Y, Ji Y, Zhang X. The expression of special AT-rich binding protein 1 in cervical cancer and its clinical significance. Onco Targets Ther 2019; 12:945-951. [PMID: 30774380 PMCID: PMC6361226 DOI: 10.2147/ott.s191414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background The oncogenic potential of special AT-rich binding protein 1 (SATB1) has been reported in various types of cancer, but its function in cervical cancer remains not fully investigated. This study aimed to investigate the effect of SATB1 mRNA expression on tumor progression and outcomes in the cervical cancer patients. Methods A total of 33 cervical cancer patients treated in our hospital from September 2012 to December 2015 were included. The mRNA expression level of STAB1 in cervical cancer tissue was determined by real-time PCR, and the patients were divided into dichotomous groups based on their SATB1 expression level. Clinical characteristics, recurrence, and survival outcomes were compared between groups. Results Compared with the SATB1-low group, the SATB1-high group had significantly advanced International Federation of Gynecology and Obstetrics (FIGO) stages (P=0.037) and histologic grade (P=0.036). Kaplan–Meier analysis showed that SATB1-high group had a worse overall survival (P=0.078, marginal significant). In the subgroup analysis of pathological types, adenocarcinomas group (n=8) had a significantly higher SATB1 expression level as compared with the squamous cell carcinomas (n=18) and adenosquamous carcinomas (n=7) groups (both P<0.05). Cervical squamous cell carcinomas patients with a high-expression SATB1 (n=8) had more advanced FIGO stages (P=0.015) and histologic grades (P=0.060, marginal significant) as well as a higher (P=0.069, marginal significant) incidence of lymphatic metastasis than those with a low expression of SATB1 (n=10). Conclusion These results showed that expression of SATB1 may have an effect on the disease progression and survival outcome of cervical cancer.
Collapse
Affiliation(s)
- Lijie Zhao
- Department of Gynecology, Maternal and Child Health Hospital of Foshan, Foshan 528000, Guangdong, China,
| | - Yuhua Zheng
- Department of Gynecology, Maternal and Child Health Hospital of Foshan, Foshan 528000, Guangdong, China,
| | - Yong Ji
- Department of Surgery, The First People's Hospital of Foshan, Foshan 528000, Guangdong, China,
| | - Xiaoying Zhang
- Department of Gynecology, Jiashi County People's Hospital of Kashi Region, Kashi, Xinjiang 844000, China
| |
Collapse
|
21
|
Wei L, Ye H, Li G, Lu Y, Zhou Q, Zheng S, Lin Q, Liu Y, Li Z, Chen R. Cancer-associated fibroblasts promote progression and gemcitabine resistance via the SDF-1/SATB-1 pathway in pancreatic cancer. Cell Death Dis 2018; 9:1065. [PMID: 30337520 PMCID: PMC6194073 DOI: 10.1038/s41419-018-1104-x] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 09/26/2018] [Accepted: 09/26/2018] [Indexed: 02/08/2023]
Abstract
Cancer-associated fibroblasts (CAFs), a dominant component of the pancreatic tumor microenvironment, are mainly considered as promotors of malignant progression, but the underlying molecular mechanism remains unclear. Here, we show that SDF-1 secreted by CAFs stimulates malignant progression and gemcitabine resistance in pancreatic cancer, partially owing to paracrine induction of SATB-1 in pancreatic cancer cells. CAF-secreted SDF-1 upregulated the expression of SATB-1 in pancreatic cancer cells, which contributed to the maintenance of CAF properties, forming a reciprocal feedback loop. SATB-1 was verified to be overexpressed in human pancreatic cancer tissues and cell lines by quantitative real-time PCR, western blot, and immunohistochemical staining, which correlated with tumor progression and clinical prognosis in pancreatic cancer patients. We found that SATB-1 knockdown inhibited proliferation, migration, and invasion in SW1990 and PANC-1 cells in vitro, whereas overexpression of SATB-1 in Capan-2 and BxPC-3 cells had the opposite effect. Immunofluorescence staining showed that conditioned medium from SW1990 cells expressing SATB-1 maintained the local supportive function of CAFs. Furthermore, downregulation of SATB-1 inhibited tumor growth in mouse xenograft models. In addition, we found that overexpression of SATB-1 in pancreatic cancer cells participated in the process of gemcitabine resistance. Finally, we investigated the clinical correlations between SDF-1 and SATB-1 in human pancreatic cancer specimens. In summary, these findings demonstrated that the SDF-1/CXCR4/SATB-1 axis may be a potential new target of clinical interventions for pancreatic cancer patients.
Collapse
Affiliation(s)
- Lusheng Wei
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China.,Department of Pancreatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Huilin Ye
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China.,Department of Pancreatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Guolin Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China.,Department of Pancreatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yuanting Lu
- Department of Radiology, Guangzhou women and children's medical center, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Quanbo Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China.,Department of Pancreatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Shangyou Zheng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China.,Department of Pancreatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Qing Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China.,Department of Pancreatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yimin Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China.,Department of Radiotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Zhihua Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China. .,Department of Medical Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China.
| | - Rufu Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China. .,Department of Pancreatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
22
|
Huo FC, Pan YJ, Li TT, Mou J, Pei DS. PAK5 promotes the migration and invasion of cervical cancer cells by phosphorylating SATB1. Cell Death Differ 2018; 26:994-1006. [PMID: 30082769 DOI: 10.1038/s41418-018-0178-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/08/2018] [Accepted: 07/16/2018] [Indexed: 02/07/2023] Open
Abstract
p21-activated kinase 5 (PAK5) is involved in several oncogenic signaling pathways and its amplification or overexpression has been found in various types of cancer; however, the pathophysiologic role of PAK5 in cervical cancer (CC) remains elusive. This study aims to elucidate the effects of PAK5 on CC metastasis and its specific regulation mechanism. We performed western blotting and immunohistochemistry (IHC) analysis and found that the expression levels of PAK5 were significantly upregulated in CC cells and tissues. In addition, statistical analysis via IHC showed that increased PAK5 significantly correlated with CC progression. Mn2+-Phos-tag SDS-PAGE, western blotting, immunofluorescence and dual luciferase reporter assays were utilized to determine the involvement of SATB1 in PAK5-mediated epithelial-mesenchymal transition (EMT). We found that PAK5-mediated special AT-rich binding protein-1 (SATB1) phosphorylation on Ser47 initiated EMT cascade and promoted migration and invasion of CC cells. Furthermore, overexpression of PAK5 induced lung metastasis of CC cells in xenograft modes. Taken together, we conclude that PAK5 is a novel prognostic indicator and plays an important role in the CC metastasis.
