1
|
Zhou Y, Zhang J, He Y, Wang Y, Li B, Zhu T, Su Y. DNA methylation heterogeneity correlates with field cancerization and prognosis in lung adenocarcinoma patients. Clin Epigenetics 2025; 17:50. [PMID: 40114223 PMCID: PMC11924610 DOI: 10.1186/s13148-025-01845-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 02/16/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is the most common histological subtype of lung cancer. The distinctive genetic and epigenetic modifications in tumors and paired non-malignant samples, such as adjacent peri-tumor and tumor-distant normal lung tissues, have not been adequately studied. METHODS We recruited 57 patients with resectable stage I-III LUAD and collected matched samples of the primary tumor, peri-tumoral tissues, and tumor-distant normal lung tissue. We performed bisulfite sequencing using a custom methylation panel to profile DNA methylation levels and obtained somatic variation landscape through targeted next-generation sequencing (NGS). We attempted to identify differential methylation blocks (DMBs) between the tumor, peri-tumor, and normal tissues. RESULTS We analyzed the DNA methylation patterns of matched tumor, peri-tumor, and normal lung tissue samples from 57 LUAD patients. No significantly different methylation blocks were found between peri-tumoral and normal tissues, while they both exhibited distinct methylation profiles compared to tumor tissues. A total of 1329 tumor-specific DMBs, which are potentially associated with aberrant gene expression in LUAD, were identified. Utilizing a consensus clustering algorithm, we classified the tumor samples into two subgroups (C1 and C2) based on distinct methylation profiles, independent of the patient's sex, tumor stage, smoking history, and tumor cell fraction. The C2 subgroup exhibited a higher malignancy density ratio (MD ratio), suggesting a more pronounced degree of field cancerization, while the C1 subgroup was characterized by a higher frequency of EGFR mutations. The DMBs between the two subgroups were enriched in the calcium signaling pathway. Notably, P2RX2 shows significant hypermethylation in the C2 subgroup, and its low expression in the external The Cancer Genome Atlas (TCGA) cohort may correlate with reduced overall survival in LUAD patients. CONCLUSION Our findings revealed distinct methylation patterns between tumor and pre-malignant samples, such as peri-tumor and normal tissues. Moreover, our study suggests that distinct clustering based on DNA methylation may indicate different prognoses in LUAD patients.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Integrative Oncology, Tianjin Cancer Hospital Airport Hospital, Tianjin, China
| | - Jing Zhang
- Department of Integrative Oncology, Tianjin Cancer Hospital Airport Hospital, Tianjin, China
| | - Yang He
- Department of Breast Cancer, Tianjin Cancer Hospital Airport Hospital, Tianjin, China
| | - Yun Wang
- Department of Integrative Oncology, Tianjin Cancer Hospital Airport Hospital, Tianjin, China
| | - Bing Li
- Burning Rock Biotech, Guangzhou, China
| | | | - Yanjun Su
- Department of Thoracic Oncology, Tianjin Cancer Hospital Airport Hospital, No.99 Dongwudao Road, Tianjin, 300308, China.
| |
Collapse
|
2
|
Xue W, Yu Y, Yao Y, Zhou L, Huang Y, Wang Y, Chen Z, Wang L, Li X, Wang X, Du R, Shen Y, Xu Q. Breast cancer cells have an increased ferroptosis risk induced by system x c- blockade after deliberately downregulating CYTL1 to mediate malignancy. Redox Biol 2024; 70:103034. [PMID: 38211443 PMCID: PMC10821163 DOI: 10.1016/j.redox.2024.103034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/23/2023] [Accepted: 01/05/2024] [Indexed: 01/13/2024] Open
Abstract
Cytokine-like protein 1 (CYTL1) expression is deliberately downregulated during the progression of multiple types of cancers, especially breast cancer. However, the metabolic characteristics of cancer progression remain unclear. Here, we uncovered a risk of breast cancer cells harboring low CYTL1 expression, which is metabolically controlled during malignant progression. We performed metabolism comparison and revealed that breast cancer cells with low CYTL1 expression have highly suppressed transsulfuration activity that is driven by cystathionine β-synthase (CBS) and contributes to de novo cysteine synthesis. Mechanistically, CYTL1 activated Nrf2 by promoting autophagic Keap1 degradation, and Nrf2 subsequently transactivated CBS expression. Due to the lack of cellular cysteine synthesis, breast cancer cells with low CYTL1 expression showed hypersensitivity to system xc- blockade-induced ferroptosis in vitro and in vivo. Silencing CBS counteracted CYTL1-mediated ferroptosis resistance. Our results show the importance of exogeneous cysteine in breast cancer cells with low CYTL1 expression and highlight a potential metabolic vulnerability to target.
Collapse
Affiliation(s)
- Wenwen Xue
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ying Yu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yongzhong Yao
- Department of Breast Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Lin Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ying Huang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yixuan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China
| | - Zhixiu Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China
| | - Liwei Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xinran Li
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Xiaoning Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ronghui Du
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China.
| | - Yan Shen
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China.
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China.
| |
Collapse
|
3
|
Salvato I, Ricciardi L, Nucera F, Nigro A, Dal Col J, Monaco F, Caramori G, Stellato C. RNA-Binding Proteins as a Molecular Link between COPD and Lung Cancer. COPD 2023; 20:18-30. [PMID: 36655862 DOI: 10.1080/15412555.2022.2107500] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) represents an independent risk factor for lung cancer development. Accelerated cell senescence, induced by oxidative stress and inflammation, is a common pathogenic determinant of both COPD and lung cancer. The post transcriptional regulation of genes involved in these processes is finely regulated by RNA-binding proteins (RBPs), which regulate mRNA turnover, subcellular localization, splicing and translation. Multiple pro-inflammatory mediators (including cytokines, chemokines, proteins, growth factors and others), responsible of lung microenvironment alteration, are regulated by RBPs. Several mouse models have shown the implication of RBPs in multiple mechanisms that sustain chronic inflammation and neoplastic transformation. However, further studies are required to clarify the role of RBPs in the pathogenic mechanisms shared by lung cancer and COPD, in order to identify novel biomarkers and therapeutic targets. This review will therefore focus on the studies collectively indicating the role of RBPs in oxidative stress and chronic inflammation as common pathogenic mechanisms shared by lung cancer and COPD.
Collapse
Affiliation(s)
- Ilaria Salvato
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Italy
| | - Luca Ricciardi
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Italy
| | - Francesco Nucera
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Italy
| | - Annunziata Nigro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| | - Jessica Dal Col
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| | - Francesco Monaco
- Chirurgia Toracica, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Italy
| | - Gaetano Caramori
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Italy
| | - Cristiana Stellato
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| |
Collapse
|
4
|
Sahu P, Donovan C, Paudel KR, Pickles S, Chimankar V, Kim RY, Horvart JC, Dua K, Ieni A, Nucera F, Bielefeldt-Ohmann H, Mazilli S, Caramori G, Lyons JG, Hansbro PM. Pre-clinical lung squamous cell carcinoma mouse models to identify novel biomarkers and therapeutic interventions. Front Oncol 2023; 13:1260411. [PMID: 37817767 PMCID: PMC10560855 DOI: 10.3389/fonc.2023.1260411] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/29/2023] [Indexed: 10/12/2023] Open
Abstract
Primary lung carcinoma or lung cancer (LC) is classified into small-cell or non-small-cell (NSCLC) lung carcinoma. Lung squamous cell carcinoma (LSCC) is the second most common subtype of NSCLC responsible for 30% of all LCs, and its survival remains low with only 24% of patients living for five years or longer post-diagnosis primarily due to the advanced stage of tumors at the time of diagnosis. The pathogenesis of LSCC is still poorly understood and has hampered the development of effective diagnostics and therapies. This review highlights the known risk factors, genetic and epigenetic alterations, miRNA biomarkers linked to the development and diagnosis of LSCC and the lack of therapeutic strategies to target specifically LSCC. We will also discuss existing animal models of LSCC including carcinogen induced, transgenic and xenograft mouse models, and their advantages and limitations along with the chemopreventive studies and molecular studies conducted using them. The importance of developing new and improved mouse models will also be discussed that will provide further insights into the initiation and progression of LSCC, and enable the identification of new biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Priyanka Sahu
- Immune Health, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - Chantal Donovan
- Immune Health, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
- University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| | - Sophie Pickles
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| | - Vrushali Chimankar
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| | - Richard Y. Kim
- Immune Health, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
- University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| | - Jay C. Horvart
- Immune Health, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, Australia
| | - Antonio Ieni
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, Section of Anatomic Pathology, University of Messina, Messina, Italy
| | - Francesco Nucera
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Messina, Italy
| | - Helle Bielefeldt-Ohmann
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, QLD, Australia
| | - Sarah Mazilli
- Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Gaetano Caramori
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Messina, Italy
| | - J. Guy Lyons
- Department of Dermatology, The University of Sydney at Royal Prince Alfred Hospital, Sydney, Australia, and Centenary Institute, The University of Sydney, Sydney, NSW, Australia
| | - Philip M. Hansbro
- Immune Health, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| |
Collapse
|
5
|
Tao L, Cui Y, Sun J, Cao Y, Dai Z, Ge X, Zhang L, Ma R, Liu Y. Bioinformatics-based analysis reveals elevated CYTL1 as a potential therapeutic target for BRAF-mutated melanoma. Front Cell Dev Biol 2023; 11:1171047. [PMID: 37745303 PMCID: PMC10516578 DOI: 10.3389/fcell.2023.1171047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction: Despite many recent emerging therapeutic modalities that have prolonged the survival of melanoma patients, the prognosis of melanoma remains discouraging, and further understanding of the mechanisms underlying melanoma progression is needed. Melanoma patients often have multiple genetic mutations, with BRAF mutations being the most common. In this study, public databases were exploited to explore a potential therapeutic target for BRAF-mutated melanoma. Methods: In this study, we analyzed differentially expressed genes (DEGs) in normal tissues and melanomas, Braf wild-type and Braf mutant melanomas using information from TCGA databases and the GEO database. Subsequently, we analyzed the differential expression of CYTL1 in various tumor tissues and its effect on melanoma prognosis, and resolved the mutation status of CYTL1 and its related signalling pathways. By knocking down CYTL1 in melanoma cells, the effects of CYTL1 on melanoma cell proliferation, migration and invasion were further examined by CCK8 assay, Transwell assay and cell migration assay. Results: 24 overlapping genes were identified by analyzing DEGs common to melanoma and normal tissue, BRAF-mutated and BRAF wild-type melanoma. Among them, CYTL1 was highly expressed in melanoma, especially in BRAF-mutated melanoma, and the high expression of CYTL1 was associated with epithelial-mesenchymal transition (EMT), cell cycle, and cellular response to UV. In melanoma patients, especially BRAF-mutated melanoma patients, clinical studies showed a positive correlation between increased CYTL1 expression and shorter overall survival (OS) and disease-free survival (DFS). In vitro experiments further confirmed that the knockdown of CYTL1 significantly inhibited the migration and invasive ability of melanoma cells. Conclusion: CYTL1 is a valuable prognostic biomarker and a potentially effective therapeutic target in melanoma, especially BRAF-mutated melanoma.
Collapse
Affiliation(s)
- Lei Tao
- Nanjing Institute for Food and Drug Control, Nanjing, China
| | - Yingyue Cui
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jiarui Sun
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yu Cao
- Nanjing Institute for Food and Drug Control, Nanjing, China
| | - Zhen Dai
- Nanjing Institute for Food and Drug Control, Nanjing, China
| | - Xiaoming Ge
- Nanjing Institute for Food and Drug Control, Nanjing, China
| | - Ling Zhang
- Nanjing Institute for Food and Drug Control, Nanjing, China
| | - Run Ma
- The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yunyao Liu
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
6
|
Liu Z, Yan W, Liu S, Liu Z, Xu P, Fang W. Regulatory network and targeted interventions for CCDC family in tumor pathogenesis. Cancer Lett 2023; 565:216225. [PMID: 37182638 DOI: 10.1016/j.canlet.2023.216225] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 05/16/2023]
Abstract
CCDC (coiled-coil domain-containing) is a coiled helix domain that exists in natural proteins. There are about 180 CCDC family genes, encoding proteins that are involved in intercellular transmembrane signal transduction and genetic signal transcription, among other functions. Alterations in expression, mutation, and DNA promoter methylation of CCDC family genes have been shown to be associated with the pathogenesis of many diseases, including primary ciliary dyskinesia, infertility, and tumors. In recent studies, CCDC family genes have been found to be involved in regulation of growth, invasion, metastasis, chemosensitivity, and other biological behaviors of malignant tumor cells in various cancer types, including nasopharyngeal carcinoma, lung cancer, colorectal cancer, and thyroid cancer. In this review, we summarize the involvement of CCDC family genes in tumor pathogenesis and the relevant upstream and downstream molecular mechanisms. In addition, we summarize the potential of CCDC family genes as tumor therapy targets. The findings discussed here help us to further understand the role and the therapeutic applications of CCDC family genes in tumors.
Collapse
Affiliation(s)
- Zhen Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315, Guangzhou, China.
| | - Weiwei Yan
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315, Guangzhou, China
| | - Shaohua Liu
- Department of General Surgery, Pingxiang People's Hospital, Pingxiang, Jiangxi, 337000, China
| | - Zhan Liu
- Department of Gastroenterology and Clinical Nutrition, The First Affiliated Hospital (People's Hospital of Hunan Province), Hunan Normal University, Changsha, 410002, China
| | - Ping Xu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315, Guangzhou, China; Respiratory Department, Peking University Shenzhen Hospital, Shenzhen, 518034, China.
| | - Weiyi Fang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315, Guangzhou, China.
| |
Collapse
|
7
|
Xu H, Xu B, Hu J, Xia J, Tong L, Zhang P, Yang L, Tang L, Chen S, Du J, Wang Y, Li Y. Development of a novel autophagy-related gene model for gastric cancer prognostic prediction. Front Oncol 2022; 12:1006278. [PMID: 36276067 PMCID: PMC9585256 DOI: 10.3389/fonc.2022.1006278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/23/2022] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer (GC) is a major global health issue and one of the leading causes of tumor-associated mortality worldwide. Autophagy is thought to play a critical role in the development and progression of GC, and this process is controlled by a set of conserved regulators termed autophagy-related genes (ATGs). However, the complex contribution of autophagy to cancers is not completely understood. Accordingly, we aimed to develop a prognostic model based on the specific role of ATGs in GC to improve the prediction of GC outcomes. First, we screened 148 differentially expressed ATGs between GC and normal tissues in The Cancer Genome Atlas (TCGA) cohort. Consensus clustering in these ATGs was performed, and based on that, 343 patients were grouped into two clusters. According to Kaplan–Meier survival analysis, cluster C2 had a worse prognosis than cluster C1. Then, a disease risk model incorporating nine differentially expressed ATGs was constructed based on the least absolute shrinkage and selection operator (LASSO) regression analysis, and the ability of this model to stratify patients into high- and low-risk groups was verified. The predictive value of the model was confirmed using both training and validation cohorts. In addition, the results of functional enrichment analysis suggested that GC risk is correlated with immune status. Moreover, autophagy inhibition increased sensitivity to cisplatin and exacerbated reactive oxygen species accumulation in GC cell lines. Collectively, the results indicated that this novel constructed risk model is an effective and reliable tool for predicting GC outcomes and could help with individual treatment through ATG targeting.
