1
|
Wages NA, Dillon PM, Portell CA, Slingluff CL, Petroni GR. Applications of the partial-order continual reassessment method in the early development of treatment combinations. Clin Trials 2024; 21:331-339. [PMID: 38554038 DOI: 10.1177/17407745241234634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2024]
Abstract
Combination therapy is increasingly being explored as a promising approach for improving cancer treatment outcomes. However, identifying effective dose combinations in early oncology drug development is challenging due to limited sample sizes in early-phase clinical trials. This task becomes even more complex when multiple agents are being escalated simultaneously, potentially leading to a loss of monotonic toxicity order with respect to the dose. Traditional single-agent trial designs are insufficient for this multi-dimensional problem, necessitating the development and implementation of dose-finding methods specifically designed for drug combinations. While, in practice, approaches to this problem have focused on preselecting combinations with a known toxicity order and applying single-agent designs, this limits the number of combinations considered and may miss promising dose combinations. In recent years, several novel designs have been proposed for exploring partially ordered drug combination spaces with the goal of identifying a maximum tolerated dose combination, based on safety, or an optimal dose combination, based on toxicity and efficacy. However, their implementation in clinical practice remains limited. In this article, we describe the application of the partial order continual reassessment method and its extensions for combination therapies in early-phase clinical trials. We present completed trials that use safety endpoints to identify maximum tolerated dose combinations and adaptively use both safety and efficacy endpoints to determine optimal treatment strategies. We discuss the effectiveness of the partial-order continual reassessment method and its extensions in identifying optimal treatment strategies and provide our experience with executing these novel adaptive designs in practice. By utilizing innovative dose-finding methods, researchers and clinicians can more effectively navigate the challenges of combination therapy development, ultimately improving patient outcomes in the treatment of cancer.
Collapse
Affiliation(s)
- Nolan A Wages
- Department of Biostatistics, School of Population Health, Virginia Commonwealth University, Richmond, VA, USA
| | - Patrick M Dillon
- Division of Hematology & Oncology, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Craig A Portell
- Division of Hematology & Oncology, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Craig L Slingluff
- Division of Surgical Oncology, Department of Surgery, University of Virginia, Charlottesville, VA, USA
| | - Gina R Petroni
- Division of Translational Research & Applied Statistics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
2
|
Chua ADW, Thaarun T, Yang H, Lee ARYB. Proteasome inhibitors in the treatment of nonsmall cell lung cancer: A systematic review of clinical evidence. Health Sci Rep 2023; 6:e1443. [PMID: 38028684 PMCID: PMC10643516 DOI: 10.1002/hsr2.1443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 12/01/2023] Open
Abstract
Background and Aims Nonsmall cell lung cancer accounts for over 85% of lung cancer incidences worldwide, and often has a poor prognosis. Proteasome inhibitors, such as bortezomib, have previously demonstrated evidence in preclinical and clinical models in the treatment of NSCLC both alone and as part of chemotherapeutic regimens. Methods Five databases were searched from inception to February 2023 to identify published clinical trial data and ongoing clinical trials on the use of proteasome inhibitors in treatment of NSCLC with a comprehensive search strategy. Results This review examines the clinical evidence from 21 completed and published phase I and II trials studying the use of bortezomib monotherapy and combination therapy in the treatment of NSCLC. Bortezomib/docetaxel combination resulted in longer median time-to-progression (TTP), median duration of response, median duration of disease control and median progression-free survival (PFS) than bortezomib monotherapy, with concurrent administration having greater 6-month PFS and median overall survival (OS) than sequential administration. Bortezomib/vorinostat with chemotherapy was well tolerated and effective. Bortezomib/gemcitabine/carboplatin, bortezomib/bevacizumab/carboplatin and bortezomib/paclitaxel/carboplatin combinations showed promising results and were of further investigational value. Conclusion Bortezomib showed some clinical promise in combination therapy but not monotherapy. It also demonstrated a manageable side effect profile. Combination regimens are of further investigation value in Phase II trials.
Collapse
Affiliation(s)
| | | | - Hui Yang
- Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | | |
Collapse
|
3
|
Zhang L, Wu M, Su R, Zhang D, Yang G. The efficacy and mechanism of proteasome inhibitors in solid tumor treatment. Recent Pat Anticancer Drug Discov 2021; 17:268-283. [PMID: 34856915 DOI: 10.2174/1574892816666211202154536] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/06/2021] [Accepted: 11/11/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The ubiquitin-proteasome system (UPS) is critical in cellular protein degradation and widely involved in the regulations of cancer hallmarks. Targeting the UPS pathway has emerged as a promising novel treatment in hematological malignancies and solid tumors. OBJECTIVE This review mainly focuses on the preclinical results of proteasome inhibitors in solid tumors. METHODS We analyzed the published articles associated with the anticancer results of proteasome inhibitors alone or combination chemotherapy in solid tumors. Important data presented in abstract form were also discussed in this review. RESULTS/CONCLUSION Proteasome inhibitors, such as bortezomib and carfilzomib, are highly effective in treating solid tumors. The anticancer efficacy is not limited to affect the proteasomal inhibition-associated signaling pathways but also widely involves the signaling pathways related to cell cycle, apoptosis, and epithelial-mesenchymal transition (EMT). In addition, proteasome inhibitors overcome the conventional chemo-resistance of standard chemotherapeutics by inhibiting signaling pathways, such as NF-κB or PI3K/Akt. Combination chemotherapy of proteasome inhibitors and standard chemotherapeutics are widely investigated in multiple relapsed or chemo-resistant solid tumor types, such as breast cancer and pancreatic cancer. The proteasome inhibitors re-sensitize the standard chemotherapeutic regimens and induce synergistic anticancer effects. The development of novel proteasome inhibitors and delivery systems also improves the proteasome inhibitors' anticancer efficacy in solid tumors. This review summarizes the current preclinical results of proteasome inhibitors in solid tumors and reveals the potential anticancer mechanisms.