Collapse
Affiliation(s)
- Fu-Chun Huo
- Department of pathology, Xuzhou Medical University, Xuzhou, 221004, China.,Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical University, Xuzhou, 221002, China
| | - Yao-Jie Pan
- Department of Oncology, The Affiliated Yancheng Hospital of Medicine School of Southeast University, Yancheng, 224001, China
| | - Tong-Tong Li
- Department of pathology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Jie Mou
- School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Dong-Sheng Pei
- Department of pathology, Xuzhou Medical University, Xuzhou, 221004, China. .,Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical University, Xuzhou, 221002, China.
| |
Collapse
|
23
|
Functional relevance of SATB1 in immune regulation and tumorigenesis. Biomed Pharmacother 2018; 104:87-93. [DOI: 10.1016/j.biopha.2018.05.045] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/05/2018] [Accepted: 05/08/2018] [Indexed: 02/07/2023] Open
|
24
|
Xiao T, Fu L, Jie Z. SATB1 overexpression correlates with gastrointestinal neoplasms invasion and metastasis: a meta-analysis for Chinese population. Oncotarget 2018. [PMID: 28636989 PMCID: PMC5564646 DOI: 10.18632/oncotarget.18548] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Gastrointestinal neoplasm (GIN) is the most common neoplasm in China. The global chromatin organizer SATB1 (special AT-rich sequence binding protein 1) is aberrantly expressed in multiple human neoplasms. We conducted this meta-analysis to investigate whether the invasion and metastasis of GIN correlates with SATB1 levels in tumor tissues in Chinese patients. Materials and Methods Eligible studies were identified through multiple search strategies in the databases PubMed, Embase, Medline, CNKI, and WANFANG, and the relevant clinicopathological data were extracted. Data were pooled using the Mantel-Haenszel fixed-effects or DerSimonian-Laid random-effects model. Results Fourteen studies consisting of 1622 patients were included. There were 3, 3, and 8 studies that evaluated esophageal, gastric, and colorectal cancers, respectively. The overall mean percentage of patients with elevated SATB1 levels was 47.84%. Among patients with GIN, SATB1 overexpression was associated with depth of invasion (T stage: RR 1.27, 95% CI 1.18–1.36, P = 0.000), regional lymph node metastasis (N stage: RR 1.51, 95% CI 1.22–1.87, P = 0.000), and distant metastasis (M stage: RR 2.54, 95% CI 1.46–4.41, P = 0.001). The tumor type most closely linked with invasion and metastasis in GIN was gastric cancer (RR for T stage: 1.64, RR for N stage: 1.68, RR for M stage: 3.15). Conclusions invasion and metastasis of GIN in Chinese patients correlates with SATB1 overexpression in tumor tissues, most profoundly in gastric cancer.
Collapse
Affiliation(s)
- Tao Xiao
- Department of Gastrointestinal Surgery, First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Lei Fu
- Department of Stomatology, Third Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Zhigang Jie
- Department of Gastrointestinal Surgery, First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, China
| |
Collapse
|
25
|
The Special AT-rich Sequence Binding Protein 1 (SATB1) and its role in solid tumors. Cancer Lett 2018; 417:96-111. [DOI: 10.1016/j.canlet.2017.12.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/19/2017] [Accepted: 12/21/2017] [Indexed: 02/07/2023]
|
26
|
Ciribilli Y, Singh P, Inga A, Borlak J. c-Myc targeted regulators of cell metabolism in a transgenic mouse model of papillary lung adenocarcinoma. Oncotarget 2018; 7:65514-65539. [PMID: 27602772 PMCID: PMC5323172 DOI: 10.18632/oncotarget.11804] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 08/24/2016] [Indexed: 12/31/2022] Open
Abstract
c-Myc's role in pulmonary cancer metabolism is uncertain. We therefore investigated c-Myc activity in papillary lung adenocarcinomas (PLAC). Genomics revealed 90 significantly regulated genes (> 3-fold) coding for cell growth, DNA metabolism, RNA processing and ribosomal biogenesis and bioinformatics defined c-Myc binding sites (TFBS) at > 95% of up-regulated genes. EMSA assays at 33 novel TFBS evidenced DNA binding activity and ChIP-seq data retrieved from public repositories confirmed these to be c-Myc bound. Dual-luciferase gene reporter assays developed for RNA-Terminal-Phosphate-Cyclase-Like-1(RCL1), Ribosomal-Protein-SA(RPSA), Nucleophosmin/Nucleoplasmin-3(NPM3) and Hexokinase-1(HK1) confirmed c-Myc functional relevance and ChIP assays with HEK293T cells over-expressing ectopic c-Myc demonstrated enriched c-Myc occupancy at predicted TFBS for RCL1, NPM3, HK1 and RPSA. Note, c-Myc recruitment on chromatin was comparable to the positive controls CCND2 and CDK4. Computational analyses defined master regulators (MR), i.e. heterogeneous nuclear ribonucleoprotein A1, nucleolin, the apurinic/apyrimidinic endonuclease 1, triosephosphate-isomerase 1, folate transporter (SLC19A1) and nucleophosmin to influence activity of up to 90% of PLAC-regulated genes. Their expression was induced by 3-, 3-, 6-, 3-, 11- and 7-fold, respectively. STRING analysis confirmed protein-protein-interactions of regulated genes and Western immunoblotting of fatty acid synthase, serine hydroxyl-methyltransferase 1, arginine 1 and hexokinase 2 showed tumor specific induction. Published knock down studies confirmed these proteins to induce apoptosis by disrupting neoplastic lipogenesis, by endorsing uracil accumulation and by suppressing arginine metabolism and glucose-derived ribonucleotide biosynthesis. Finally, translational research demonstrated high expression of MR and of 47 PLAC up-regulated genes to be associated with poor survival in lung adenocarcinoma patients (HR 3.2 p < 0.001) thus, providing a rationale for molecular targeted therapies in PLACs.
Collapse
Affiliation(s)
- Yari Ciribilli
- Centre for Integrative Biology (CIBIO), University of Trento, 38123 Povo (TN), Italy
| | - Prashant Singh
- Centre for Pharmacology and Toxicology, Hannover Medical School, 30625 Hannover, Germany
| | - Alberto Inga
- Centre for Integrative Biology (CIBIO), University of Trento, 38123 Povo (TN), Italy
| | - Jürgen Borlak
- Centre for Pharmacology and Toxicology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
27
|
Ding M, Pan J, Guo Z, Liu Q, Yang C, Mao L. SATB1 is a Novel Molecular Target for Cancer Therapy. Cancer Invest 2018; 36:28-36. [PMID: 29381393 DOI: 10.1080/07357907.2018.1423688] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Meng Ding
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou University, Xuzhou, China
- Department of Urinary Surgery, The Affiliated Hospital of University Medical College, Xuzhou, China
| | - Jun Pan
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou University, Xuzhou, China
- Department of Urinary Surgery, The Affiliated Hospital of University Medical College, Xuzhou, China
| | - Zhicheng Guo
- Department of Urinary Surgery, The Affiliated Hospital of University Medical College, Xuzhou, China
| | - Quhe Liu
- Department of Urinary Surgery, The Affiliated Hospital of University Medical College, Xuzhou, China
| | - Chunhua Yang
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou University, Xuzhou, China
| | - Lijun Mao
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou University, Xuzhou, China
- Department of Urinary Surgery, The Affiliated Hospital of University Medical College, Xuzhou, China
| |
Collapse
|
28
|
Choudhary D, Clement JM, Choudhary S, Voznesensky O, Pilbeam CC, Woolbright BL, Taylor JA. SATB1 and bladder cancer: Is there a functional link? Urol Oncol 2017; 36:93.e13-93.e21. [PMID: 29079132 DOI: 10.1016/j.urolonc.2017.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 09/29/2017] [Accepted: 10/02/2017] [Indexed: 01/02/2023]
Abstract
PURPOSE SATB1, a global genome organizer, has been shown to play a role in the development and progression of some solid tumors, but its role in bladder cancer is undetermined. Moreover, there is conflicting data about the role of SATB1 in other tumors. This study was initiated to assess a potential role for SATB1 with the hypothesis that SATB1 acts as a tumor promoter in bladder cancer. MATERIALS AND METHODS We evaluated SATB1 expression in bladder cancer cell lines (HTB-5, HTB-9) and compared them to a benign urothelial cell line (UROtsa). Short-hairpin RNA was used to silence SATB1 in multiple cell lines, and cell death and cell proliferation were assessed using multiple assays. RESULTS SATB1 expression was increased significantly in all cancer cell lines compared to benign urothelial cells. SATB1 expression was knocked down by short-hairpin RNA and functional outcomes, including cell number, cell-cycle arrest, cell viability, and apoptosis after cisplatin treatment, were measured. Surprisingly, knockdown of SATB1 in 2 high-grade cancer cell lines showed opposing functional roles. Compared to the non-silencing control, HTB-5 cells, showed decreased cellular proliferation and increased sensitivity to cisplatin, whereas HTB-9 cells, showed increased cell numbers and increased resistance to cisplatin. CONCLUSION We conclude that our results in bladder cancer are consistent with the conflicting data reported in other cancers, and that SATB1 might have different roles in cancer dependent on genetic background and stage of the cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | - John A Taylor
- Department of Urology, Kansas University Medical Center, Kansas City, KS.