Collapse
Affiliation(s)
- Haifeng Xu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Bing Xu
- Department of Clinical Laboratory, Hangzhou Women’s Hospital, Hangzhou, China
| | - Jiayu Hu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Jun Xia
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Le Tong
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Ping Zhang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Lei Yang
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Lusheng Tang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Sufeng Chen
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Jing Du
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- *Correspondence: Jing Du, ; Ying Wang, ; Yanchun Li,
| | - Ying Wang
- Department of Central Laboratory, Affiliated Hangzhou first people’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Jing Du, ; Ying Wang, ; Yanchun Li,
| | - Yanchun Li
- Department of Central Laboratory, Affiliated Hangzhou first people’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Jing Du, ; Ying Wang, ; Yanchun Li,
| |
Collapse
|
8
|
Meng H, Wei W, Li G, Fu M, Wang C, Hong S, Guan X, Bai Y, Feng Y, Zhou Y, Cao Q, Yuan F, He M, Zhang X, Wei S, Li Y, Guo H. Epigenome-wide DNA methylation signature of plasma zinc and their mediation roles in the association of zinc with lung cancer risk. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119563. [PMID: 35654255 DOI: 10.1016/j.envpol.2022.119563] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/17/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Essential trace element zinc is associated with decreased lung cancer risk, but underlying mechanisms remain unclear. This study aimed to investigate role of DNA methylation in zinc-lung cancer association. We conducted a case-cohort study within prospective Dongfeng-Tongji cohort, including 359 incident lung cancer cases and a randomly selected sub-cohort of 1399 participants. Epigenome-wide association study (EWAS) was used to examine association of plasma zinc with DNA methylation in peripheral blood. For the zinc-related CpGs, their mediation effects on zinc-lung cancer association were assessed; their diagnostic performance for lung cancer was testified in the case-cohort study and further validated in another 126 pairs of lung cancer case-control study. We identified 28 CpGs associated with plasma zinc at P < 1.0 × 10-5 and seven of them (cg07077080, cg01077808, cg17749033, cg15554270, cg26125625, cg10669424, and cg15409013 annotated to GSR, CALR3, SLC16A3, PHLPP2, SLC12A8, VGLL4, and ADAMTS16, respectively) were associated with incident risk of lung cancer. Moreover, the above seven CpGs were differently methylated between 126 pairs of lung cancer and adjacent normal lung tissues and had the same directions with EWAS of zinc. They could mediate a separate 7.05%∼22.65% and a joint 29.42% of zinc-lung cancer association. Compared to using traditional factors, addition of methylation risk score exerted improved discriminations for lung cancer both in case-cohort study [area under the curve (AUC) = 0.818 vs. 0.738] and in case-control study (AUC = 0.816 vs. 0.646). Our results provide new insights for the biological role of DNA methylation in the inverse association of zinc with incident lung cancer.
Collapse
Affiliation(s)
- Hua Meng
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Wei
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Guyanan Li
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ming Fu
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chenming Wang
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shiru Hong
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xin Guan
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yansen Bai
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yue Feng
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuhan Zhou
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qiang Cao
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fangfang Yuan
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meian He
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Sheng Wei
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yangkai Li
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huan Guo
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
9
|
Intracellular CYTL1, a novel tumor suppressor, stabilizes NDUFV1 to inhibit metabolic reprogramming in breast cancer. Signal Transduct Target Ther 2022; 7:35. [PMID: 35115484 PMCID: PMC8813937 DOI: 10.1038/s41392-021-00856-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/23/2021] [Accepted: 12/06/2021] [Indexed: 12/31/2022] Open
Abstract
Loss-of-function mutations frequently occur in tumor suppressor genes, i.e., p53, during the malignant progression of various cancers. Whether any intrinsic suppressor carries a rare mutation is largely unknown. Here, we demonstrate that intracellular cytokine-like protein 1 (CYTL1) plays a key role in preventing the robust glycolytic switching characteristic of breast cancer. A low intracellular CYTL1 level, not its mutation, is required for metabolic reprogramming. Breast cancer cells expressing an intracellular form of CYTL1 lacking a 1-22 aa signal peptide, ΔCYTL1, show significantly attenuated glucose uptake and lactate production, which is linked to the inhibition of cell growth and metastasis in vitro and in vivo. Mechanistically, CYTL1 competitively binds the N-terminal sequence of NDUFV1 to block MDM2-mediated degradation by the proteasome, leading to the stability of the NDUFV1 protein. In addition to inducing increased NAD+ levels, NDUFV1 interacts with Src to attenuate LDHA phosphorylation at tyrosine 10 and reduce lactate production. Our results reveal, for the first time, that CYTL1 is a novel tumor suppressor. Its function in reversing metabolic reprogramming toward glycolysis may be very important for the development of novel antitumor strategies.
Collapse
|
10
|
Aberrant Methylation of SLIT2 Gene in Plasma Cell-Free DNA of Non-Small Cell Lung Cancer Patients. Cancers (Basel) 2022; 14:cancers14020296. [PMID: 35053460 PMCID: PMC8773699 DOI: 10.3390/cancers14020296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Despite significant advances in the detection, prevention, and treatment of lung cancer, the prognosis of the patients is still very poor due in part to micrometastasis of cancer cells to surrounding tissues at the time of diagnosis. Therefore, identifying biomarkers for early detection of lung cancer is very important for prolonging the lifespan of patients with lung cancer. The methylation statuses of SLIT1, SLIT2, SLIT3 genes were analyzed in bronchial washing, bronchial biopsy, sputum, tumor and matched normal tissues, or plasma samples obtained from a total of 208 non-small cell lung cancer (NSCLC) patients and 121 cancer-free patients to understand the feasibility of the genes as biomarkers for early detection and survival prediction of NSCLC. The present study suggests that aberrant methylation of SLIT2 in plasma cell-free DNA might be a potential biomarker for the early detection and prognosis prediction of NSCLC patient. Abstract This study aimed to understand aberrant methylation of SLITs genes as a biomarker for the early detection and prognosis prediction of non-small cell lung cancer (NSCLC). Methylation levels of SLITs were determined using the Infinium HumanMethylation450 BeadChip or pyrosequencing. Five CpGs at the CpG island of SLIT1, SLIT2 or SLIT3 genes were significantly (Bonferroni corrected p < 0.05) hypermethylated in tumor tissues obtained from 42 NSCLC patients than in matched normal tissues. Methylation levels of these CpGs did not differ significantly between bronchial washings obtained from 76 NSCLC patients and 60 cancer-free patients. However, methylation levels of SLIT2 gene were significantly higher in plasma cell-free DNA of 72 NSCLC patients than in that of 61 cancer-free patients (p = 0.001, Wilcoxon rank sum test). Prediction of NSCLC using SLIT2 methylation was achieved with a sensitivity of 73.7% and a specificity of 61.9% in a plasma test dataset (N = 40). A Cox proportional hazards model showed that SLIT2 hypermethylation in plasma cell-free DNA was significantly associated with poor recurrence-free survival (hazards ratio = 2.19, 95% confidence interval = 1.21–4.36, p = 0.01). The present study suggests that aberrant methylation of SLIT2 in plasma cell-free DNA is a valuable biomarker for the early detection of NSCLC and prediction of recurrence-free survival. However, further research is needed with larger sample size to confirm results.
Collapse
|
11
|
Meng H, Li G, Wei W, Bai Y, Feng Y, Fu M, Guan X, Li M, Li H, Wang C, Jie J, Wu X, He M, Zhang X, Wei S, Li Y, Guo H. Epigenome-wide DNA methylation signature of benzo[a]pyrene exposure and their mediation roles in benzo[a]pyrene-associated lung cancer development. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125839. [PMID: 33887567 DOI: 10.1016/j.jhazmat.2021.125839] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 04/04/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
Benzo[a]pyrene (B[a]P) is a typical carcinogen associated with increased lung cancer risk, but the underlying mechanisms remain unclear. This study aimed to investigate epigenome-wide DNA methylation associated with B[a]P exposure and their mediation effects on B[a]P-lung cancer association in two lung cancer case-control studies of 462 subjects. Their plasma levels of benzo[a]pyrene diol epoxide-albumin (BPDE-Alb) adducts and genome-wide DNA methylations were separately detected in peripheral blood by using enzyme-linked immunosorbent assay (ELISA) and genome-wide methylation arrays. The epigenome-wide meta-analysis was performed to analyze the associations between BPDE-Alb adducts and DNA methylations. Mediation analysis was applied to assess effect of DNA methylation on the B[a]P-lung cancer association. We identified 15 CpGs associated with BPDE-Alb adducts (P-meta < 1.0 × 10-5), among which the methylation levels at five loci (cg06245338, cg24256211, cg15107887, cg02211741, and cg04354393 annotated to UBE2O, SAMD4A, ACBD6, DGKZ, and SLFN13, respectively) mediated a separate 38.5%, 29.2%, 41.5%, 47.7%, 56.5%, and a joint 58.2% of the association between BPDE-Alb adducts and lung cancer risk. Compared to the traditional factors [area under the curve (AUC) = 0.788], addition of these CpGs exerted improved discriminations for lung cancer, with AUC ranging 0.828-0.861. Our results highlight DNA methylation alterations as potential mediators in lung tumorigenesis induced by B[a]P exposure.
Collapse
Affiliation(s)
- Hua Meng
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guyanan Li
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Wei
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yansen Bai
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yue Feng
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ming Fu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xin Guan
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mengying Li
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hang Li
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chenming Wang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiali Jie
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiulong Wu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meian He
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Sheng Wei
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yangkai Li
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huan Guo
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
12
|
Li G, Meng H, Bai Y, Wei W, Feng Y, Li M, Li H, He M, Zhang X, Wei S, Li Y, Guo H. DNA methylome analysis identifies BMI-related epigenetic changes associated with non-small cell lung cancer susceptibility. Cancer Med 2021; 10:3770-3781. [PMID: 33939316 PMCID: PMC8178488 DOI: 10.1002/cam4.3906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/16/2021] [Accepted: 03/30/2021] [Indexed: 12/20/2022] Open
Abstract
Background Body mass index (BMI) has been reported to be inversely associated with incident risk of non‐small cell lung cancer (NSCLC). However, the underlying mechanism is still unclear. This study aimed to investigate the role of DNA methylation in the relationship between BMI and NSCLC. Methods We carried out a genome‐wide DNA methylation study of BMI in peripheral blood among 2266 Chinese participants by using Illumina Methylation arrays. For the BMI‐related DNA methylation changes, their associations with NSCLC risk were further analyzed and their mediation effects on BMI‐NSCLC association were also evaluated. Results The methylation levels of four CpGs (cg12593793, cg17061862, cg11024682, and cg06500161, annotated to LMNA, ZNF143, SREBF1, and ABCG1, respectively) were found to be significantly associated with BMI. Methylation levels of cg12593793, cg11024682, and cg06500161 were observed to be inversely associated with NSCLC risk [OR (95%CI) =0.22 (0.16, 0.31), 0.39 (0.30, 0.50), and 0.66 (0.53, 0.82), respectively]. Additionally, cg11024682 in SREBF1 and cg06500161 in ABCG1 mediated 45.3% and 19.5% of the association between BMI and decreased NSCLC risk, respectively. Conclusions In this study, we identified four DNA methylation sites associated with BMI in the Chinese populations at the genome‐wide significant level. We also found that the BMI‐related methylations of SREBF1 and ABCG1 could mediate about a quintile‐to‐half of the effect of BMI on reduced NSCLC risk, which adds a potential mechanism underlying this association.
Collapse
Affiliation(s)
- Guyanan Li
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hua Meng
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yansen Bai
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Wei
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yue Feng
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mengying Li
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hang Li
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meian He
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Sheng Wei
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yangkai Li
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huan Guo
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
13
|
Yamamoto R, Hwang J, Ishikawa T, Kon T, Sale WS. Composition and function of ciliary inner-dynein-arm subunits studied in Chlamydomonas reinhardtii. Cytoskeleton (Hoboken) 2021; 78:77-96. [PMID: 33876572 DOI: 10.1002/cm.21662] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/30/2021] [Accepted: 04/15/2021] [Indexed: 11/09/2022]
Abstract
Motile cilia (also interchangeably called "flagella") are conserved organelles extending from the surface of many animal cells and play essential functions in eukaryotes, including cell motility and environmental sensing. Large motor complexes, the ciliary dyneins, are present on ciliary outer-doublet microtubules and drive movement of cilia. Ciliary dyneins are classified into two general types: the outer dynein arms (ODAs) and the inner dynein arms (IDAs). While ODAs are important for generation of force and regulation of ciliary beat frequency, IDAs are essential for control of the size and shape of the bend, features collectively referred to as waveform. Also, recent studies have revealed unexpected links between IDA components and human diseases. In spite of their importance, studies on IDAs have been difficult since they are very complex and composed for several types of IDA motors, each unique in composition and location in the axoneme. Thanks in part to genetic, biochemical, and structural analysis of Chlamydomonas reinhardtii, we are beginning to understand the organization and function of the ciliary IDAs. In this review, we summarize the composition of Chlamydomonas IDAs particularly focusing on each subunit, and discuss the assembly, conservation, and functional role(s) of these IDA subunits. Furthermore, we raise several additional questions/challenges regarding IDAs, and discuss future perspectives of IDA studies.
Collapse
Affiliation(s)
- Ryosuke Yamamoto
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Juyeon Hwang
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Takashi Ishikawa
- Department of Biology and Chemistry, Paul Scherrer Institute, Villigen PSI, Switzerland.,Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Takahide Kon
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Winfield S Sale
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
14
|
Zhu P, Gu S, Huang H, Zhong C, Liu Z, Zhang X, Wang W, Xie S, Wu K, Lu T, Zhou Y. Upregulation of glucosamine-phosphate N-acetyltransferase 1 is a promising diagnostic and predictive indicator for poor survival in patients with lung adenocarcinoma. Oncol Lett 2021; 21:488. [PMID: 33968204 PMCID: PMC8100941 DOI: 10.3892/ol.2021.12750] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 02/19/2021] [Indexed: 12/30/2022] Open
Abstract
Lung adenocarcinoma, a type of non-small cell lung cancer, is the leading cause of cancer death worldwide. Great efforts have been made to identify the underlying mechanism of adenocarcinoma, especially in relation to oncogenes. The present study by integrating computational analysis with western blotting, aimed to understand the role of the upregulation of glucosamine-phosphate N-acetyltransferase 1 (GNPNAT1) in carcinogenesis. In the present study, publicly available gene expression profiles and clinical data were downloaded from The Cancer Genome Atlas to determine the role of GNPNAT1 in lung adenocarcinoma (LUAD). In addition, the association between LUAD susceptibility and GNPNAT1 upregulation were analyzed using Wilcoxon signed-rank test and logistic regression analysis. In LUAD, GNPNAT1 upregulation was significantly associated with disease stage [odds ratio (OR)=2.92, stage III vs. stage I], vital status (dead vs. alive, OR=1.89), cancer status (tumor status vs. tumor-free status, OR=1.85) and N classification (yes vs. no, OR=1.75). Cox regression analysis and the Kaplan-Meier method were utilized to evaluate the association between GNPNAT1 expression and overall survival (OS) time in patients with LUAD. The results demonstrated that patients with increased GNPNAT1 expression levels exhibited a reduced survival rate compared with those with decreased expression levels (P=8.9×10−5). In addition, Cox regression analysis revealed that GNPNAT1 upregulation was significantly associated with poor OS time [hazard ratio (HR): 1.07; 95% confidence interval (CI): 1.04–1.10; P<0.001]. The gene set enrichment analysis revealed that ‘cell cycle’, ‘oocyte meiosis’, ‘pyrimidine mediated metabolism’, ‘ubiquitin mediated proteolysis’, ‘one carbon pool by folate’, ‘mismatch repair progesterone-mediated oocyte maturation’ and ‘basal transcription factors purine metabolism’ were differentially enriched in the GNPNAT1 high-expression samples compared with GNPNAT1 low-expression samples. The aforementioned pathways are involved in the pathogenesis of LUAD. The findings of the present study suggested that GNPNAT1 upregulation may be considered as a promising diagnostic and prognostic biomarker in patients with LUAD. In addition, the aforementioned pathways may be pivotal pathways perturbed by the abnormal expression of GNPNAT1 in LUAD. The findings of the present study demonstrated the therapeutic value of the regulation of GNPNAT1 in lung adenocarcinoma.
Collapse
Affiliation(s)
- Pengyuan Zhu
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China.,School of Medicine, Nantong University, Nantong, Jiangsu 226001, P.R. China.,Department of Thoracic and Cardiovascular Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, P.R. China
| | - Shaorui Gu
- Department of Thoracic and Cardiovascular Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, P.R. China
| | - Haitao Huang
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Chongjun Zhong
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Zhenchuan Liu
- Department of Thoracic and Cardiovascular Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, P.R. China
| | - Xin Zhang
- Department of Thoracic and Cardiovascular Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, P.R. China
| | - Wenli Wang
- Department of Thoracic and Cardiovascular Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, P.R. China
| | - Shiliang Xie
- Department of Thoracic and Cardiovascular Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, P.R. China
| | - Kaiqin Wu
- Department of Thoracic and Cardiovascular Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, P.R. China
| | - Tiancheng Lu
- Department of Thoracic and Cardiovascular Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, P.R. China
| | - Yongxin Zhou
- Department of Thoracic and Cardiovascular Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, P.R. China
| |
Collapse
|
15
|
Kang YK, Min B. SETDB1 Overexpression Sets an Intertumoral Transcriptomic Divergence in Non-small Cell Lung Carcinoma. Front Genet 2020; 11:573515. [PMID: 33343623 PMCID: PMC7738479 DOI: 10.3389/fgene.2020.573515] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
An increasing volume of evidence suggests that SETDB1 plays a role in the tumorigenesis of various cancers, classifying SETDB1 as an oncoprotein. However, owing to its numerous protein partners and their global-scale effects, the molecular mechanism underlying SETDB1-involved oncogenesis remains ambiguous. In this study, using public transcriptome data of lung adenocarcinoma (ADC) and squamous-cell carcinoma (SCC), we compared tumors with high-level SETDB1 (SH) and those with low-level SETDB1 (comparable with normal samples; SL). The results of principal component analysis revealed a transcriptomic distinction and divergence between the SH and SL samples in both ADCs and SCCs. The results of gene set enrichment analysis indicated that genes involved in the “epithelial–mesenchymal transition,” “innate immune response,” and “autoimmunity” collections were significantly depleted in SH tumors, whereas those involved in “RNA interference” collections were enriched. Chromatin-modifying genes were highly expressed in SH tumors, and the variance in their expression was incomparably high in SCC-SH, which suggested greater heterogeneity within SCC tumors. DNA methyltransferase genes were also overrepresented in SH samples, and most differentially methylated CpGs (SH/SL) were undermethylated in a highly biased manner in ADCs. We identified interesting molecular signatures associated with the possible roles of SETDB1 in lung cancer. We expect these SETDB1-associated molecular signatures to facilitate the development of biologically relevant targeted therapies for particular types of lung cancer.
Collapse
Affiliation(s)
- Yong-Kook Kang
- Development and Differentiation Research Center, Korea Research Institute of Bioscience Biotechnology, Daejeon, South Korea.,Department of Functional Genomics, Korea University of Science and Technology, Daejeon, South Korea
| | - Byungkuk Min
- Development and Differentiation Research Center, Korea Research Institute of Bioscience Biotechnology, Daejeon, South Korea
| |
Collapse
|
16
|
Xue H, Li S, Zhao X, Guo F, Jiang L, Wang Y, Zhu F. CYTL1 Promotes the Activation of Neutrophils in a Sepsis Model. Inflammation 2020; 43:274-285. [PMID: 31823178 DOI: 10.1007/s10753-019-01116-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
As a novel cytokine, cytokine-like 1 (CYTL1) is a classical secretory protein, and its potential biological function remains to be determined. In this study, we found that expression of CYTL1 was upregulated in neutrophils upon inflammatory stimuli. We demonstrated that CYTL1 enhanced phagocytosis of Escherichia coli by activated neutrophils both in vivo and in vitro through phosphorylation of protein kinase B (Akt). CYTL1-induced chemotactic activity in lipopolysaccharide (LPS) stimulated neutrophils, and the mechanism may be related to CC chemokine receptor 2 (CCR2) mediated action. CYTL1 also increased the release of reactive oxygen species (ROS) in LPS-stimulated neutrophils. These data indicate that upon inflammatory stimulation, neutrophil-derived CYTL1 may play a crucial role in the activation of neutrophils during pathogenic infections.
Collapse
Affiliation(s)
- Haiyan Xue
- Department of Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Shu Li
- Department of Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Xiujuan Zhao
- Department of Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Fuzheng Guo
- Department of Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Lilei Jiang
- Department of Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Yaxin Wang
- Department of Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Fengxue Zhu
- Department of Critical Care Medicine, Peking University People's Hospital, Beijing, China. .,Trauma Medicine Center, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
17
|
Pangeni RP, Yang L, Zhang K, Wang J, Li W, Guo C, Yun X, Sun T, Wang J, Raz DJ. G9a regulates tumorigenicity and stemness through genome-wide DNA methylation reprogramming in non-small cell lung cancer. Clin Epigenetics 2020; 12:88. [PMID: 32552834 PMCID: PMC7302379 DOI: 10.1186/s13148-020-00879-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 06/04/2020] [Indexed: 12/17/2022] Open
Abstract
Background Eukaryotic histone methyltransferases 2 (EHMT2 or G9A) has been regarded as a potential target for non-small cell lung cancer (NSCLC) therapy. This study investigated the regulatory roles of G9A in tumorigenesis and stemness in NSCLC. We isolated and enriched tumor-initiating cells (TIC) from surgically resected NSCLC tissues by FACS and sphere formation assays. We then knocked down G9A using shRNA and carried out genome-wide 850K methylation array and RNA sequencing analyses. We carried out in vivo tumorigenecity asssay using mice xenografts and examined G9A interactions with its novel target using chromatin Immunoprecipitation (ChIP). Results We identified 67 genes hypomethylated and 143 genes upregulated following G9A knockdown of which 43 genes were both hypomethylated and upregulated. We selected six genes (CDYL2, DPP4, SP5, FOXP1, STAMBPL1, and ROBO1) for validation. In addition, G9A expression was higher in TICs and targeting G9a by shRNA knockdown or by selective inhibitor UNC0642 significantly inhibited the expression of cancer stem cell markers and sphere forming capacity, in vitro proliferation, and in vivo growth. Further, transient overexpression of FOXP1, a protein may promote normal stem cell differentiation, in TICs resulted in downregulation of stem cell markers and sphere forming capacity and cell proliferation in vitro indicating that the genes we identified are directly regulated by G9A through aberrant DNA methylation and subsequent expression. Similarly, ChIP assay has shown that G9a interacts with its target genes through H3K9me2 and downregulation of H3K9me2 following G9a knockdown disrupts its interaction with its target genes. Conclusions These data suggest that G9A is involved in lung cancer stemness through epigenetic mechanisms of maintaining DNA methylation of multiple lung cancer stem cell genes and their expression. Further, targeting G9A or its downstream genes could be a novel therapeutic approach in treating NSCLC patients.
Collapse
Affiliation(s)
- Rajendra P Pangeni
- Division of Thoracic Surgery, City of Hope National Medical Center, Duarte, CA, 91010, USA.
| | - Lu Yang
- Department of System Biology, Beckman Research Institute, City of Hope National Medical Centre, Duarte, CA, USA
| | - Keqiang Zhang
- Division of Thoracic Surgery, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Jinhui Wang
- The Integrative Genomics Core Lab, Department of Molecular Medicine, City of Hope National Medical Center, Duarte, CA, USA
| | - Wendong Li
- Division of Thoracic Surgery, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Chao Guo
- The Integrative Genomics Core Lab, Department of Molecular Medicine, City of Hope National Medical Center, Duarte, CA, USA.,Frey Medical Laboratory, Maoling Rd, Jinan District, Fuzhou, Fujian, China
| | - Xinwei Yun
- Division of Thoracic Surgery, City of Hope National Medical Center, Duarte, CA, 91010, USA.,Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Ting Sun
- Division of Thoracic Surgery, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Jami Wang
- Division of Thoracic Surgery, City of Hope National Medical Center, Duarte, CA, 91010, USA.,Western University of Health Sciences, Pomona, CA, USA
| | - Dan J Raz
- Division of Thoracic Surgery, City of Hope National Medical Center, Duarte, CA, 91010, USA.
| |
Collapse
|
18
|
Giang TT, Nguyen TP, Tran DH. Stratifying patients using fast multiple kernel learning framework: case studies of Alzheimer's disease and cancers. BMC Med Inform Decis Mak 2020; 20:108. [PMID: 32546157 PMCID: PMC7296686 DOI: 10.1186/s12911-020-01140-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 05/28/2020] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Predictive patient stratification is greatly emerging, because it allows us to prospectively identify which patients will benefit from what interventions before their condition worsens. In the biomedical research, a number of stratification methods have been successfully applied and have assisted treatment process. Because of heterogeneity and complexity of medical data, it is very challenging to integrate them and make use of them in practical clinic. There are two major challenges of data integration. Firstly, since the biomedical data has a high number of dimensions, combining multiple data leads to the hard problem of vast dimensional space handling. The computation is enormously complex and time-consuming. Secondly, the disparity of different data types causes another critical problem in machine learning for biomedical data. It has a great need to develop an efficient machine learning framework to handle the challenges. METHODS In this paper, we propose a fast-multiple kernel learning framework, referred to as fMKL-DR, that optimise equations to calculate matrix chain multiplication and reduce dimensions in data space. We applied our framework to two case studies, Alzheimer's disease (AD) patient stratification and cancer patient stratification. We performed several comparative evaluations on various biomedical datasets. RESULTS In the case study of AD patients, we enhanced significantly the multiple-ROIs approach based on MRI image data. The method could successfully classify not only AD patients and non-AD patients but also different phases of AD patients with AUC close to 1. In the case study of cancer patients, the framework was applied to six types of cancers, i.e., glioblastoma multiforme cancer, ovarian cancer, lung cancer, breast cancer, kidney cancer, and liver cancer. We efficiently integrated gene expression, miRNA expression, and DNA methylation. The results showed that the classification model basing on integrated datasets was much more accurate than classification model basing on the single data type. CONCLUSIONS The results demonstrated that the fMKL-DR remarkably improves computational cost and accuracy for both AD patient and cancer patient stratification. We optimised the data integration, dimension reduction, and kernel fusion. Our framework has great potential for mining large-scale cohort data and aiding personalised prevention.
Collapse
Affiliation(s)
- Thanh-Trung Giang
- VNU University of Engineering and Technology, Hanoi, Vietnam.,TayBac University, Son La, Vietnam
| | - Thanh-Phuong Nguyen
- Life Sciences Research Unit, Belval, University of Luxembourg, Luxembourg City, Luxembourg. .,Megeno S.A., Belval, Esch-sur-Alzette, Luxembourg.
| | | |
Collapse
|
19
|
Wang XF, Liang B, Zeng DX, Lei W, Chen C, Chen YB, Huang JA, Gu N, Zhu YH. The roles of MASPIN expression and subcellular localization in non-small cell lung cancer. Biosci Rep 2020; 40:BSR20200743. [PMID: 32391558 PMCID: PMC7251327 DOI: 10.1042/bsr20200743] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/29/2020] [Accepted: 05/01/2020] [Indexed: 02/06/2023] Open
Abstract
Accumulating studies have confirmed that mammary serine protease inhibitor (MASPIN) plays an essential role in non-small cell lung cancer (NSCLC). However, results are still controversial or inconsistent. In the present study, we attempted to identify the clinical significance of MASPIN and its potential molecular roles in NSCLC. The correlation of MASPIN with prognosis and clinicopathological characteristics was assessed by meta-analysis. Additionally, the potential molecular mechanisms of MASPIN in NSCLC was also investigated through several online databases. A total of 2220 NSCLC patients from 12 high quality studies were included and the results indicated that up-regulated MASPIN nucleus and cytoplasm expression was associated with poor overall survival (OS) (hazard ratio (HR) = 1.43, 95% confidence interval (CI) = 1.01-2.04, P<0.05), elevated MASPIN cytoplasm expression was associated with poor OS (HR = 1.45, 95% CI = 1.01-2.07, P<0.05), disease-free survival (DFS) (HR = 1.95, 95% CI = 1.31-2.88, P=0.001), and disease-specific survival (DSS) (HR = 2.17, 95% CI = 1.18-3.99, P=0.013). MASPIN both nucleus and cytoplasm location were associated with clinicopathological characteristics. Bioinformatics analysis validated the above results and suggested that human serpin family B member 5 (SERPINB5) hypomethylated levels were negatively correlated with its mRNA expression. Bioinformatics analysis also revealed the 85 most frequently altered neighboring genes of SERPINB5, and gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis revealed 20 GO terms and 3 KEGG pathways with statistical significance. MASPIN had a statistically negative correlation with NSCLC prognosis, functioning as an oncoprotein by hypomethylation and influencing specific pathways involving the 85 genes identified herein. MASPIN might be a promising prognostic signature in NSCLC.