| |
Collapse
|
29
|
Guo L, Zheng J, Yu T, Liu Y, Duo L. Elevated expression of SATB1 is involved in pancreatic tumorigenesis and is associated with poor patient survival. Mol Med Rep 2017; 16:8842-8848. [PMID: 28990092 PMCID: PMC5779964 DOI: 10.3892/mmr.2017.7683] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 05/26/2017] [Indexed: 12/15/2022] Open
Abstract
Special AT-rich sequence-binding protein 1 (SATB1) is a master chromatin organizer which has been reported to be implicated in tumor progression in breast and lung cancer. However, its functions in pancreatic tumorigenesis have yet to be elucidated. In the present study, the involvement of SATB1 in pancreatic cancer development was investigated in human BxPC-3 pancreatic adenocarcinoma cells. Short hairpin (sh)RNA was used to stably downregulate SATB1 expression, and functional assays, including cell proliferation, colony formation, soft agar and migration assays, were performed in vitro. In addition, a mouse pancreatic cancer xenograft model was created to examine the tumor-promoting properties of SATB1 in vivo. The present findings demonstrated that stable knockdown of SATB1 expression inhibited the proliferation, colony formation, anchorage-independent growth and suppressed the migratory capabilities of BxPC-3 cells in vitro. In addition, SATB1 downregulation significantly inhibited tumor growth in xenografted mice in vivo. Furthermore, SATB1 was revealed to be upregulated in human pancreatic cancer tissue samples compared with matched non-cancerous adjacent tissues, and high SATB1 expression was associated with poor patient survival. Overall, the present study demonstrated that SATB1 promoted the proliferation of pancreatic cancer cells in vitro. In addition, SATB1 expression was revealed to be upregulated in human pancreatic cancer tissues and its upregulation was associated with poor patient survival. Therefore, SATB1 may have potential as a novel prognostic biomarker and therapeutic target for the treatment of patients with pancreatic cancer.
Collapse
Affiliation(s)
- Lei Guo
- Department of Pancreatic Surgery, People's Hospital of Xinjiang, Urumqi, Xinjiang 830000, P.R. China
| | - Jianjiang Zheng
- Department of Pancreatic Surgery, People's Hospital of Xinjiang, Urumqi, Xinjiang 830000, P.R. China
| | - Tao Yu
- Department of Surgery, People's Hospital of Wujiaqu Wujiaqu, Xinjiang 831300, P.R. China
| | - Yuequan Liu
- Department of Pancreatic Surgery, People's Hospital of Xinjiang, Urumqi, Xinjiang 830000, P.R. China
| | - Lukun Duo
- Department of Pancreatic Surgery, People's Hospital of Xinjiang, Urumqi, Xinjiang 830000, P.R. China
| |
Collapse
|
30
|
Zhai S, Xue J, Wang Z, Hu L. High expression of special AT-rich sequence binding protein-1 predicts esophageal squamous cell carcinoma relapse and poor prognosis. Oncol Lett 2017; 14:7455-7460. [PMID: 29344188 DOI: 10.3892/ol.2017.7081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/21/2017] [Indexed: 02/05/2023] Open
Abstract
Previous studies of the roles of special AT-rich sequence binding protein-1 (SATB1) in the development and progression of cancer have suggested that SATB1 promotes cancer cell metastasis. The aim of the present study is to evaluate the role of SATB1 in the progression and prognosis of esophageal squamous cell carcinoma (ESCC). ESCC tissues were collected from 102 patients and SATB1 mRNA expression was measured by reverse transcription-quantitative polymerase chain reaction. The association between expression of SATB1 mRNA with clinicopathological features and prognosis was assessed, and the prognosis of ESCC was evaluated using Kaplan-Meier survival curves. In the 102 ESCC tissues, SATB1 mRNA expression correlated with the clinical tumor node metastasis stage (P<0.05), but not with any other clinicopathological features (including age, gender, tumor differentiation grade, adjuvant radio/chemotherapy, or the consumption of alcohol and use of cigarettes) (P>0.05). The disease-free survival (DFS) and overall survival (OS) of patients with high SATB1 expression was decreased compared with those with low SATB1 expression. The present study indicated that SATB1 mRNA expression was associated with the postoperative recurrent and poor prognosis in ESCC. SATB1 may be a novel marker for predicting the recurrent and worse prognosis of ESCC.
Collapse
Affiliation(s)
- Songhui Zhai
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jianxin Xue
- Department of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Zheng Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Lijuan Hu
- Department of Immunology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
31
|
Lee K, Seo PJ. Coordination of matrix attachment and ATP-dependent chromatin remodeling regulate auxin biosynthesis and Arabidopsis hypocotyl elongation. PLoS One 2017; 12:e0181804. [PMID: 28746399 PMCID: PMC5529009 DOI: 10.1371/journal.pone.0181804] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/09/2017] [Indexed: 01/08/2023] Open
Abstract
Hypocotyl elongation is extensively controlled by hormone signaling networks. In particular, auxin metabolism and signaling play key roles in light-dependent hypocotyl growth. The nuclear matrix facilitates organization of DNA within the nucleus, and dynamic interactions between nuclear matrix and DNA are related to gene regulation. Conserved scaffold/matrix attachment regions (S/MARs) are anchored to the nuclear matrix by the AT-HOOK MOTIF CONTAINING NUCLEAR LOCALIZED (AHL) proteins in Arabidopsis. Here, we found that ESCAROLA (ESC)/AHL27 and SUPPRESSOR OF PHYTOCHROME B-4 #3 (SOB3)/AHL29 redundantly regulate auxin biosynthesis in the control of hypocotyl elongation. The light-inducible AHL proteins bind directly to an S/MAR region of the YUCCA 9 (YUC9) promoter and suppress its expression to inhibit hypocotyl growth in light-grown seedlings. In addition, they recruit the SWI2/SNF2-RELATED 1 (SWR1) complex and promote exchange of H2A with the histone variant H2A.Z at the YUC9 locus to further elaborately control auxin biosynthesis. Consistent with these results, the long hypocotyl phenotypes of light-grown genetic mutants of the AHLs and H2A.Z-exchanging components were suppressed by potent chemical inhibitors of auxin transport and YUC enzymes. These results suggest that the coordination of matrix attachment and chromatin modification underlies auxin biosynthesis in light-dependent hypocotyl growth.