Collapse
Affiliation(s)
- Xiao-Fei Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Bo Liang
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Da-Xiong Zeng
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wei Lei
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Cheng Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yan-Bin Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jian-An Huang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ning Gu
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Ye-Han Zhu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
20
|
Yin W, Wang X, Li Y, Wang B, Song M, Hulbert A, Chen C, Yu F. Promoter hypermethylation of cysteine dioxygenase type 1 in patients with non-small cell lung cancer. Oncol Lett 2020; 20:967-973. [PMID: 32566027 DOI: 10.3892/ol.2020.11592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 02/28/2020] [Indexed: 12/19/2022] Open
Abstract
In the present study, promoter hypermethylation of cysteine dioxygenase type 1 (CDO1) was evaluated in non-small cell lung cancer (NSCLC) tissues to assess the value of CDO1 as a novel biomarker to improve the diagnosis of NSCLC. Tumor tissue samples and corresponding normal lung tissue samples from 42 patients with NSCLC were obtained at the Department of Thoracic Surgery, The Second Xiangya Hospital (Changsha, China). Conventional methylation-specific PCR (cMSP) and methylation-on-beads followed by quantitative methylation-specific PCR (MOB-qMSP) were used to analyze the tumor and normal lung tissue samples. Using these two methods, promoter DNA hypermethylation of the CDO1 gene was detected in 59.4 and 71.0% of tumor tissues of patients with NSCLC and in 9.4 and 0% of normal lung tissue, respectively. Compared with the rate of methylation in the well-differentiated NSCLC tissues (15.4 and 55.6%, respectively), the rate of CDO1 gene promoter methylation was higher in the poorly differentiated tissues (89.5 and 92.3%, respectively). Overall, it was demonstrated that the MOB-qMSP method had a higher positive detection rate for CDO1 hypermethylation compared with the cMSP method. In conclusion, CDO1 gene promoter hypermethylation was more frequently observed in NSCLC tissues compared with in normal lung tissues, and a high methylation frequency of the CDO1 gene in biopsy specimens of NSCLC was associated with the degree of differentiation.
Collapse
Affiliation(s)
- Wei Yin
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Xiang Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Yunping Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Bin Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Mingzhe Song
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Alicia Hulbert
- Department of Surgery, University of Illinois at Chicago School of Medicine, Chicago, IL 60607, USA
| | - Chen Chen
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Fenglei Yu
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
21
|
Zhang M, Sun L, Ru Y, Zhang S, Miao J, Guo P, Lv J, Guo F, Liu B. A risk score system based on DNA methylation levels and a nomogram survival model for lung squamous cell carcinoma. Int J Mol Med 2020; 46:252-264. [PMID: 32377703 PMCID: PMC7255475 DOI: 10.3892/ijmm.2020.4590] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 01/30/2020] [Indexed: 12/20/2022] Open
Abstract
Lung squamous cell carcinoma (LSCC) is one of the primary types of non-small cell lung carcinoma, and patients with recurrent LSCC usually have a poor prognosis. The present study was conducted to build a risk score (RS) system for LSCC. Methylation data on LSCC (training set) and on head and neck squamous cell carcinoma (validation set 2) were obtained from The Cancer Genome Atlas database, and GSE39279 (validation set 1) was retrieved from the Gene Expression Omnibus database. Differentially methylated protein-coding genes (DMGs)/long non-coding RNAs (DM-lncRNAs) between recurrence-associated samples and nonrecurrence samples were screened out using the limma package, and their correlation analysis was conducted using the cor.test() function. Following identification of the optimal combinations of DMGs or DM-lncRNAs using the penalized package in R, RS systems were built, and the system with optimal performance was selected. Using the rms package, a nomogram survival model was then constructed. For the differentially expressed genes (DEGs) between the high- and low-risk groups, pathway enrichment analysis was performed by Gene Set Enrichment Analysis. There were 335 DMGs and DM-lncRNAs in total. Following screening out of the top 10 genes (aldehyde dehydrogenase 7 family member A1, chromosome 8 open reading frame 48, cytokine-like 1, heat shock protein 90 alpha family class A member 1, isovaleryl-CoA dehydrogenase, phosphodiesterase 3A, PNMA family member 2, SAM domain, SH3 domain and nuclear localization signals 1, thyroid hormone receptor interactor 13 and zinc finger protein 878) and 6 top lncRNAs, RS systems were constructed. According to Kaplan-Meier analysis, the DNA methylation level-based RS system exhibited the best performance. In combination with independent clinical prognostic factors, a nomogram survival model was built and successfully predicted patient survival. Furthermore, 820 DEGs between the high- and low-risk groups were identified, and 3 pathways were identified to be enriched in this gene set. The 10-DMG methylation level-based RS system and the nomogram survival model may be applied for predicting the outcomes of patients with LSCC.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Oncology, The Affiliated Suzhou Municipal Hospital of Nanjing Medical University, Suzhou, Jiangsu 215001, P.R. China
| | - Libing Sun
- Department of Oncology, The Affiliated Suzhou Municipal Hospital of Nanjing Medical University, Suzhou, Jiangsu 215001, P.R. China
| | - Yi Ru
- Department of Oncology, The Affiliated Suzhou Municipal Hospital of Nanjing Medical University, Suzhou, Jiangsu 215001, P.R. China
| | - Shasha Zhang
- Department of Oncology, The Affiliated Suzhou Municipal Hospital of Nanjing Medical University, Suzhou, Jiangsu 215001, P.R. China
| | - Junjun Miao
- Department of Oncology, The Affiliated Suzhou Municipal Hospital of Nanjing Medical University, Suzhou, Jiangsu 215001, P.R. China
| | - Pengda Guo
- Department of Oncology, The Affiliated Suzhou Municipal Hospital of Nanjing Medical University, Suzhou, Jiangsu 215001, P.R. China
| | - Jinghuan Lv
- Department of Oncology, The Affiliated Suzhou Municipal Hospital of Nanjing Medical University, Suzhou, Jiangsu 215001, P.R. China
| | - Feng Guo
- Department of Oncology, The Affiliated Suzhou Municipal Hospital of Nanjing Medical University, Suzhou, Jiangsu 215001, P.R. China
| | - Biao Liu
- Department of Oncology, The Affiliated Suzhou Municipal Hospital of Nanjing Medical University, Suzhou, Jiangsu 215001, P.R. China
| |
Collapse
|
22
|
Smetannikova NA, Evdokimov AA, Netesova NA, Abdurashitov MA, Akishev AG, Dubinin EV, Pozdnyakov PI, Vihlyanov IV, Nikitin MK, Topolnitsky EB, Karpov AB, Kolomiets SA, Degtyarev SK. [Application of GLAD-PCR Assay for Study on DNA Methylation in Regulatory Regions of Some Tumor-Suppressor Genes in Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2019; 22:551-561. [PMID: 31526458 PMCID: PMC6754573 DOI: 10.3779/j.issn.1009-3419.2019.09.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Hypermethylation of the gene regulatory regions are common for many cancer diseases. In this work we applied GLAD-PCR assay for identificating of the aberrantly methylated RCGY sites in the regulatory regions of some downregulated genes in tissue samples of lung cancer (LC). This list includes EFEMP1, EPHA5, HOXA5, HOXA9, LHX1, MYF6, NID2, OTX1, PAX9, RARB, RASSF1A, RXRG, SIX6, SKOR1 and TERT genes. The results of DNA samples from 40 cancer and 25 normal lung tissues showed a good diagnostic potential of selected RCGY sites in regulatory regions of MYF6, SIX6, RXRG, LHX1, RASSF1A and TERT genes with relatively high sensitivity (80.0 %) and specificity (88.0 %) of LC detection in tumor DNA.
Collapse
Affiliation(s)
- N A Smetannikova
- State Research Center of Virology and Biotechnology, Koltsovo, Russia.,EpiGene LLC, Novosibirsk, Russia
| | - A A Evdokimov
- State Research Center of Virology and Biotechnology, Koltsovo, Russia.,EpiGene LLC, Novosibirsk, Russia
| | - N A Netesova
- State Research Center of Virology and Biotechnology, Koltsovo, Russia.,EpiGene LLC, Novosibirsk, Russia
| | | | | | | | - P I Pozdnyakov
- State Research Center of Virology and Biotechnology, Koltsovo, Russia
| | | | - M K Nikitin
- Altai Regional Oncology Center, Barnaul, Russia
| | | | - A B Karpov
- Seversk Biophysical Research Centre, Seversk, Russia
| | | | | |
Collapse
|
23
|
Zhu S, Kuek V, Bennett S, Xu H, Rosen V, Xu J. Protein Cytl1: its role in chondrogenesis, cartilage homeostasis, and disease. Cell Mol Life Sci 2019; 76:3515-3523. [PMID: 31089746 PMCID: PMC6697716 DOI: 10.1007/s00018-019-03137-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/16/2019] [Accepted: 05/07/2019] [Indexed: 12/12/2022]
Abstract
Cytokine-like protein 1 (Cytl1), also named Protein C17 or C4orf4 is located on human chromosome 4p15-p16 and encodes a polypeptide of 126 amino acid residues that displays characteristics of a secretory protein. Cytl1 is expressed by a sub-population of CD34+ human mononuclear cells from bone marrow and cord blood, and by chondrocytes (cartilage-forming cells). In this review, we explore evidence suggesting that Cytl1 may be involved in the regulation of chondrogenesis, cartilage homeostasis and osteoarthritis progression, accompanied by the modulation of Sox9 and insulin-like growth factor 1 expression. In addition, Cytl1 exhibits chemotactic and pro-angiogenic biological effects. Interestingly, CCR2 (C-C chemokine receptor type 2) has been identified as a likely receptor for Cytl1, which mediates the ERK signalling pathway. Cytl1 also appears to mediate the TGF-beta-Smad signalling pathway, which is hypothetically independent of the CCR2 receptor. More recently, studies have also potentially linked Cytl1 with a variety of conditions including cardiac fibrosis, smoking, alcohol dependence risk, and tumours such as benign prostatic hypertrophy, lung squamous cell carcinoma, neuroblastoma and familial colorectal cancer. Defining the molecular structure of Cytl1 and its role in disease pathogenesis will help us to design therapeutic approaches for Cytl1-associated pathological conditions.
Collapse
Affiliation(s)
- Sipin Zhu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Molecular Laboratory, Division of Regenerative Medicine, School of Biomedical Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Vincent Kuek
- Molecular Laboratory, Division of Regenerative Medicine, School of Biomedical Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Samuel Bennett
- Molecular Laboratory, Division of Regenerative Medicine, School of Biomedical Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Huazi Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Vicki Rosen
- Developmental Biology, Harvard School of Dental Medicine, Boston, MA, 02115, USA
| | - Jiake Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
- Molecular Laboratory, Division of Regenerative Medicine, School of Biomedical Sciences, University of Western Australia, Perth, WA, 6009, Australia.
| |
Collapse
|
24
|
Shen Y, Pan X, Yang J. Gene regulation and prognostic indicators of lung squamous cell carcinoma: TCGA-derived miRNA/mRNA sequencing and DNA methylation data. J Cell Physiol 2019; 234:22896-22910. [PMID: 31169310 DOI: 10.1002/jcp.28852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/15/2019] [Accepted: 05/01/2019] [Indexed: 11/07/2022]
Abstract
Lung squamous cell carcinoma (LSCC) is a common cancer worldwide, and this study aimed to investigate the key regulatory networks and prognostic indicators of LSCC. MicroRNA (miRNA)/messenger RNA (mRNA) sequencing and DNA methylation data were obtained from the Cancer Genome Atlas. Differentially expressed miRNAs (DEmiRNAs) and genes (DEGs) were identified by the limma package. Then, the transcription factors (TFs) of DEmiRNAs/DEGs, as well as the targets of miRNAs, were predicted by the TFmiR online tool. Using the t test, aberrant methylation was detected in TF binding sites (TFBSs) in promoters. Finally, integrated network and survival analyses were conducted using SPSS software. We obtained 104 DEmiRNAs and 4,491 DEGs, and validated 2,113 DEGs (VDEGs). Then, 103 TFs, 295 TFs, and 14 DEmiRNAs were predicted to target 95 DEmiRNAs, 821 DEGs and 283 DEGs, respectively. After TF-DEmiRNA/DEG and TF-DEmiRNA-DEG networks were constructed (e.g., E2F1-CDC25A, miR29a-RAN, miR326-TBL1XR1), five feedforward loops between ZEB1 and miR-141/200a/200b/200c/429 were found. Furthermore, VDEGs CDC25A, RAN, TBL1XR1 as well as miR-130b and miR-590 were negatively correlated with survival rates. E2F1-CDC25A, miR29a-RAN, miR326-TBL1XR1, and the feedforward loops between ZEB1/ZEB2 and miR-141/200a/200b/200c/429 might participate in LSCC development. Compared with BEAS-2B cells, the SK-MES-1 cells presented a higher expression level of miR-141, miR-200a, miR-200b, miR-200c but a lower expression level of ZEB1. Overexpressed miR-200c significantly attenuated the expression of ZEB1 and ZEB2 and inhibited the proliferation and migration of SK-MES-1 cells (all p < 0.05). In addition, CDC25A, miR-200a, miR-200b, miR-200c, miR-130b, and miR-590 are potential prognostic indicators of LSCC.
Collapse
Affiliation(s)
- Yuzhou Shen
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Xufeng Pan
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Jun Yang
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
25
|
Yeh SJ, Chang CA, Li CW, Wang LHC, Chen BS. Comparing progression molecular mechanisms between lung adenocarcinoma and lung squamous cell carcinoma based on genetic and epigenetic networks: big data mining and genome-wide systems identification. Oncotarget 2019; 10:3760-3806. [PMID: 31217907 PMCID: PMC6557199 DOI: 10.18632/oncotarget.26940] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/29/2019] [Indexed: 02/07/2023] Open
Abstract
Non-small-cell lung cancer (NSCLC) is the predominant type of lung cancer in the world. Lung adenocarcinoma (LADC) and lung squamous cell carcinoma (LSCC) are subtypes of NSCLC. We usually regard them as different disease due to their unique molecular characteristics, distinct cells of origin and dissimilar clinical response. However, the differences of genetic and epigenetic progression mechanism between LADC and LSCC are complicated to analyze. Therefore, we applied systems biology approaches and big databases mining to construct genetic and epigenetic networks (GENs) with next-generation sequencing data of LADC and LSCC. In order to obtain the real GENs, system identification and system order detection are conducted on gene regulatory networks (GRNs) and protein-protein interaction networks (PPINs) for each stage of LADC and LSCC. The core GENs were extracted via principal network projection (PNP). Based on the ranking of projection values, we got the core pathways in respect of KEGG pathway. Compared with the core pathways, we found significant differences between microenvironments, dysregulations of miRNAs, epigenetic modifications on certain signaling transduction proteins and target genes in each stage of LADC and LSCC. Finally, we proposed six genetic and epigenetic multiple-molecule drugs to target essential biomarkers in each progression stage of LADC and LSCC, respectively.
Collapse
Affiliation(s)
- Shan-Ju Yeh
- Laboratory of Automatic Control, Signaling Processing, and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chien-An Chang
- Laboratory of Automatic Control, Signaling Processing, and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Cheng-Wei Li
- Laboratory of Automatic Control, Signaling Processing, and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Lily Hui-Ching Wang
- Department of Medical Science, Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Bor-Sen Chen
- Laboratory of Automatic Control, Signaling Processing, and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan.,Department of Electrical Engineering, Yuan Ze University, Chungli 32003, Taiwan
| |
Collapse
|
26
|
Wang X, Li T, Cheng Y, Wang P, Yuan W, Liu Q, Yang F, Liu Q, Ma D, Ding S, Wang J, Han W. CYTL1 inhibits tumor metastasis with decreasing STAT3 phosphorylation. Oncoimmunology 2019; 8:e1577126. [PMID: 31069137 DOI: 10.1080/2162402x.2019.1577126] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/16/2018] [Accepted: 01/24/2019] [Indexed: 10/27/2022] Open
Abstract
CYTL1 is a novel cytokine that was first identified in CD34+ hematopoietic cells. We previously prepared recombinant CYTL1 and verified that it chemoattracted human monocytes via the CCR2/ERK pathway. It has been reported that CYTL1 plays contradictory roles in neuroblastoma and lung cancer. We found that the expression level of CYTL1 was notably decreased and it was hypermethylated in various tumors, including breast and lung cancer, by bioinformatics analyses. After validating the expression of CYTL1 in lung cancer, we identified that CYTL1 exerted no obvious effect on tumor cell proliferation but inhibited their migration and invasion, and these effects were accompanied by decreasing STAT3 phosphorylation, using recombinant CYTL1 and CYTL1-overexpressing tumor cell lines. Furthermore, we constructed experimental and spontaneous metastasis models of breast cancer in BALB/c mice and found that CYTL1 significantly inhibited tumor metastasis in vivo. In summary, CYTL1 is a cytokine with tumor-suppressing characteristics that inhibits tumor metastasis and STAT3 phosphorylation in multiple types of tumors.
Collapse
Affiliation(s)
- Xiaolin Wang
- Peking University Center for Human Disease Genomics, Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Laboratory of Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Ting Li
- Peking University Center for Human Disease Genomics, Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yingying Cheng
- Peking University Center for Human Disease Genomics, Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Department of Laboratory Medicine, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu, China
| | - Pingzhang Wang
- Peking University Center for Human Disease Genomics, Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Wanqiong Yuan
- Peking University Center for Human Disease Genomics, Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Qiyao Liu
- Peking University Center for Human Disease Genomics, Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Fan Yang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
| | - Qiang Liu
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
| | - Dalong Ma
- Peking University Center for Human Disease Genomics, Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Shigang Ding
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Jun Wang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
| | - Wenling Han
- Peking University Center for Human Disease Genomics, Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
27
|
Nguyen QN, Vuong LD, Truong VL, Ta TV, Nguyen NT, Nguyen HP, Chu HH. Genetic and epigenetic alterations of the EGFR and mutually independent association with BRCA1, MGMT, and RASSF1A methylations in Vietnamese lung adenocarcinomas. Pathol Res Pract 2019; 215:885-892. [PMID: 30723053 DOI: 10.1016/j.prp.2019.01.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/05/2019] [Accepted: 01/25/2019] [Indexed: 11/25/2022]
Abstract
Genetic and epigenetic alterations importantly contribute to the pathogenesis of lung cancer. In the study, we measured the frequency and distribution of molecular abnormalities of EGFR as well as the aberrant promoter methylations of BRCA1, MGMT, MLH1, and RASSF1A in Vietnamese lung adenocarcinomas. We investigated the association between genetic and epigenetic alteration, and between each abnormality with clinicopathologic parameters. Somatic EGFR mutation that was found in 49/139 (35.3%) lung adenocarcinomas showed a significant association with young age, female gender, and non-smokers. EGFR overexpression was identified in 82 tumors (59.0%) and statistical relationships with EGFR or BRCA1 methylation but not EGFR mutation. In addition, EGFR, BRCA1, MGMT, MLH1, and RASSF1A methylations were found in 33 (23.7%), 41 (29.5%), 46 (33.1%), 28 (20.1%), and 41 (29.5%) cases of a total of 139 lung adenocarcinomas, respectively. The RASSF1A methylation was found to be linked to the smoking habit. Methylations in MGMT and RASSF1A were also found to correlate with metastasis status. Furthermore, the distribution of EGFR mutation and that of BRCA1, MGMT or RASSF1A methylation were significantly exclusive in lung adenocarcinomas. The main finding of our study demonstrate that epigenetic abnormalities might play a critical role for the lung tumorigenesis in patients with smoking history and metastasis, and partly affect the predictive value of EGFR mutations through blocking expression due to promoter EGFR hypermethylation. Mutually exclusive distribution of genetic and epigenetic alterations reflects differently biological characteristics in the etiology of lung adenocarcinomas.
Collapse
Affiliation(s)
- Quang Ngoc Nguyen
- Pathology and Molecular Biology Center, National Cancer Hospital K, 30 Cau Buou Street, Thanh Tri, Hanoi, Viet Nam; Biotechnology Department, Graduate University of Science and Technology, Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay, Hanoi, Viet Nam.
| | - Linh Dieu Vuong
- Pathology and Molecular Biology Center, National Cancer Hospital K, 30 Cau Buou Street, Thanh Tri, Hanoi, Viet Nam
| | - Van-Long Truong
- Department of Smart Food and Drug, College of BNIT, Inje University, Gimhae, 50834, South Korea
| | - To Van Ta
- Pathology and Molecular Biology Center, National Cancer Hospital K, 30 Cau Buou Street, Thanh Tri, Hanoi, Viet Nam
| | - Nam Trung Nguyen
- National Key Laboratory of Gene Technology, Institute Vietnam, Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay, Hanoi, Viet Nam; Biotechnology Department, Graduate University of Science and Technology, Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay, Hanoi, Viet Nam
| | - Hung Phi Nguyen
- Pathology and Molecular Biology Center, National Cancer Hospital K, 30 Cau Buou Street, Thanh Tri, Hanoi, Viet Nam.
| | - Ha Hoang Chu
- National Key Laboratory of Gene Technology, Institute Vietnam, Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay, Hanoi, Viet Nam; Biotechnology Department, Graduate University of Science and Technology, Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay, Hanoi, Viet Nam.
| |
Collapse
|
28
|
Combinatorial Electrophoresis and Mass Spectrometry-Based Proteomics in Breast Milk for Breast Cancer Biomarker Discovery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:451-467. [PMID: 31347064 DOI: 10.1007/978-3-030-15950-4_26] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Innovations in approaches for early detection and individual risk assessment of different cancers, including breast cancer (BC), are needed to reduce cancer morbidity and associated mortality. The assessment of potential cancer biomarkers in accessible bodily fluids provides a novel approach to identify the risk and/or onset of cancer. Biomarkers are biomolecules, such as proteins, that are indicative of an abnormality or a disease. Human milk is vastly underutilized biospecimen that offers the opportunity to investigate potential protein BC-biomarkers in young, reproductively active women. As a first step, we have examined the entire protein pattern in human milk samples from breastfeeding mothers with cancer, who were diagnosed either before or after milk donation, and from women without cancer, using mass spectrometry (MS)-based proteomics.
Collapse
|
29
|
Aslebagh R, Channaveerappa D, Arcaro KF, Darie CC. Proteomics analysis of human breast milk to assess breast cancer risk. Electrophoresis 2018; 39:653-665. [PMID: 29193311 DOI: 10.1002/elps.201700123] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 12/19/2022]
Abstract
Detection of breast cancer (BC) in young women is challenging because mammography, the most common tool for detecting BC, is not effective on the dense breast tissue characteristic of young women. In addition to the limited means for detecting their BC, young women face a transient increased risk of pregnancy-associated BC. As a consequence, reproductively active women could benefit significantly from a tool that provides them with accurate risk assessment and early detection of BC. One potential method for detection of BC is biochemical monitoring of proteins and other molecules in bodily fluids such as serum, nipple aspirate, ductal lavage, tear, urine, saliva and breast milk. Of all these fluids, only breast milk provides access to a large volume of breast tissue, in the form of exfoliated epithelial cells, and to the local breast environment, in the form of molecules in the milk. Thus, analysis of breast milk is a non-invasive method with significant potential for assessing BC risk. Here we analyzed human breast milk by mass spectrometry (MS)-based proteomics to build a biomarker signature for early detection of BC. Ten milk samples from eight women provided five paired-groups (cancer versus control) for analysis of dysregulatedproteins: two within woman comparisons (milk from a diseased breast versus a healthy breast of the same woman) and three across women comparisons (milk from a woman with cancer versus a woman without cancer). Despite a wide range in the time between milk donation and cancer diagnosis (cancer diagnosis occurred from 1 month before to 24 months after milk donation), the levels of some proteins differed significantly between cancer and control in several of the five comparison groups. These pilot data are supportive of the idea that molecular analysis of breast milk will identify proteins informative for early detection and accurate assessment of BC risk, and warrant further research. Data are available via ProteomeXchange with identifier PXD007066.
Collapse
Affiliation(s)
- Roshanak Aslebagh
- Biochemistry & Proteomics Group, Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY, USA
| | - Devika Channaveerappa
- Biochemistry & Proteomics Group, Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY, USA
| | - Kathleen F Arcaro
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Costel C Darie
- Biochemistry & Proteomics Group, Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY, USA
| |
Collapse
|
30
|
He W, Ju D, Jie Z, Zhang A, Xing X, Yang Q. Aberrant CpG-methylation affects genes expression predicting survival in lung adenocarcinoma. Cancer Med 2018; 7:5716-5726. [PMID: 30353687 PMCID: PMC6246931 DOI: 10.1002/cam4.1834] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/09/2018] [Accepted: 09/24/2018] [Indexed: 12/18/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is a common diagnosed disease with high-mortality rate, and its prognostic implications are under discovered. DNA methylation aberrations are not only an important event for dysregulation of gene expression during tumorigenesis but also a revolution in epigenetics by identifying key prognostic biomarkers for multiple cancers. In this study, we analyzed methylation status of 485 578 CpG sites and RNA-seq transcriptomes of 20 532 genes for 1095 LUAD samples in TCGA database. The association between DNA methylation and the prognostic value of the corresponding gene expression was identified as well. In total, ten aberrantly methylated and dysregulated genes (AURKA, BLK, CNTN2, HMGA1, PTTG1, TNS4, DAPK2, MFSD2A, THSD1, and WNT7A) were highlighted which were significantly correlated with overall survival of 492 LUAD patients, which were all reported as tumor-associated genes in other various cancers and worthy of further investigated and might be used as therapeutic targets for LUAD. Together, methylation aberrances regulate gene expression level during tumorigenesis and influence prognosis of LUAD patients. Integrating knowledge of epigenetics and expression of genes can be useful for an in-depth understanding of cancer mechanism and for the eventual purpose of precisely prognostic and therapeutic target verification.
Collapse
Affiliation(s)
- Wei He
- Department of Respiratory Medicine, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Dandan Ju
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Zhijun Jie
- Department of Respiratory Medicine, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Ai Zhang
- The People's Hospital of Shanghai Pudong District, Shanghai, China
| | - Xin Xing
- Department of Obstetrics and Gynecology, Fengxian Hospital, Shanghai, China
| | - Qin Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
31
|
Kim H, Wang X, Jin P. Developing DNA methylation-based diagnostic biomarkers. J Genet Genomics 2018; 45:87-97. [PMID: 29496486 DOI: 10.1016/j.jgg.2018.02.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 01/29/2018] [Accepted: 02/12/2018] [Indexed: 02/06/2023]
Abstract
An emerging paradigm shift for disease diagnosis is to rely on molecular characterization beyond traditional clinical and symptom-based examinations. Although genetic alterations and transcription signature were first introduced as potential biomarkers, clinical implementations of these markers are limited due to low reproducibility and accuracy. Instead, epigenetic changes are considered as an alternative approach to disease diagnosis. Complex epigenetic regulation is required for normal biological functions and it has been shown that distinctive epigenetic disruptions could contribute to disease pathogenesis. Disease-specific epigenetic changes, especially DNA methylation, have been observed, suggesting its potential as disease biomarkers for diagnosis. In addition to specificity, the feasibility of detecting disease-associated methylation marks in the biological specimens collected noninvasively, such as blood samples, has driven the clinical studies to validate disease-specific DNA methylation changes as a diagnostic biomarker. Here, we highlight the advantages of DNA methylation signature for diagnosis in different diseases and discuss the statistical and technical challenges to be overcome before clinical implementation.