Collapse
Affiliation(s)
- Kyounghee Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Pil Joon Seo
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
- * E-mail:
| |
Collapse
|
32
|
Selinger CI, Li BT, Pavlakis N, Links M, Gill AJ, Lee A, Clarke S, Tran TN, Lum T, Yip PY, Horvath L, Yu B, Kohonen-Corish MRJ, O'Toole SA, Cooper WA. Screening for ROS1 gene rearrangements in non-small-cell lung cancers using immunohistochemistry with FISH confirmation is an effective method to identify this rare target. Histopathology 2016; 70:402-411. [PMID: 27599111 DOI: 10.1111/his.13076] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/02/2016] [Indexed: 12/26/2022]
Abstract
AIMS To assess the prevalence of ROS1 rearrangements in a retrospective and prospective diagnostic Australian cohort and evaluate the effectiveness of immunohistochemical screening. METHODS AND RESULTS A retrospective cohort of 278 early stage lung adenocarcinomas and an additional 104 prospective non-small-cell lung cancer (NSCLC) cases referred for routine molecular testing were evaluated. ROS1 immunohistochemistry (IHC) was performed (D4D6 clone, Cell Signaling Technology) on all cases as well as fluorescence in-situ hybridization (FISH) using the ZytoVision and Abbott Molecular ROS1 FISH probes, with ≥15% of cells with split signals considered positive for rearrangement. Eighty-eight cases (32%) from the retrospective cohort showed staining by ROS1 IHC, and one case (0.4%) showed ROS1 rearrangement by FISH. Nineteen of the prospective diagnostic cases showed ROS1 IHC staining, 12 (12%) cases of which were confirmed as ROS1 rearranged by FISH. There were no ROS1 rearranged cases that showed no expression of ROS1 with IHC. The ROS1 rearranged cases in the prospective cohort were all EGFR wild-type and anaplastic lymphoma kinase (ALK) rearrangement-negative. The sensitivity of ROS1 IHC in the retrospective cohort was 100% and specificity was 76%. CONCLUSIONS ROS1 rearrangements are rare events in lung adenocarcinomas. Selection of cases for ROS1 FISH testing, by excluding EGFR/ALK-positive cases and use of IHC to screen for potentially positive cases, can be used to enrich for the likelihood of identifying a ROS1 rearranged lung cancer and prevent the need to undertake expensive and time-consuming FISH testing in all cases.
Collapse
Affiliation(s)
- Christina I Selinger
- Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Bob T Li
- Department of Medical Oncology, Royal North Shore Hospital, St Leonards, NSW, Australia.,Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, USA.,Sydney Medical School, University of Sydney, Camperdown, NSW, Australia
| | - Nick Pavlakis
- Department of Medical Oncology, Royal North Shore Hospital, St Leonards, NSW, Australia.,Sydney Medical School, University of Sydney, Camperdown, NSW, Australia
| | - Matthew Links
- Department of Medical Oncology, St George Hospital, Kogarah, NSW, Australia
| | - Anthony J Gill
- Sydney Medical School, University of Sydney, Camperdown, NSW, Australia.,Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Adrian Lee
- Department of Medical Oncology, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Stephen Clarke
- Department of Medical Oncology, Royal North Shore Hospital, St Leonards, NSW, Australia.,Sydney Medical School, University of Sydney, Camperdown, NSW, Australia
| | - Thang N Tran
- Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Trina Lum
- Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Po Y Yip
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,School of Medicine, University of Western Sydney, Sydney, NSW, Australia.,Chris O'Brien Lifehouse, Camperdown, NSW, Australia.,Macarthur Cancer Therapy Centre, Campbelltown Hospital, Camperdown, NSW, Australia
| | - Lisa Horvath
- Sydney Medical School, University of Sydney, Camperdown, NSW, Australia.,The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,Medical Oncology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Bing Yu
- Sydney Medical School, University of Sydney, Camperdown, NSW, Australia.,Department of Medical Genomics, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Maija R J Kohonen-Corish
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,School of Medicine, University of Western Sydney, Sydney, NSW, Australia.,St Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW, Australia
| | - Sandra A O'Toole
- Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia.,Sydney Medical School, University of Sydney, Camperdown, NSW, Australia.,The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Wendy A Cooper
- Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia.,Sydney Medical School, University of Sydney, Camperdown, NSW, Australia.,School of Medicine, University of Western Sydney, Sydney, NSW, Australia
| |
Collapse
|
33
|
Mansour MA, Hyodo T, Akter KA, Kokuryo T, Uehara K, Nagino M, Senga T. SATB1 and SATB2 play opposing roles in c-Myc expression and progression of colorectal cancer. Oncotarget 2016; 7:4993-5006. [PMID: 26701851 PMCID: PMC4826260 DOI: 10.18632/oncotarget.6651] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 12/05/2015] [Indexed: 12/22/2022] Open
Abstract
Special AT-rich sequence-binding protein 1 and 2 (SATB1/2) are nuclear matrix-associated proteins involved in chromatin remodeling and regulation of gene expression. SATB2 acts as a tumor suppressor in laryngeal squamous cell carcinoma and colon cancer, whereas SATB1 promotes the progression of numerous types of cancers. In this study, we examined the effects of SATB1 and SATB2 on the malignant characteristics of colorectal cancer cells. SATB1 and SATB2 expression were negatively correlated in colorectal cancer specimens. SATB1 expression was increased, whereas SATB2 expression was reduced, in colorectal cancer tissues compared to control tissues. Exogenous expression of SATB2 in colorectal cancer cells suppressed cell proliferation, colony formation and tumor proliferation in mice. c-Myc was reduced by SATB2 expression, and exogenous expression of c-Myc in SATB2-expressing cells restored proliferation, colony formation and in vivo tumor growth of colorectal cancer cells. We also showed that c-Myc reduction by SATB2 was mediated by the inactivation of ERK5. In contrast, SATB1 promoted c-Myc expression. The expression of SATB1 in colorectal cancer tissues was positively correlated with c-Myc expression, and SATB1 knockdown reduced c-Myc expression in colorectal cancer cells. Finally, we showed that SATB1 knockdown in colorectal cancer cells suppressed cell proliferation, colony formation and cell invasion. Our results reveal interesting features of how the structural homologs SATB1 and SATB2 exert opposing functions in colorectal tumorigenesis.