Collapse
Affiliation(s)
- Hyerim Kim
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Xudong Wang
- Department of Gastroenterological Surgery, The Second Hospital, Jilin University, Changchun 130041, China.
| | - Peng Jin
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
32
|
Waking up dormant tumor suppressor genes with zinc fingers, TALEs and the CRISPR/dCas9 system. Oncotarget 2018; 7:60535-60554. [PMID: 27528034 PMCID: PMC5312401 DOI: 10.18632/oncotarget.11142] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 07/19/2016] [Indexed: 12/24/2022] Open
Abstract
The aberrant epigenetic silencing of tumor suppressor genes (TSGs) plays a major role during carcinogenesis and regaining these dormant functions by engineering of sequence-specific epigenome editing tools offers a unique opportunity for targeted therapies. However, effectively normalizing the expression and regaining tumor suppressive functions of silenced TSGs by artificial transcription factors (ATFs) still remains a major challenge. Herein we describe novel combinatorial strategies for the potent reactivation of two class II TSGs, MASPIN and REPRIMO, in cell lines with varying epigenetic states, using the CRISPR/dCas9 associated system linked to a panel of effector domains (VP64, p300, VPR and SAM complex), as well as with protein-based ATFs, Zinc Fingers and TALEs. We found that co-delivery of multiple effector domains using a combination of CRISPR/dCas9 and TALEs or SAM complex maximized activation in highly methylated promoters. In particular, CRISPR/dCas9 VPR with SAM upregulated MASPIN mRNA (22,145-fold change) in H157 lung cancer cells, with accompanying re-expression of MASPIN protein, which led to a concomitant inhibition of cell proliferation and induction of apoptotic cell death. Consistently, CRISPR/dCas9 VP64 with SAM upregulated REPRIMO (680-fold change), which led to phenotypic reprogramming in AGS gastric cancer cells. Altogether, our results outlined novel sequence-specific, combinatorial epigenome editing approaches to reactivate highly methylated TSGs as a promising therapy for cancer and other diseases.
Collapse
|
33
|
Ho TH, Serie DJ, Parasramka M, Cheville JC, Bot BM, Tan W, Wang L, Joseph RW, Hilton T, Leibovich BC, Parker AS, Eckel-Passow JE. Differential gene expression profiling of matched primary renal cell carcinoma and metastases reveals upregulation of extracellular matrix genes. Ann Oncol 2017; 28:604-610. [PMID: 27993815 DOI: 10.1093/annonc/mdw652] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background The majority of renal cell carcinoma (RCC) studies analyze primary tumors, and the corresponding results are extrapolated to metastatic RCC tumors. However, it is unknown if gene expression profiles from primary RCC tumors differs from patient-matched metastatic tumors. Thus, we sought to identify differentially expressed genes between patient-matched primary and metastatic RCC tumors in order to understand the molecular mechanisms underlying the development of RCC metastases. Patients and methods We compared gene expression profiles between patient-matched primary and metastatic RCC tumors using a two-stage design. First, we used Affymetrix microarrays on 15 pairs of primary RCC [14 clear cell RCC (ccRCC), 1 papillary] tumors and patient-matched pulmonary metastases. Second, we used a custom NanoString panel to validate seven candidate genes in an independent cohort of 114 ccRCC patients. Differential gene expression was evaluated using a mixed effect linear model; a random effect denoting patient was included to account for the paired data. Third, The Cancer Genome Atlas (TCGA) data were used to evaluate associations with metastasis-free and overall survival in primary ccRCC tumors. Results We identified and validated up regulation of seven genes functionally involved in the formation of the extracellular matrix (ECM): DCN, SLIT2, LUM, LAMA2, ADAMTS12, CEACAM6 and LMO3. In primary ccRCC, CEACAM6 and LUM were significantly associated with metastasis-free and overall survival (P < 0.01). Conclusions We evaluated gene expression profiles using the largest set to date, to our knowledge, of patient-matched primary and metastatic ccRCC tumors and identified up regulation of ECM genes in metastases. Our study implicates up regulation of ECM genes as a critical molecular event leading to visceral, bone and soft tissue metastases in ccRCC.
Collapse
Affiliation(s)
- T H Ho
- Division of Hematology and Medical Oncology, Mayo Clinic, Scottsdale, USA
| | - D J Serie
- Departments of Health Sciences Research, Mayo Clinic, Jacksonville, FL, USA
| | | | - J C Cheville
- Laboratory Medicine and Pathology, Mayo Clinic, Rochester, NY, USA
| | - B M Bot
- Computational Oncology, Sage Bionetworks, Seattle, USA
| | - W Tan
- Division of Hematology/Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - L Wang
- Department of Pathology, Medical College of Hebei University of Engineering, Handan, Hebei Province, China
| | - R W Joseph
- Division of Hematology/Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - T Hilton
- Departments of Health Sciences Research, Mayo Clinic, Jacksonville, FL, USA
| | | | - A S Parker
- Departments of Health Sciences Research, Mayo Clinic, Jacksonville, FL, USA
| | - J E Eckel-Passow
- Department of Pathology, Medical College of Hebei University of Engineering, Handan, Hebei Province, China
| |
Collapse
|
34
|
Lienhard M, Grasse S, Rolff J, Frese S, Schirmer U, Becker M, Börno S, Timmermann B, Chavez L, Sültmann H, Leschber G, Fichtner I, Schweiger MR, Herwig R. QSEA-modelling of genome-wide DNA methylation from sequencing enrichment experiments. Nucleic Acids Res 2017; 45:e44. [PMID: 27913729 PMCID: PMC5389680 DOI: 10.1093/nar/gkw1193] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/17/2016] [Indexed: 12/22/2022] Open
Abstract
Genome-wide enrichment of methylated DNA followed by sequencing (MeDIP-seq) offers a reasonable compromise between experimental costs and genomic coverage. However, the computational analysis of these experiments is complex, and quantification of the enrichment signals in terms of absolute levels of methylation requires specific transformation. In this work, we present QSEA, Quantitative Sequence Enrichment Analysis, a comprehensive workflow for the modelling and subsequent quantification of MeDIP-seq data. As the central part of the workflow we have developed a Bayesian statistical model that transforms the enrichment read counts to absolute levels of methylation and, thus, enhances interpretability and facilitates comparison with other methylation assays. We suggest several calibration strategies for the critical parameters of the model, either using additional data or fairly general assumptions. By comparing the results with bisulfite sequencing (BS) validation data, we show the improvement of QSEA over existing methods. Additionally, we generated a clinically relevant benchmark data set consisting of methylation enrichment experiments (MeDIP-seq), BS-based validation experiments (Methyl-seq) as well as gene expression experiments (RNA-seq) derived from non-small cell lung cancer patients, and show that the workflow retrieves well-known lung tumour methylation markers that are causative for gene expression changes, demonstrating the applicability of QSEA for clinical studies. QSEA is implemented in R and available from the Bioconductor repository 3.4 (www.bioconductor.org/packages/qsea).
Collapse
Affiliation(s)
- Matthias Lienhard
- Department of Computational Molecular Biology, Max-Planck-Institute for Molecular Genetics, Berlin 14195, Germany
| | - Sabrina Grasse
- Functional Epigenomics, University Hospital Cologne, Cologne 50937, Germany
| | - Jana Rolff
- Experimental Pharmacology & Oncology Berlin-Buch GmbH, Berlin 13125, Germany
| | - Steffen Frese
- Department of Thoracic Surgery, ELK Berlin Chest Hospital, Berlin 13125, Germany
| | - Uwe Schirmer
- Cancer Genome Research Group, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg 69120, Germany
| | - Michael Becker
- Experimental Pharmacology & Oncology Berlin-Buch GmbH, Berlin 13125, Germany
| | - Stefan Börno
- Sequencing Core Facility, Max-Planck-Institute for Molecular Genetics, Berlin 14195, Germany
| | - Bernd Timmermann
- Sequencing Core Facility, Max-Planck-Institute for Molecular Genetics, Berlin 14195, Germany
| | - Lukas Chavez
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Holger Sültmann
- Cancer Genome Research Group, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg 69120, Germany
| | - Gunda Leschber
- Department of Thoracic Surgery, ELK Berlin Chest Hospital, Berlin 13125, Germany
| | - Iduna Fichtner
- Experimental Pharmacology & Oncology Berlin-Buch GmbH, Berlin 13125, Germany
| | - Michal R Schweiger
- Functional Epigenomics, University Hospital Cologne, Cologne 50937, Germany.,Department of Vertebrate Genomics, Max-Planck-Institute for Molecular Genetics, Berlin 14195, Germany
| | - Ralf Herwig
- Department of Computational Molecular Biology, Max-Planck-Institute for Molecular Genetics, Berlin 14195, Germany
| |
Collapse
|
35
|
Tomczak A, Singh K, Gittis AG, Lee J, Garboczi DN, Murphy PM. Biochemical and biophysical characterization of cytokine-like protein 1 (CYTL1). Cytokine 2017; 96:238-246. [PMID: 28478073 DOI: 10.1016/j.cyto.2017.04.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 04/20/2017] [Accepted: 04/24/2017] [Indexed: 12/11/2022]
Abstract
Cytokine-like protein 1 (CYTL1) is a small widely expressed secreted protein lacking significant primary sequence homology to any other known protein. CYTL1 expression appears to be highest in the hematopoietic system and in chondrocytes; however, maintenance of cartilage in mouse models of arthritis is its only reported function in vivo. Despite lacking sequence homology to chemokines, CYTL1 is predicted by computational methods to fold like a chemokine, and has been reported to function as a chemotactic agonist at the chemokine receptor CCR2 in mouse monocyte/macrophages. Nevertheless, since chemokines are defined by structure and chemokine receptors are able to bind many non-chemokine ligands, direct determination of the CYTL1 tertiary structure will ultimately be required to know whether it actually folds as a chemokine and therefore is a chemokine. Towards this goal, we have developed a method for producing functional recombinant human CYTL1 in bacteria, and we provide new evidence about the biophysical and biochemical properties of recombinant CYTL1. Circular dichroism analysis showed that, like chemokines, CYTL1has a higher content of beta-sheet than alpha-helix secondary structure. Furthermore, recombinant CYTL1 promoted calcium flux in chondrocytes. Nevertheless, unlike chemokines, CYTL1 had limited affinity to proteoglycans. Together, these properties further support cytokine-like properties for CYTL1 with some overlap with the chemokines.
Collapse
Affiliation(s)
- Aurelie Tomczak
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, Rockville, MD 20892, USA
| | - Kavita Singh
- Structural Biology Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, Rockville, MD 20852, USA
| | - Apostolos G Gittis
- Structural Biology Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, Rockville, MD 20852, USA
| | - Joohee Lee
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, Rockville, MD 20892, USA
| | - David N Garboczi
- Structural Biology Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, Rockville, MD 20852, USA
| | - Philip M Murphy
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, Rockville, MD 20892, USA.
| |
Collapse
|
36
|
Identification of Methylation-Driven, Differentially Expressed STXBP6 as a Novel Biomarker in Lung Adenocarcinoma. Sci Rep 2017; 7:42573. [PMID: 28198450 PMCID: PMC5309775 DOI: 10.1038/srep42573] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 01/12/2017] [Indexed: 02/06/2023] Open
Abstract
DNA methylation is an essential epigenetic marker associated with the silencing of gene expression. Although various genome-wide studies revealed aberrantly methylated gene targets as molecular biomarkers for early detection, the survival rate of lung cancer patients is still poor. In order to identify methylation-driven biomarkers, genome-wide changes in DNA methylation and differential expression in 32 pairs of lung adenocarcinoma and adjacent normal lung tissue in non-smoking women were examined. This concurrent analysis identified 21 negatively correlated probes (r ≤ −0.5), corresponding to 17 genes. Examining the endogenous expression in lung cancer cell lines, five of the genes were found to be significantly down-regulated. Furthermore, in tumor cells alone, 5-aza-2′-deoxycytidine treatment increased the expression levels of STXBP6 in a dose dependent manner and pyrosequencing showed higher percentage of methylation in STXBP6 promoter. Functional analysis revealed that overexpressed STXBP6 in A549 and H1299 cells significantly decreased cell proliferation, colony formation, and migration, and increased apoptosis. Finally, significantly lower survival rates (P < 0.05) were observed when expression levels of STXBP6 were low. Our results provide a basis for the genetic etiology of lung adenocarcinoma by demonstrating the possible role of hypermethylation of STXBP6 in poor clinical outcomes in lung cancer patients.