Collapse
Affiliation(s)
- Mohammed A Mansour
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Showa, Nagoya, 466-8550 Japan.,Biochemistry Section, Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Toshinori Hyodo
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Showa, Nagoya, 466-8550 Japan
| | - Khondker Ayesha Akter
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Showa, Nagoya, 466-8550 Japan
| | - Toshio Kokuryo
- Department of Surgical Oncology, Nagoya University Graduate School of Medicine, Showa, Nagoya, 466-8550 Japan
| | - Keisuke Uehara
- Department of Surgical Oncology, Nagoya University Graduate School of Medicine, Showa, Nagoya, 466-8550 Japan
| | - Masato Nagino
- Department of Surgical Oncology, Nagoya University Graduate School of Medicine, Showa, Nagoya, 466-8550 Japan
| | - Takeshi Senga
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Showa, Nagoya, 466-8550 Japan
| |
Collapse
|
34
|
Meng WJ, Pathak S, Ding ZY, Zhang H, Adell G, Holmlund B, Li Y, Zhou ZG, Sun XF. Special AT-rich sequence binding protein 1 expression correlates with response to preoperative radiotherapy and clinical outcome in rectal cancer. Cancer Biol Ther 2016; 16:1738-45. [PMID: 26528635 DOI: 10.1080/15384047.2015.1095408] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Our recent study showed the important role of special AT-rich sequence binding protein 1 (SATB1) in the progression of human rectal cancer. However, the value of SATB1 in response to radiotherapy (RT) for rectal cancer hasn't been reported so far. Here, SATB1 was determined using immunohistochemistry in normal mucosa, biopsy, primary cancer, and lymph node metastasis from 132 rectal cancer patients: 66 with and 66 without preoperative RT before surgery. The effect of SATB1 knockdown on radiosensitivity was assessed by proliferation-based assay and clonogenic assay. The results showed that SATB1 increased from normal mucosa to primary cancer, whereas it decreased from primary cancer to metastasis in non-RT patients. SATB1 decreased in primary cancers after RT. In RT patients, positive SATB1 was independently associated with decreased response to preoperative RT, early time to metastasis, and worse survival. SATB1 negatively correlated with ataxia telangiectasia mutated (ATM) and pRb2/p130, and positively with Ki-67 and Survivin in RT patients, and their potential interaction through different canonical pathways was identified in network ideogram. Taken together, our findings disclose for the first time that radiation decreases SATB1 expression and sensitizes cancer cells to confer clinical benefit of patients, suggesting that SATB1 is predictive of response to preoperative RT and clinical outcome in rectal cancer.
Collapse
Affiliation(s)
- Wen-Jian Meng
- a Department of Gastrointestinal Surgery ; West China Hospital; Sichuan University ; Chengdu , China.,b Department of Oncology and Department of Clinical and Experimental Medicine ; Linköping University ; Linköping , Sweden
| | - Surajit Pathak
- b Department of Oncology and Department of Clinical and Experimental Medicine ; Linköping University ; Linköping , Sweden
| | - Zhen-Yu Ding
- c Cancer Center and State Key Laboratory of Biotherapy; West China Hospital; Sichuan University ; Chengdu , China
| | - Hong Zhang
- d School of Medicine; Örebro University ; Örebro , Sweden
| | - Gunnar Adell
- e Department of Oncology ; County Council of Östergötland ; Linköping , Sweden
| | - Birgitta Holmlund
- e Department of Oncology ; County Council of Östergötland ; Linköping , Sweden
| | - Yuan Li
- f Institute of Digestive Surgery; State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University ; Chengdu , China
| | - Zong-Guang Zhou
- a Department of Gastrointestinal Surgery ; West China Hospital; Sichuan University ; Chengdu , China.,f Institute of Digestive Surgery; State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University ; Chengdu , China
| | - Xiao-Feng Sun
- b Department of Oncology and Department of Clinical and Experimental Medicine ; Linköping University ; Linköping , Sweden.,f Institute of Digestive Surgery; State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University ; Chengdu , China
| |
Collapse
|
35
|
Laurinavicius A, Green AR, Laurinaviciene A, Smailyte G, Ostapenko V, Meskauskas R, Ellis IO. Ki67/SATB1 ratio is an independent prognostic factor of overall survival in patients with early hormone receptor-positive invasive ductal breast carcinoma. Oncotarget 2016; 6:41134-45. [PMID: 26512778 PMCID: PMC4747395 DOI: 10.18632/oncotarget.5838] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/24/2015] [Indexed: 01/11/2023] Open
Abstract
Biological diversity of breast cancer presents challenges for personalized therapy and necessitates multiparametric approaches to understand and manage the disease. Multiple protein biomarkers tested by immunohistochemistry (IHC), followed by digital image analysis and multivariate statistics of the data, have been shown to be effective in exploring latent profiles of tumor tissue immunophenotype. In this study, based on tissue microarrays of 107 patients with hormone receptor (HR) positive invasive ductal breast carcinoma, we investigated the prognostic value of the integrated immunophenotype to predict overall survival (OS) of the patients. A set of 10 IHC markers (ER, PR, HER2, Ki67, AR, BCL2, HIF-1α, SATB1, p53, and p16) was used. The main factor of the variance was characterized by opposite loadings of ER/PR/AR/BCL2 and Ki67/HIF-1α; it was associated with histological grade but did not predict OS. The second factor was driven by SATB1 expression along with moderate positive HIF-1α and weak negative Ki67 loadings. Importantly, this factor did not correlate with any clinicopathologic parameters, but was an independent predictor of better OS. Ki67 and SATB1 did not reach statistical significance as single predictors; however, high Ki67/SATB1 ratio was an independent predictor of worse OS. In addition, our data indicate potential double prognostic meaning of HIF-1α expression in breast cancer and necessitate focused studies, taking into account the immunophenotype interactions and tissue heterogeneity aspects.
Collapse
Affiliation(s)
- Arvydas Laurinavicius
- Faculty of Medicine, Vilnius University, Vilnius, Lithuania.,National Center of Pathology, Vilnius University Hospital Santariskiu Clinics, Vilnius, Lithuania
| | - Andrew R Green
- Division of Cancer and Stem Cells, School of Medicine and Nottingham University Hospitals NHS Trust, University of Nottingham, Nottingham, United Kingdom
| | - Aida Laurinaviciene
- Faculty of Medicine, Vilnius University, Vilnius, Lithuania.,National Center of Pathology, Vilnius University Hospital Santariskiu Clinics, Vilnius, Lithuania
| | - Giedre Smailyte
- Faculty of Medicine, Vilnius University, Vilnius, Lithuania.,National Cancer Institute, Vilnius, Lithuania
| | | | - Raimundas Meskauskas
- National Center of Pathology, Vilnius University Hospital Santariskiu Clinics, Vilnius, Lithuania
| | - Ian O Ellis
- Division of Cancer and Stem Cells, School of Medicine and Nottingham University Hospitals NHS Trust, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
36
|
Huang B, Zhou H, Wang S, Lang XP, Wang X. Effect of silencing SATB1 on proliferation, invasion and apoptosis of A549 human lung adenocarcinoma cells. Oncol Lett 2016; 12:3818-3824. [PMID: 27895736 PMCID: PMC5104178 DOI: 10.3892/ol.2016.5179] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/05/2016] [Indexed: 11/25/2022] Open
Abstract
The present study aimed to explore the clinical characteristics of special adenine-thymine-rich sequence-binding protein 1 (SATB1) in lung adenocarcinoma and its role in the proliferation, invasion, migration and apoptosis of the lung adenocarcinoma cell line A549. The expression of SATB1 was first studied in tumor tissues of lung adenocarcinoma and adjacent non-tumor tissues. The siRNA green fluorescent protein expression vector of SATB1 was constructed and transfected into the lung adenocarcinoma cell line A549, then a fluorescence microscope was used to study the transfection efficiency. Western blot analysis was adopted to measure the silencing efficiency. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), Transwell and scratch assays were used to study cell proliferation, invasion and migration activity, and the apoptosis rate was tested by flow cytometry. SATB1 expression was low in the adjacent non-tumor tissues but high in lung adenocarcinoma tissues, and it was reversely proportional to the differentiation degree. Following transfection with SATB1-siRNA, the expression of SATB1 in A549 cells was blocked (P<0.01). In addition, the proliferation, invasion and migration abilities of cells decreased significantly while the apoptosis rate increased significantly (P<0.01). In conclusion SATB1 is closely associated with the pathogenesis and development of lung adenocarcinoma.
Collapse
Affiliation(s)
- Bo Huang
- Department of Thoracic Surgery, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Hongli Zhou
- Department of Kidney Diseases, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Siwang Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Xian Ping Lang
- Department of Thoracic Surgery, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Xiaodong Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning 121000, P.R. China
| |
Collapse
|
37
|
Lv JH, Wang F, Shen MH, Wang X, Zhou XJ. SATB1 expression is correlated with β-catenin associated epithelial-mesenchymal transition in colorectal cancer. Cancer Biol Ther 2016; 17:254-61. [PMID: 26810818 DOI: 10.1080/15384047.2016.1139239] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
SATB1, a global gene regulator, has been implicated in the growth and metastasis of multiple cancers, including colorectal cancer. While the understanding about the role of SATB1 in CRC remains limited. The aim of our study is to investigate the expression of SATB1 in CRC, and the relationship between SATB1 expression pattern and clinicopathological variables. A further aim is to analyze the correlation between SATB1 expression and epithelial-mesenchymal transition in CRC. Immunohistochemical expression of SATB1, β-catenin, E-cadherin, CK20, Vimentin, SMA, and desmin were assessed in a cohort of 200 patients using tissue microarrays. SATB1 was expressed in 133 (66.5%) CRC primary lesions, 14 (28%) adjacent colorectal mucosa specimens, and 60 (75%) corresponding lymph node metastases. The expression level of SATB1 was significantly higher in lymph node metastases than in CRC primary lesions and normal mucosa (P = 0.000). High expression of SATB1 in CRC was strongly correlated with poor differentiation of tumor tissues (P = 0.000). High expression of SATB1 was significantly correlated with aberrant expression of β-catenin (P = 0.0005), low expression of E-cadherin (P = 0.000) and CK20 (P = 0.000) and with high expression of Vimentin (P = 0.001). No SMA or desmin protein was expressed in the CRC cells. Our results suggested that high expression of SATB1 is significantly correlated with poor differentiation of CRC. SATB1 might promote the epithelial-mesenchymal transition by increasing the aberrant expression of β-catenin.
Collapse
Affiliation(s)
- Jing-huan Lv
- a Department of Pathology , Jinling Hospital, Medical School of Nanjing University , Nanjing , China.,b Department of Pathology , the Suzhou Hospital Affiliated to Nanjing Medical University , Suzhou , China
| | - Feng Wang
- b Department of Pathology , the Suzhou Hospital Affiliated to Nanjing Medical University , Suzhou , China
| | - Ming-hong Shen
- b Department of Pathology , the Suzhou Hospital Affiliated to Nanjing Medical University , Suzhou , China
| | - Xuan Wang
- a Department of Pathology , Jinling Hospital, Medical School of Nanjing University , Nanjing , China
| | - Xiao-jun Zhou
- a Department of Pathology , Jinling Hospital, Medical School of Nanjing University , Nanjing , China
| |
Collapse
|
38
|
Alterations of MET Gene Copy Number and Protein Expression in Primary Non–Small-Cell Lung Cancer and Corresponding Nodal Metastases. Clin Lung Cancer 2016; 17:30-8.e1. [DOI: 10.1016/j.cllc.2015.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 08/05/2015] [Accepted: 08/11/2015] [Indexed: 12/19/2022]
|
39
|
Luo XD, Yang SJ, Wang JN, Tan L, Liu D, Wang YY, Zheng RH, Wu XH, Xu LH, Tan H. Downregulation of SATB1 increases the invasiveness of Jurkat cell via activation of the WNT/β-catenin signaling pathway in vitro. Tumour Biol 2015; 37:7413-9. [PMID: 26678884 DOI: 10.1007/s13277-015-4638-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 12/10/2015] [Indexed: 12/20/2022] Open
Abstract
Special AT-rich sequence-binding protein-1 (SATB1) is critical for genome organizer that reprograms chromatin organization and transcription profiles, and associated with tumor growth and metastasis in several cancer types. Many studies suggest that SATB1 overexpression is an indicator of poor prognosis in various cancers, such as breast cancer, malignant cutaneous melanoma, and liver cancer. However, their expression patterns and function values for adult T cell leukemia (ATL) are still largely unknown. The aim of this study is to examine the levels of SATB1 in ATL and to explore its function and mechanisms in Jurkat cell line. Here, we reported that SATB1 expressions were decreased in ATL cells (p < 0.001) compared with normal controls. Knockdown of SATB1 expression significantly enhanced invasion of Jurkat cell in vitro. Furthermore, knockdown of SATB1 gene enhances β-catenin nuclear accumulation and transcriptional activity and thus may increase the invasiveness of Jurkat cell through the activation of Wnt/β-catenin signaling pathway in vitro.
Collapse
Affiliation(s)
- Xiao-Dan Luo
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, People's Republic of China
| | - Shao-Jiang Yang
- Department of Hematology, The First People's Hospital of Foshan, Foshan, 528000, China
| | - Jia-Ni Wang
- Breast Cancer Center, The third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Li Tan
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, People's Republic of China
| | - Dan Liu
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, People's Republic of China
| | - Ya-Ya Wang
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, People's Republic of China
| | - Run-Hui Zheng
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, People's Republic of China
| | - Xiao-Hong Wu
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, People's Republic of China
| | - Li-Hua Xu
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, People's Republic of China.
| | - Huo Tan
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, People's Republic of China.
| |
Collapse
|
40
|
Cooper WA, Tran T, Vilain RE, Madore J, Selinger CI, Kohonen-Corish M, Yip P, Yu B, O’Toole SA, McCaughan BC, Yearley JH, Horvath LG, Kao S, Boyer M, Scolyer RA. PD-L1 expression is a favorable prognostic factor in early stage non-small cell carcinoma. Lung Cancer 2015; 89:181-8. [DOI: 10.1016/j.lungcan.2015.05.007] [Citation(s) in RCA: 214] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/29/2015] [Accepted: 05/09/2015] [Indexed: 12/23/2022]
|
41
|
Liu N, Zhuang S. Treatment of chronic kidney diseases with histone deacetylase inhibitors. Front Physiol 2015; 6:121. [PMID: 25972812 PMCID: PMC4411966 DOI: 10.3389/fphys.2015.00121] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 04/02/2015] [Indexed: 01/30/2023] Open
Abstract
Histone deacetylases (HDACs) induce deacetylation of both histone and non-histone proteins and play a critical role in the modulation of physiological and pathological gene expression. Pharmacological inhibition of HDAC has been reported to attenuate progression of renal fibrogenesis in obstructed kidney and reduce cyst formation in polycystic kidney disease. HDAC inhibitors (HDACis) are also able to ameliorate renal lesions in diabetes nephropathy, lupus nephritis, aristolochic acid nephropathy, and transplant nephropathy. The beneficial effects of HDACis are associated with their anti-fibrosis, anti-inflammation, and immunosuppressant effects. In this review, we summarize recent advances on the treatment of various chronic kidney diseases with HDACis in pre-clinical models.