Collapse
|
37
|
|
38
|
Kuo IY, Jen J, Hsu LH, Hsu HS, Lai WW, Wang YC. A prognostic predictor panel with DNA methylation biomarkers for early-stage lung adenocarcinoma in Asian and Caucasian populations. J Biomed Sci 2016; 23:58. [PMID: 27484806 PMCID: PMC4969679 DOI: 10.1186/s12929-016-0276-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 07/18/2016] [Indexed: 01/07/2023] Open
Abstract
Background The incidence of lung adenocarcinoma (LUAD) is increasing worldwide with different prognosis even in early-stage patients. We aimed to identify a prognostic panel with multiple DNA methylation biomarkers to predict survival in early-stage LUAD patients of different racial groups. Methods The methylation array, pyrosequencing methylation assay, Cox regression and Kaplan-Meier analyses were conducted to build the risk score equations of selected probes in a training cohort of 69 Asian LUAD patients. The risk score model was verified in another cohort of 299 Caucasian LUAD patients in The Cancer Genome Atlas (TCGA) database. Results We performed a Cox regression analysis, in which the regression coefficients were obtained for eight probes corresponding to eight genes (AGTRL1, ALDH1A3, BDKRB1, CTSE, EFNA2, NFAM1, SEMA4A and TMEM129). The risk score was derived from sum of each methylated probes multiplied by its corresponding coefficient. Patients with the risk score greater than the median value showed poorer overall survival compared with other patients (p = 0.007). Such a risk score significantly predicted patients showing poor survival in TCGA cohort (p = 0.036). A multivariate analysis was further performed to demonstrate that the eight-probe panel association with poor outcome in early-stage LUAD patients remained significant even after adjusting for different clinical variables including staging parameters (hazard ratio, 2.03; p = 0.039). Conclusions We established a proof-of-concept prognostic panel consisting of eight-probe signature to predict survival of early-stage LUAD patients of Asian and Caucasian populations. Electronic supplementary material The online version of this article (doi:10.1186/s12929-016-0276-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- I-Ying Kuo
- Department of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Pharmacology and Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 70101, Taiwan
| | - Jayu Jen
- Department of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Pharmacology and Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 70101, Taiwan
| | - Lien-Huei Hsu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Pulmonary Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Han-Shui Hsu
- Division of Thoracic Surgery, Taipei Veterans General Hospital; Institute of Emergency and Critical Care Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Wu-Wei Lai
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No.138, Sheng Li Road, Tainan, 704, Taiwan.
| | - Yi-Ching Wang
- Department of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,Department of Pharmacology and Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 70101, Taiwan.
| |
Collapse
|
39
|
Tellez CS, Juri DE, Do K, Picchi MA, Wang T, Liu G, Spira A, Belinsky SA. miR-196b Is Epigenetically Silenced during the Premalignant Stage of Lung Carcinogenesis. Cancer Res 2016; 76:4741-51. [PMID: 27302168 DOI: 10.1158/0008-5472.can-15-3367] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 05/16/2016] [Indexed: 02/06/2023]
Abstract
miRNA silencing by promoter hypermethylation may represent a mechanism by which lung cancer develops and progresses, but the miRNAs involved during malignant transformation are unknown. We previously established a model of premalignant lung cancer wherein we treated human bronchial epithelial cells (HBEC) with low doses of tobacco carcinogens. Here, we demonstrate that next-generation sequencing of carcinogen-transformed HBECs treated with the demethylating agent 5-aza-2'deoxycytidine revealed miR-196b and miR-34c-5p to be epigenetic targets. Bisulfite sequencing confirmed dense promoter hypermethylation indicative of silencing in multiple malignant cell lines and primary tumors. Chromatin immunoprecipitation studies further demonstrated an enrichment in repressive histone marks on the miR-196b promoter during HBEC transformation. Restoration of miR-196b expression by transfecting transformed HBECs with specific mimics led to cell-cycle arrest mediated in part through transcriptional regulation of the FOS oncogene, and miR-196b reexpression also significantly reduced the growth of tumor xenografts. Luciferase assays demonstrated that forced expression of miR-196b inhibited the FOS promoter and AP-1 reporter activity. Finally, a case-control study revealed that methylation of miR-196b in sputum was strongly associated with lung cancer (OR = 4.7, P < 0.001). Collectively, these studies highlight miR-196b as a tumor suppressor whose silencing early in lung carcinogenesis may provide a selective growth advantage to premalignant cells. Targeted delivery of miR-196b could therefore serve as a preventive or therapeutic strategy for the management of lung cancer. Cancer Res; 76(16); 4741-51. ©2016 AACR.
Collapse
Affiliation(s)
- Carmen S Tellez
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico.
| | - Daniel E Juri
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Kieu Do
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Maria A Picchi
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Teresa Wang
- Department of Medicine, Boston University, Boston, Massachusetts
| | - Gang Liu
- Department of Medicine, Boston University, Boston, Massachusetts
| | - Avrum Spira
- Department of Medicine, Boston University, Boston, Massachusetts
| | - Steven A Belinsky
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico.
| |
Collapse
|
40
|
Epigenetic Repression of CCDC37 and MAP1B Links Chronic Obstructive Pulmonary Disease to Lung Cancer. J Thorac Oncol 2016. [PMID: 26200272 DOI: 10.1097/jto.0000000000000592] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Lung cancer and chronic obstructive pulmonary disease (COPD) share environmental risk factors. COPD also increases the risk of lung cancer; however, the molecular mechanisms are unclear. METHODS An epigenome-wide association study of lung tumors and cancer-free lung tissue (CFLT) pairs from non-small-cell lung cancer cases with (n = 18) or without (n = 17) COPD was conducted using the HumanMethylation450 beadchip (HM450K). COPD-associated methylation of top-ranked genes was confirmed in a larger sample set, independently validated, and their potential as sputum-based biomarkers was investigated. RESULTS Methylation of CCDC37 and MAP1B was more prevalent in lung tumors from COPD than non-COPD cases [54 of 71 (76%) versus 20 of 46 (43%), p = 0.0013] and [48 of 71 (68%) versus 17 of 46 (37%), p = 0.0035], respectively, after adjustment for age, sex, smoking status, and tumor histology. HM450K probes across CCDC37 and MAP1B promoters showed higher methylation in tumors than CFLT with the highest methylation seen in tumors from COPD cases (p < 0.05). These results were independently validated using The Cancer Genome Atlas data. CCDC37 methylation was more prevalent in sputum from COPD than non-COPD smokers (p < 0.005) from two cohorts. CCDC37 and MAP1B expression was dramatically repressed in tumors and CFLT from COPD than non-COPD cases, p less than 0.02. CONCLUSIONS The reduced expression of CCDC37 and MAP1B associated with COPD likely predisposes these genes to methylation that in turn, may contribute to lung cancer.
Collapse
|
41
|
Kobayashi K, Yamaguchi M, Miyazaki K, Imai H, Yokoe K, Ono R, Nosaka T, Katayama N. Expressions of SH3BP5, LMO3, and SNAP25 in diffuse large B-cell lymphoma cells and their association with clinical features. Cancer Med 2016; 5:1802-9. [PMID: 27184832 PMCID: PMC4873606 DOI: 10.1002/cam4.753] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/01/2016] [Accepted: 04/05/2016] [Indexed: 12/25/2022] Open
Abstract
Diffuse large B‐cell lymphoma (DLBCL) is clinicopathologically and genetically heterogeneous with variable clinical outcomes. We previously identified signature genes overexpressed in CD5‐positive (CD5+) DLBCL, which is a poor prognostic subgroup of DLBCL. To elucidate the clinical significance of the protein expression of the signature genes overexpressed in CD5+DLBCL with regard to all DLBCL, not otherwise specified (NOS), 10 genes (SH3BP5,LMO3,SNAP25,SYT5,SV2C,CABP1,FGF1,FGFR2,NEUROD1, and SYN2) were selected and examined immunohistochemically with samples from 28 patients with DLBCL, NOS. Only three protein expressions, SH3BP5, LMO3, and SNAP25, were detected in DLBCL cells and then analyzed further with samples from 187 patients with DLBCL, NOS. The SH3BP5, LMO3, and SNAP25 proteins were expressed in 60% (103/173), 34% (59/175), and 46% (77/168) of DLBCL patients, respectively. These protein expressions were associated with CD5 expression, and only SH3BP5 was frequently expressed in activated B‐cell‐like DLBCL (P = 0.046). Compared to the SH3BP5‐negative group, the SH3BP5+ group was correlated with elderly onset (>60 years, P = 0.0096) and advanced‐stage disease (stage III/IV, P = 0.037). The LMO3+ group showed a worse performance status (>1, P = 0.0004). The SH3BP5+ group and the LMO3+ group had significantly worse overall survival than the negative groups (P = 0.030, 0.034; respectively) for the entire group. In a subgroup analysis of patients treated with rituximab‐containing chemotherapy, there was no significant difference between groups. To the best of our knowledge, this is the first report showing the protein expressions of SH3BP5, LMO3, and SNAP25 in DLBCL cells and their clinical significance in patients with DLBCL. The SH3BP5 and LMO3 protein expressions are associated with the baseline clinical characteristics of DLBCL.
Collapse
Affiliation(s)
- Kyoko Kobayashi
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Motoko Yamaguchi
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Kana Miyazaki
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hiroshi Imai
- Pathology Division, Mie University Hospital, Tsu, Japan
| | - Kaori Yokoe
- Mie University School of Medicine, Tsu, Japan
| | - Ryoichi Ono
- Department of Microbiology and Molecular Genetics, Mie University Graduate School of Medicine, Tsu, Japan
| | - Tetsuya Nosaka
- Department of Microbiology and Molecular Genetics, Mie University Graduate School of Medicine, Tsu, Japan
| | - Naoyuki Katayama
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
42
|
Bell RE, Golan T, Sheinboim D, Malcov H, Amar D, Salamon A, Liron T, Gelfman S, Gabet Y, Shamir R, Levy C. Enhancer methylation dynamics contribute to cancer plasticity and patient mortality. Genome Res 2016; 26:601-11. [PMID: 26907635 PMCID: PMC4864467 DOI: 10.1101/gr.197194.115] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 02/19/2016] [Indexed: 12/17/2022]
Abstract
During development, enhancers play pivotal roles in regulating gene expression programs; however, their involvement in cancer progression has not been fully characterized. We performed an integrative analysis of DNA methylation, RNA-seq, and small RNA-seq profiles from thousands of patients, including 25 diverse primary malignances and seven body sites of metastatic melanoma. We found that enhancers are consistently the most differentially methylated regions (DMR) as cancer progresses from normal to primary tumors and then to metastases, compared to other genomic features. Remarkably, identification of enhancer DMRs (eDMRs) enabled classification of primary tumors according to physiological organ systems, and in metastasis eDMRs are the most correlated with patient outcome. To further understand the eDMR role in cancer progression, we developed a model to predict genes and microRNAs that are regulated by enhancer and not promotor methylation, which shows high accuracy with chromatin architecture methods and was experimentally validated. Interestingly, among all metastatic melanoma eDMRs, the most correlated with patient survival were eDMRs that "switched" their methylation patterns back and forth between normal, primary, and metastases and target cancer drivers, e.g., KIT We further demonstrated that eDMR target genes were modulated in melanoma by the bone metastasis microenvironment, suggesting that eDMRs respond to microenvironmental cues in metastatic niches. Our findings that aberrant methylation in cancer cells mostly affects enhancers, which contribute to tumor progression and cancer cell plasticity, will facilitate development of epigenetic anticancer approaches.
Collapse
Affiliation(s)
- Rachel E Bell
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tamar Golan
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Danna Sheinboim
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Hagar Malcov
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - David Amar
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Avi Salamon
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tamar Liron
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Sahar Gelfman
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yankel Gabet
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ron Shamir
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Carmit Levy
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
43
|
Wang X, Li T, Wang W, Yuan W, Liu H, Cheng Y, Wang P, Zhang Y, Han W. Cytokine-like 1 Chemoattracts Monocytes/Macrophages via CCR2. THE JOURNAL OF IMMUNOLOGY 2016; 196:4090-9. [DOI: 10.4049/jimmunol.1501908] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 03/11/2016] [Indexed: 12/19/2022]
|
44
|
Abstract
Aspirin (acetylsalicylic acid) has become one of the most commonly used drugs, given its role as an analgesic, antipyretic and agent for cardiovascular prophylaxis. Several decades of research have provided considerable evidence demonstrating its potential for the prevention of cancer, particularly colorectal cancer. Broader clinical recommendations for aspirin-based chemoprevention strategies have recently been established; however, given the known hazards of long-term aspirin use, larger-scale adoption of an aspirin chemoprevention strategy is likely to require improved identification of individuals for whom the protective benefits outweigh the harms. Such a precision medicine approach may emerge through further clarification of aspirin's mechanism of action.
Collapse
Affiliation(s)
- David A Drew
- Massachusetts General Hospital and Harvard Medical School, Clinical and Translational Epidemiology Unit, 55 Fruit Street, Bartlett Ext. 9, Boston, Massachusetts 02114, USA
| | - Yin Cao
- Massachusetts General Hospital and Harvard Medical School, Clinical and Translational Epidemiology Unit, and Harvard T.H. Chan School of Public Health, Department of Nutrition, 55 Fruit Street, Bartlett Ext. 9, Boston, Massachusetts 02114, USA
| | - Andrew T Chan
- Massachusetts General Hospital and Harvard Medical School, Clinical and Translational Epidemiology Unit, Division of Gastroenterology, GRJ-825C, Boston, Massachusetts 02114, USA
| |
Collapse
|
45
|
Diaz-Lagares A, Mendez-Gonzalez J, Hervas D, Saigi M, Pajares MJ, Garcia D, Crujerias AB, Pio R, Montuenga LM, Zulueta J, Nadal E, Rosell A, Esteller M, Sandoval J. A Novel Epigenetic Signature for Early Diagnosis in Lung Cancer. Clin Cancer Res 2016; 22:3361-71. [DOI: 10.1158/1078-0432.ccr-15-2346] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/16/2016] [Indexed: 11/16/2022]
|
46
|
Lochovsky L, Zhang J, Fu Y, Khurana E, Gerstein M. LARVA: an integrative framework for large-scale analysis of recurrent variants in noncoding annotations. Nucleic Acids Res 2015; 43:8123-34. [PMID: 26304545 PMCID: PMC4787796 DOI: 10.1093/nar/gkv803] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 07/28/2015] [Indexed: 01/22/2023] Open
Abstract
In cancer research, background models for mutation rates have been extensively calibrated in coding regions, leading to the identification of many driver genes, recurrently mutated more than expected. Noncoding regions are also associated with disease; however, background models for them have not been investigated in as much detail. This is partially due to limited noncoding functional annotation. Also, great mutation heterogeneity and potential correlations between neighboring sites give rise to substantial overdispersion in mutation count, resulting in problematic background rate estimation. Here, we address these issues with a new computational framework called LARVA. It integrates variants with a comprehensive set of noncoding functional elements, modeling the mutation counts of the elements with a β-binomial distribution to handle overdispersion. LARVA, moreover, uses regional genomic features such as replication timing to better estimate local mutation rates and mutational hotspots. We demonstrate LARVA's effectiveness on 760 whole-genome tumor sequences, showing that it identifies well-known noncoding drivers, such as mutations in the TERT promoter. Furthermore, LARVA highlights several novel highly mutated regulatory sites that could potentially be noncoding drivers. We make LARVA available as a software tool and release our highly mutated annotations as an online resource (larva.gersteinlab.org).