Collapse
Affiliation(s)
- Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine Shanghai, China ; Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University Providence, RI, USA
| |
Collapse
|
42
|
He J, Gong J, Ding Q, Tan Q, Han P, Liu J, Zhou Z, Tu W, Xia Y, Yan W, Tian D. Suppressive effect of SATB1 on hepatic stellate cell activation and liver fibrosis in rats. FEBS Lett 2015; 589:1359-68. [PMID: 25896016 DOI: 10.1016/j.febslet.2015.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 03/24/2015] [Accepted: 04/08/2015] [Indexed: 12/13/2022]
Abstract
Liver fibrosis is a worldwide clinical issue. Activation of hepatic stellate cells (HSCs) is the central event during liver fibrosis. We investigated the role of SATB1 in HSC activation and liver fibrogenesis. The results show that SATB1 expression is reduced during HSC activation. Additionally, SATB1 inhibits HSC activation, proliferation, migration, and collagen synthesis. Furthermore, CTGF, a pro-fibrotic agent, is also significantly inhibited by SATB1 through the Ras/Raf-1/MEK/ERK/Ets-1 pathway. In vivo, SATB1 deactivates HSCs and attenuates fibrosis in TAA-induced fibrotic rat livers. These data indicate that SATB1 plays an important role in HSC activation and liver fibrosis.
Collapse
Affiliation(s)
- Jiayi He
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin Gong
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Ding
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinghai Tan
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Han
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingmei Liu
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenzhen Zhou
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Tu
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yujia Xia
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yan
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Dean Tian
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
43
|
Analysis of MicroRNA Expression Profile Identifies Novel Biomarkers for Non-small Cell Lung Cancer. TUMORI JOURNAL 2015; 101:104-10. [PMID: 25702651 DOI: 10.5301/tj.5000224] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2015] [Indexed: 01/01/2023]
Abstract
Background Non-small cell lung cancer (NSCLC) is one of the leading causes of cancer mortality. MicroRNAs (miRNAs), small noncoding RNAs, regulate the expression of genes that play roles in human cancer via posttranscriptional inhibition. Methods To identify the potential miRNA biomarkers in NSCLC, we downloaded the miRNA expression profile (ID: GSE29248) of NSCLC from the Gene Expression Omnibus (GEO) database and analyzed the differentially expressed miRNAs in NSCLC tissue compared with normal control tissue. Then the targets of these differentially expressed miRNAs were screened and used in network construction and functional enrichment analysis. Results We identified a total of 17 miRNAs that showed a significantly differential expression in NSCLC tissue. We found that miR-34b and miR-520h might play important roles in the regulation of NSCLC, miR-22 might be a novel biomarker as an oncogene, and miR-448 might promote, while miR-654-3p prevents, NSCLC progression. Conclusions Our study may provide the groundwork for further clinical molecular target therapy experiments in NSCLC.
Collapse
|
44
|
Kowalczyk AE, Godlewski J, Krazinski BE, Kiewisz J, Sliwinska-Jewsiewicka A, Kwiatkowski P, Pula B, Dziegiel P, Janiszewski J, Wierzbicki PM, Kmiec Z. Divergent expression patterns of SATB1 mRNA and SATB1 protein in colorectal cancer and normal tissues. Tumour Biol 2015; 36:4441-52. [PMID: 25874491 PMCID: PMC4529467 DOI: 10.1007/s13277-015-3084-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 01/08/2015] [Indexed: 02/06/2023] Open
Abstract
Special AT-rich sequence-binding protein 1 (SATB1) is a 'genome organizer,' and it has been proposed as a factor that affects the development and progression of various human neoplasms, including colorectal cancer (CRC). This study aimed to compare SATB1 expression in a group of CRC patients and healthy subjects at the mRNA and protein levels. We collected paired tumor tissue and unchanged mucosa of the large intestine from 102 CRC patients as well as 53 biopsies of normal colon mucosa obtained from healthy patients during screening colonoscopy. Tissue samples were quantified for SATB1 mRNA by quantitative PCR, while SATB1 protein expression was determined by Western blotting and immunohistochemistry. SATB1 mRNA level in tumor tissues was over twofolds lower than in samples of corresponding unchanged tissues and fourfolds lower than in biopsies of healthy colon mucosa. Western blotting analysis revealed that SATB1 protein content in tumor and unchanged tissues of CRC patients was over sixfold and fivefolds higher than in biopsies of healthy colon mucosa, respectively. Immunohistochemical staining demonstrated higher nuclear and cytoplasmic SATB1 reactivity in the tumor tissue compared to unchanged mucosa of CRC patients. Despite these differences, SATB1 mRNA, protein, and immunoreactivity levels did not correlate with patients' clinicopathological data and their overall survival, but the latter analysis was limited by a relatively short period of follow-up. In conclusion, we suggest that some as yet unidentified posttranscriptional mechanisms that regulate SATB1 expression may be altered in the CRC tissue.
Collapse
Affiliation(s)
- Anna E Kowalczyk
- Department of Human Histology and Embryology, Faculty of Medical Sciences, University of Warmia and Mazury, 30 Warszawska Str., 10082, Olsztyn, Poland,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Nicotinamide induces apoptosis of F9 mouse teratocarcinoma stem cells by downregulation of SATB1 expression. Tumour Biol 2015; 36:4339-48. [PMID: 25596087 DOI: 10.1007/s13277-015-3073-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 01/08/2015] [Indexed: 10/24/2022] Open
Abstract
The aim of this study was to decide whether nicotinamide (NA) could induce apoptosis of F9 mouse teratocarcinoma stem cells (MF9) by downregulation of special AT-rich sequence binding protein 1 (SATB1) expression. We used different concentrations of NA (0, 1.5, 2, and 2.5 mmol/L) to treat MF9 cells and analyze SATB1 expression by RT-qPCR and Western blotting; in addition, the cell proliferation was detected in a microplate reader with Cell Counting Kit-8 (CCK-8), and the cell cycle and apoptosis were analyzed using flow cytometry. We found that the expression of SATB1 was decreased significantly in NA-treated groups than in the control group, and its expression level was inversely related to the NA concentration. In addition, CCK-8 analysis showed that NA significantly inhibited the proliferation of MF9 cells, and flow cytometry showed that NA blocked MF9 cells to G1 phase and significantly promoted apoptosis in any treated groups. To confirm the results, we constructed small interference RNA (siRNA) targeting at mouse SATB1 and transferred into MF9 cells. The results indicated that the expression of SATB1 in both mRNA and protein levels was significantly decreased after cells transferred with siRNA sequence for 48 h, the proliferation of MF9 cells was significantly inhibited, and most of MF9 cells were blocked at G1 phase, and the apoptosis rate was increased obviously. The results showed that NA could inhibit the proliferation and induce apoptosis of MF9 cells. These findings might be used as an efficient candidate for teratocarcinoma therapy.
Collapse
|
46
|
Abstract
The special AT-rich sequence-binding proteins 1 and 2 (SATB1/2) are nuclear matrix associated proteins that are transcription factors involved in chromatin remodeling and gene regulation. Expression of the SATB2 gene is tissue-specific, and the only epithelial cells expressing SATB2 are the glandular cells of the lower gastrointestinal tract where its expression is regulated by microRNA-31 (miR-31) and miR-182. SATB2, along with its homolog SATB1, are thought to be involved in various cancers with their roles in this disease being specific to the type of cancer. Colorectal cancer (CRC) provides the largest association of SATB2 with cancer and the roles of SATB2 are better defined and more studied in CRC than in any other cancer type. SATB1 displays a negative association with SATB2 in CRC. The various studies that have investigated the involvement of SATB1 and 2 in CRC have produced consistent findings. Here, we form four major conclusions regarding the role of these proteins in CRC and their potential clinical value: (i) SATB2 is a sensitive marker to distinguish CRC from other cancer types, (ii) Reduced expression of SATB2 in CRC is associated with poor prognosis, (iii) High levels of SATB1 expression facilitate CRC and are associated with poor prognosis and (iv) Overexpression of miR-31 and -182 in CRC leads to more aggressive cancer. This review will describe several of the key investigations that established these conclusions and highlight results that offer opportunities for future research in the treatment and diagnosis of CRC.
Collapse
Affiliation(s)
- Jason Brocato
- Department of Environmental Medicine, New York University Langone Medical Center, Tuxedo, NY 10987, USA
| | - Max Costa
- Department of Environmental Medicine, New York University Langone Medical Center, Tuxedo, NY 10987, USA
| |
Collapse
|
47
|
Niu Y, Wang L, Cheng C, Du C, Lu X, Wang G, Liu J. Increased expressions of SATB1 and S100A4 are associated with poor prognosis in human colorectal carcinoma. APMIS 2014; 123:93-101. [PMID: 25257341 DOI: 10.1111/apm.12310] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Accepted: 07/22/2014] [Indexed: 12/19/2022]
Abstract
This study was designed to explore the correlation between expressions of SATB1 and S100A4 and their relationships to the clinicopathologic parameters of colorectal carcinoma (CRC). Expressions of SATB1 and S100A4 were evaluated by immunohistochemistry in a cohort of 131 primary CRC patients undergone surgical resection from 2005 to 2007. SATB1 and S100A4 were positively expressed in 48.9% and 54.2% of CRC cases, respectively. SATB1 and S100A4 expressions in tumor tissues were significantly higher than those in the corresponding normal tissues. A positive correlation was observed between SATB1 and S100A4. Moreover, the levels of SATB1 and S100A4 were both significantly associated with invasion, lymph node status, and TNM stage of CRC, whereas S100A4 expression was also correlated with distant metastasis. Multivariate analysis revealed that SATB1 expression was an independent prognostic indicator for poor survival of CRC. Further survival analysis indicated that co-expression of SATB1 and S100A4 suggested a worse 5-year overall survival rate in CRC patients. Thus, combined analysis of SATB1 and S100A4 expressions may be valuable in determining the development and progression of CRC. Co-expression of SATB1 and S100A4 is an unfavorable prognostic indicator and may be useful in the follow-up of patients with CRC.
Collapse
Affiliation(s)
- Yanfeng Niu
- Departments of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | |
Collapse
|
48
|
Al-Sohaily S, Henderson C, Selinger C, Pangon L, Segelov E, Kohonen-Corish MRJ, Warusavitarne J. Loss of special AT-rich sequence-binding protein 1 (SATB1) predicts poor survival in patients with colorectal cancer. Histopathology 2014; 65:155-63. [DOI: 10.1111/his.12295] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 09/23/2013] [Indexed: 12/17/2022]
Affiliation(s)
- Sam Al-Sohaily
- Cancer Research Program; Garvan Institute of Medical Research; Darlinghurst NSW Australia
- Department of Gastroenterology; Campbelltown and Fairfield Hospitals; NSW Australia
- South Western Sydney Clinical School; University of NSW; NSW Australia
| | - Christopher Henderson
- South Western Sydney Clinical School; University of NSW; NSW Australia
- Department of Anatomical Pathology; Liverpool Hospital; Liverpool NSW Australia
| | - Christina Selinger
- Tissue Pathology and Diagnostic Oncology; Royal Prince Alfred Hospital; Camperdown NSW Australia
| | - Laurent Pangon
- Cancer Research Program; Garvan Institute of Medical Research; Darlinghurst NSW Australia
| | - Eva Segelov
- St Vincent's Clinical School; University of NSW; Sydney NSW Australia
| | - Maija R. J. Kohonen-Corish
- Cancer Research Program; Garvan Institute of Medical Research; Darlinghurst NSW Australia
- St Vincent's Clinical School; University of NSW; Sydney NSW Australia
- School of Medicine; University of Western Sydney; Sydney NSW Australia
| | - Janindra Warusavitarne
- Cancer Research Program; Garvan Institute of Medical Research; Darlinghurst NSW Australia
- South Western Sydney Clinical School; University of NSW; NSW Australia
| |
Collapse
|
49
|
SATB1 overexpression promotes malignant T-cell proliferation in cutaneous CD30+ lymphoproliferative disease by repressing p21. Blood 2014; 123:3452-61. [PMID: 24747435 DOI: 10.1182/blood-2013-10-534693] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cutaneous CD30(+) lymphoproliferative disease (CD30(+)LPD), characterized by the presence of CD30(+) anaplastic large T cells, comprises the second most common group of cutaneous T-cell lymphoma (CTCL). However, little is known about the pathobiology of the CD30(+) lymphoma cells, as well as the mechanisms of disease progression. Here we report that Special AT-rich region binding protein 1 (SATB1), a thymocyte specific chromatin organizer, is over-expressed in CD30(+) lymphoma cells in most CD30(+)LPDs, and its expression is upregulated during disease progression. Our findings show that SATB1 silencing in CD30(+)LPD cells leads to G1 cell cycle arrest mediated by p21 activation. Using chromatin immunoprecipitation, luciferase assays, and mutational analysis, we demonstrate that SATB1 directly regulates the transcription of p21 in a p53-independent manner. Moreover, DNA demethylation on a specific CpG-rich region of the SATB1 promoter is associated with the upregulation of SATB1 during disease progression. These experiments define a novel SATB1-p21 pathway in malignant CD30(+) T lymphocytes, which provides novel molecular insights into the pathogenesis of CD30(+)LPDs and possibly leads to new therapies.
Collapse
|
50
|
Susceptibility to chronic mucus hypersecretion, a genome wide association study. PLoS One 2014; 9:e91621. [PMID: 24714607 PMCID: PMC3979657 DOI: 10.1371/journal.pone.0091621] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 11/21/2013] [Indexed: 01/04/2023] Open
Abstract
Background Chronic mucus hypersecretion (CMH) is associated with an increased frequency of respiratory infections, excess lung function decline, and increased hospitalisation and mortality rates in the general population. It is associated with smoking, but it is unknown why only a minority of smokers develops CMH. A plausible explanation for this phenomenon is a predisposing genetic constitution. Therefore, we performed a genome wide association (GWA) study of CMH in Caucasian populations. Methods GWA analysis was performed in the NELSON-study using the Illumina 610 array, followed by replication and meta-analysis in 11 additional cohorts. In total 2,704 subjects with, and 7,624 subjects without CMH were included, all current or former heavy smokers (≥20 pack-years). Additional studies were performed to test the functional relevance of the most significant single nucleotide polymorphism (SNP). Results A strong association with CMH, consistent across all cohorts, was observed with rs6577641 (p = 4.25×10−6, OR = 1.17), located in intron 9 of the special AT-rich sequence-binding protein 1 locus (SATB1) on chromosome 3. The risk allele (G) was associated with higher mRNA expression of SATB1 (4.3×10−9) in lung tissue. Presence of CMH was associated with increased SATB1 mRNA expression in bronchial biopsies from COPD patients. SATB1 expression was induced during differentiation of primary human bronchial epithelial cells in culture. Conclusions Our findings, that SNP rs6577641 is associated with CMH in multiple cohorts and is a cis-eQTL for SATB1, together with our additional observation that SATB1 expression increases during epithelial differentiation provide suggestive evidence that SATB1 is a gene that affects CMH.
Collapse
|