Collapse
Affiliation(s)
- Lucas Lochovsky
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
| | - Jing Zhang
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
| | - Yao Fu
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
| | - Ekta Khurana
- Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10065, USA Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York 10065
| | - Mark Gerstein
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA Department of Computer Science, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
47
|
Deckers IAG, Schouten LJ, Van Neste L, van Vlodrop IJH, Soetekouw PMMB, Baldewijns MMLL, Jeschke J, Ahuja N, Herman JG, van den Brandt PA, van Engeland M. Promoter Methylation of CDO1 Identifies Clear-Cell Renal Cell Cancer Patients with Poor Survival Outcome. Clin Cancer Res 2015; 21:3492-500. [PMID: 25904753 PMCID: PMC4612631 DOI: 10.1158/1078-0432.ccr-14-2049] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 04/10/2015] [Indexed: 12/31/2022]
Abstract
PURPOSE In this era of molecular diagnostics, prediction of clear-cell renal cell cancer (ccRCC) survival requires optimization, as current prognostic markers fail to determine individual patient outcome. Epigenetic events are promising molecular markers. Promoter CpG island methylation of cysteine dioxygenase type 1 (CDO1), which was identified as prognostic marker for breast cancer, is studied as a potential marker for ccRCC survival. EXPERIMENTAL DESIGN We collected primary tissues of 365 ccRCC cases identified within the prospective Netherlands Cohort Study (NLCS). In this population-based series, CDO1 promoter methylation was observed in 124 of 324 (38.3%) patients with successful methylation-specific PCR analysis. Kaplan-Meier curves and Wilcoxon tests were used to evaluate 10-year ccRCC-specific survival. Cox regression analysis was used to obtain crude and multivariate HRs and 95% confidence intervals (CI). The relative prognostic value of multivariate models with and without CDO1 promoter methylation was compared using likelihood-ratio tests. RESULTS Patients with CDO1 promoter methylation have a significantly poorer survival than those without (Wilcoxon P = 0.006). Differences in survival were independent of other prognostic factors, including age and sex (HR, 1.66; 95% CI, 1.12-2.45) and TNM stage, tumor size, and Fuhrman grade (HR, 1.89; 95% CI, 1.25-2.85). Multivariate models performed better with than without CDO1 promoter methylation status (likelihood-ratio P = 0.003). Survival curves were validated in an independent series of 280 ccRCC cases from The Cancer Genome Atlas (TCGA; Wilcoxon P < 0.001). CONCLUSIONS CDO1 promoter methylation may not substitute common prognostic makers to predict ccRCC survival, but offers additional, relevant prognostic information, indicating that it might be a novel molecular marker to determine ccRCC prognosis.
Collapse
Affiliation(s)
- Ivette A G Deckers
- Department of Epidemiology, School for Oncology and Developmental Biology (GROW), Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Leo J Schouten
- Department of Epidemiology, School for Oncology and Developmental Biology (GROW), Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Leander Van Neste
- Department of Pathology, School for Oncology and Developmental Biology (GROW), Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Iris J H van Vlodrop
- Department of Pathology, School for Oncology and Developmental Biology (GROW), Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Patricia M M B Soetekouw
- Division of Medical Oncology, Department of Internal Medicine, School for Oncology and Developmental Biology (GROW), Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Marcella M L L Baldewijns
- Department of Pathology, School for Oncology and Developmental Biology (GROW), Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Jana Jeschke
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland. Laboratory of Cancer Epigenetics, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Nita Ahuja
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland. Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland. Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - James G Herman
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Piet A van den Brandt
- Department of Epidemiology, School for Oncology and Developmental Biology (GROW), Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Manon van Engeland
- Department of Pathology, School for Oncology and Developmental Biology (GROW), Maastricht University Medical Centre, Maastricht, the Netherlands.
| |
Collapse
|
48
|
Kirkegaard K, Villesen P, Jensen JM, Hindkjær JJ, Kølvraa S, Ingerslev HJ, Lykke-Hartmann K. Distinct differences in global gene expression profiles in non-implanted blastocysts and blastocysts resulting in live birth. Gene 2015; 571:212-20. [PMID: 26117173 DOI: 10.1016/j.gene.2015.06.057] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 06/16/2015] [Accepted: 06/22/2015] [Indexed: 10/23/2022]
Abstract
Results from animal models points towards the existence of a gene expression profile that is distinguishably different in viable embryos compared with non-viable embryos. Knowledge of human embryo transcripts is however limited, in particular with regard to how gene expression is related to clinical outcome. The purpose of the present study was therefore to determine the global gene expression profiles of human blastocysts. Next Generation Sequencing was used to identify genes that were differentially expressed in non-implanted embryos and embryos resulting in live birth. Three trophectoderm biopsies were obtained from morphologically high quality blastocysts resulting in live birth and three biopsies were obtained from non-implanting blastocysts of a comparable morphology. Total RNA was extracted from all samples followed by complete transcriptome sequencing. Using a set of filtering criteria, we obtained a list of 181 genes that were differentially expressed between trophectoderm biopsies from embryos resulting in either live birth or no implantation (negative hCG), respectively. We found that 37 of the 181 genes displayed significantly differential expression (p<0.05), e.g. EFNB1, CYTL1 and TEX26 and TESK1, MSL1 and EVI5 in trophectoderm biopsies associated with live birth and non-implanting, respectively. Out of the 181 genes, almost 80% (145 genes) were up-regulated in biopsies from un-implanted embryos, whereas only 20% (36 genes) showed an up-regulation in the samples from embryos resulting in live birth. Our findings suggest the presence of molecular differences visually undetectable between implanted and non-implanted embryos, and represent a proof of principle study.
Collapse
Affiliation(s)
- Kirstine Kirkegaard
- Centre for Preimplantation Genetic Diagnosis, The Fertility Clinic, Aarhus University Hospital, Skejby, Brendstrupgaardsvej 100, DK-8200, Aarhus N, Denmark.
| | - Palle Villesen
- Aarhus University, Bioinformatics Research Center (BIRC), C.F. Møllers Allé 8, DK-8000, Aarhus C, Denmark
| | - Jacob Malte Jensen
- Aarhus University, Bioinformatics Research Center (BIRC), C.F. Møllers Allé 8, DK-8000, Aarhus C, Denmark
| | - Johnny Juhl Hindkjær
- Centre for Preimplantation Genetic Diagnosis, The Fertility Clinic, Aarhus University Hospital, Skejby, Brendstrupgaardsvej 100, DK-8200, Aarhus N, Denmark
| | - Steen Kølvraa
- Department of Clinical Genetics, Vejle Hospital, DK-7100 Vejle, Denmark; Institute of Regional Health Services Research, University of Southern Denmark, DK-5000 Odense, Denmark
| | - Hans Jakob Ingerslev
- Centre for Preimplantation Genetic Diagnosis, The Fertility Clinic, Aarhus University Hospital, Skejby, Brendstrupgaardsvej 100, DK-8200, Aarhus N, Denmark; Aarhus University, Department of Clinical Medicine, Brendstrupgaardsvej 100, DK-8200, Aarhus N, Denmark
| | - Karin Lykke-Hartmann
- Aarhus University, Department of Biomedicine, Wilhelm Meyers Allé 4, DK-8000, Aarhus C, Denmark; Aarhus Institute of Advanced Studies, Aarhus University, Høegh-Guldbergs Gade 6B, DK-8000, Aarhus C, Denmark.
| |
Collapse
|
49
|
Epigenetic regulation of the novel tumor suppressor cysteine dioxygenase 1 in esophageal squamous cell carcinoma. Tumour Biol 2015; 36:7449-56. [PMID: 25903467 DOI: 10.1007/s13277-015-3443-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 04/08/2015] [Indexed: 01/10/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC), the most common subtype of esophageal cancer in East Asian countries, is still associated with a poor prognosis because of the high frequency of lymph node metastasis and invasion. In our previous study, we identified a novel methylation gene, cysteine dioxygenase 1 (CDO1) that is involved in the conversion of cysteine to cysteine sulfinate, and plays a key role in taurine biosynthesis. Decreased expression of CDO1 was observed in ESCC cell lines and tumors derived from patient tissues, and CDO1 silencing could be reversed by treatment with 5-aza-2'-deoxycytidine in six ESCC cell lines. Forced expression of CDO1 in three different ESCC cell lines, TE-4, TE-6, and TE-14, significantly decreased tumor cell growth, cell migration, invasion, and the ability of colony formation. Although CDO1 expression was not found to significantly correlate with survival in ESCC patients, our results suggest that methylation-regulated CDO1 may represent a functional tumor suppressor and a potentially valuable diagnostic biomarker for ESCC.
Collapse
|
50
|
Nan H, Hutter CM, Lin Y, Jacobs EJ, Ulrich CM, White E, Baron JA, Berndt SI, Brenner H, Butterbach K, Caan BJ, Campbell PT, Carlson CS, Casey G, Chang-Claude J, Chanock SJ, Cotterchio M, Duggan D, Figueiredo JC, Fuchs CS, Giovannucci EL, Gong J, Haile RW, Harrison TA, Hayes RB, Hoffmeister M, Hopper JL, Hudson TJ, Jenkins MA, Jiao S, Lindor NM, Lemire M, Le Marchand L, Newcomb PA, Ogino S, Pflugeisen BM, Potter JD, Qu C, Rosse SA, Rudolph A, Schoen RE, Schumacher FR, Seminara D, Slattery ML, Thibodeau SN, Thomas F, Thornquist M, Warnick GS, Zanke BW, Gauderman WJ, Peters U, Hsu L, Chan AT. Association of aspirin and NSAID use with risk of colorectal cancer according to genetic variants. JAMA 2015; 313:1133-42. [PMID: 25781442 PMCID: PMC4382867 DOI: 10.1001/jama.2015.1815] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
IMPORTANCE Use of aspirin and other nonsteroidal anti-inflammatory drugs (NSAIDs) is associated with lower risk of colorectal cancer. OBJECTIVE To identify common genetic markers that may confer differential benefit from aspirin or NSAID chemoprevention, we tested gene × environment interactions between regular use of aspirin and/or NSAIDs and single-nucleotide polymorphisms (SNPs) in relation to risk of colorectal cancer. DESIGN, SETTING, AND PARTICIPANTS Case-control study using data from 5 case-control and 5 cohort studies initiated between 1976 and 2003 across the United States, Canada, Australia, and Germany and including colorectal cancer cases (n=8634) and matched controls (n=8553) ascertained between 1976 and 2011. Participants were all of European descent. EXPOSURES Genome-wide SNP data and information on regular use of aspirin and/or NSAIDs and other risk factors. MAIN OUTCOMES AND MEASURES Colorectal cancer. RESULTS Regular use of aspirin and/or NSAIDs was associated with lower risk of colorectal cancer (prevalence, 28% vs 38%; odds ratio [OR], 0.69 [95% CI, 0.64-0.74]; P = 6.2 × 10(-28)) compared with nonregular use. In the conventional logistic regression analysis, the SNP rs2965667 at chromosome 12p12.3 near the MGST1 gene showed a genome-wide significant interaction with aspirin and/or NSAID use (P = 4.6 × 10(-9) for interaction). Aspirin and/or NSAID use was associated with a lower risk of colorectal cancer among individuals with rs2965667-TT genotype (prevalence, 28% vs 38%; OR, 0.66 [95% CI, 0.61-0.70]; P = 7.7 × 10(-33)) but with a higher risk among those with rare (4%) TA or AA genotypes (prevalence, 35% vs 29%; OR, 1.89 [95% CI, 1.27-2.81]; P = .002). In case-only interaction analysis, the SNP rs16973225 at chromosome 15q25.2 near the IL16 gene showed a genome-wide significant interaction with use of aspirin and/or NSAIDs (P = 8.2 × 10(-9) for interaction). Regular use was associated with a lower risk of colorectal cancer among individuals with rs16973225-AA genotype (prevalence, 28% vs 38%; OR, 0.66 [95% CI, 0.62-0.71]; P = 1.9 × 10(-30)) but was not associated with risk of colorectal cancer among those with less common (9%) AC or CC genotypes (prevalence, 36% vs 39%; OR, 0.97 [95% CI, 0.78-1.20]; P = .76). CONCLUSIONS AND RELEVANCE In this genome-wide investigation of gene × environment interactions, use of aspirin and/or NSAIDs was associated with lower risk of colorectal cancer, and this association differed according to genetic variation at 2 SNPs at chromosomes 12 and 15. Validation of these findings in additional populations may facilitate targeted colorectal cancer prevention strategies.
Collapse
Affiliation(s)
- Hongmei Nan
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, IN, USA
- Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN, USA
| | - Carolyn M. Hutter
- Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yi Lin
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Eric J. Jacobs
- Epidemiology Research Program, American Cancer Society, Atlanta, Georgia, USA
| | - Cornelia M. Ulrich
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Division of Preventive Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany
| | - Emily White
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Epidemiology, University of Washington School of Public Health, Seattle, Washington, USA
| | - John A. Baron
- Division of Gastroenterology and Hepatology, UNC School of Medicine, Chapel Hill, NC, USA
| | - Sonja I. Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK); Heidelberg, Germany
| | - Katja Butterbach
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bette J. Caan
- Division of Research, Kaiser Permanente Medical Care Program of Northern California, Oakland, CA, USA
| | - Peter T. Campbell
- Epidemiology Research Program, American Cancer Society, Atlanta, Georgia, USA
| | - Christopher S. Carlson
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Graham Casey
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Stephen J. Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michelle Cotterchio
- Prevention and Cancer Control, Cancer Care Ontario, Toronto, Ontario, Canada
| | - David Duggan
- Genetic Basis of Human Disease Division, Translational Genomics Research Institute (TGen), Phoenix, Arizona, USA
| | - Jane C. Figueiredo
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Charles S. Fuchs
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Edward L. Giovannucci
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jian Gong
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Robert W. Haile
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Tabitha A. Harrison
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Richard B. Hayes
- Division of Epidemiology, Department of Population Health, New York University School of Medicine, New York, NY, USA
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - John L. Hopper
- Melbourne School of Population Health, The University of Melbourne, VIC, Australia
| | - Thomas J. Hudson
- Department of Medical Biophysics, University of Toronto, Ontario, Canada
- Ontario Institute for Cancer Research, Ontario, Canada
| | - Mark A. Jenkins
- Melbourne School of Population Health, The University of Melbourne, VIC, Australia
| | - Shuo Jiao
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Noralane M. Lindor
- Department of Health Sciences Research, Mayo Clinic, Scottsdale, AZ, USA
| | | | - Loic Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Polly A. Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Shuji Ogino
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
| | - Bethann M. Pflugeisen
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - John D. Potter
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Centre for Public Health Research, Massey University, Wellington, NEW ZEALAND
| | - Conghui Qu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Stephanie A. Rosse
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Anja Rudolph
- Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Robert E. Schoen
- Department of Medicine and Epidemiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Fredrick R. Schumacher
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Daniela Seminara
- Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Martha L. Slattery
- Department of Internal Medicine, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | - Stephen N. Thibodeau
- Departments of Laboratory Medicine and Pathology and Laboratory Genetics, Mayo Clinic, Scottsdale, AZ, USA
| | - Fridtjof Thomas
- Division of Biostatistics and Epidemiology, Department of Preventive Medicine, The University of Tennessee Healthy Science Center, Memphis, TN, USA
| | - Mark Thornquist
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Greg S. Warnick
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Brent W. Zanke
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, USA
| | - W. James Gauderman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Epidemiology, University of Washington School of Public Health, Seattle, Washington, USA
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Andrew T. Chan
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|