Collapse
Affiliation(s)
- Lei Zhang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118. China
| | - Mengyang Wu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118. China
| | - Ruicong Su
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118. China
| | - Di Zhang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118. China
| | - Guilian Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118. China
| |
Collapse
|
4
|
Bajbouj K, Al-Ali A, Ramakrishnan RK, Saber-Ayad M, Hamid Q. Histone Modification in NSCLC: Molecular Mechanisms and Therapeutic Targets. Int J Mol Sci 2021; 22:ijms222111701. [PMID: 34769131 PMCID: PMC8584007 DOI: 10.3390/ijms222111701] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 12/17/2022] Open
Abstract
Lung cancer is the leading cause of cancer mortality in both genders, with non-small cell lung cancer (NSCLC) accounting for about 85% of all lung cancers. At the time of diagnosis, the tumour is usually locally advanced or metastatic, shaping a poor disease outcome. NSCLC includes adenocarcinoma, squamous cell carcinoma, and large cell lung carcinoma. Searching for novel therapeutic targets is mandated due to the modest effect of platinum-based therapy as well as the targeted therapies developed in the last decade. The latter is mainly due to the lack of mutation detection in around half of all NSCLC cases. New therapeutic modalities are also required to enhance the effect of immunotherapy in NSCLC. Identifying the molecular signature of NSCLC subtypes, including genetics and epigenetic variation, is crucial for selecting the appropriate therapy or combination of therapies. Epigenetic dysregulation has a key role in the tumourigenicity, tumour heterogeneity, and tumour resistance to conventional anti-cancer therapy. Epigenomic modulation is a potential therapeutic strategy in NSCLC that was suggested a long time ago and recently starting to attract further attention. Histone acetylation and deacetylation are the most frequently studied patterns of epigenetic modification. Several histone deacetylase (HDAC) inhibitors (HDIs), such as vorinostat and panobinostat, have shown promise in preclinical and clinical investigations on NSCLC. However, further research on HDIs in NSCLC is needed to assess their anti-tumour impact. Another modification, histone methylation, is one of the most well recognized patterns of histone modification. It can either promote or inhibit transcription at different gene loci, thus playing a rather complex role in lung cancer. Some histone methylation modifiers have demonstrated altered activities, suggesting their oncogenic or tumour-suppressive roles. In this review, patterns of histone modifications in NSCLC will be discussed, focusing on the molecular mechanisms of epigenetic modifications in tumour progression and metastasis, as well as in developing drug resistance. Then, we will explore the therapeutic targets emerging from studying the NSCLC epigenome, referring to the completed and ongoing clinical trials on those medications.
Collapse
Affiliation(s)
- Khuloud Bajbouj
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; (K.B.); (R.K.R.); (Q.H.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Abeer Al-Ali
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Rakhee K. Ramakrishnan
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; (K.B.); (R.K.R.); (Q.H.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Maha Saber-Ayad
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; (K.B.); (R.K.R.); (Q.H.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates;
- Faculty of Medicine, Cairo University, Cairo 11559, Egypt
- Correspondence: ; Tel.: +971-6-505-7219; Fax: +971-5-558-5879
| | - Qutayba Hamid
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; (K.B.); (R.K.R.); (Q.H.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates;
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
5
|
Brock K, Homer V, Soul G, Potter C, Chiuzan C, Lee S. Is more better? An analysis of toxicity and response outcomes from dose-finding clinical trials in cancer. BMC Cancer 2021; 21:777. [PMID: 34225682 PMCID: PMC8256624 DOI: 10.1186/s12885-021-08440-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 06/04/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The overwhelming majority of dose-escalation clinical trials use methods that seek a maximum tolerable dose, including rule-based methods like the 3+3, and model-based methods like CRM and EWOC. These methods assume that the incidences of efficacy and toxicity always increase as dose is increased. This assumption is widely accepted with cytotoxic therapies. In recent decades, however, the search for novel cancer treatments has broadened, increasingly focusing on inhibitors and antibodies. The rationale that higher doses are always associated with superior efficacy is less clear for these types of therapies. METHODS We extracted dose-level efficacy and toxicity outcomes from 115 manuscripts reporting dose-finding clinical trials in cancer between 2008 and 2014. We analysed the outcomes from each manuscript using flexible non-linear regression models to investigate the evidence supporting the monotonic efficacy and toxicity assumptions. RESULTS We found that the monotonic toxicity assumption was well-supported across most treatment classes and disease areas. In contrast, we found very little evidence supporting the monotonic efficacy assumption. CONCLUSIONS Our conclusion is that dose-escalation trials routinely use methods whose assumptions are violated by the outcomes observed. As a consequence, dose-finding trials risk recommending unjustifiably high doses that may be harmful to patients. We recommend that trialists consider experimental designs that allow toxicity and efficacy outcomes to jointly determine the doses given to patients and recommended for further study.
Collapse
Affiliation(s)
- Kristian Brock
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham, UK.
| | - Victoria Homer
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham, UK
| | - Gurjinder Soul
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Claire Potter
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham, UK
| | - Cody Chiuzan
- Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Shing Lee
- Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
6
|
Tan HW, Xu YM, Qin SH, Chen GF, Lau ATY. Epigenetic regulation of angiogenesis in lung cancer. J Cell Physiol 2021; 236:3194-3206. [PMID: 33078404 DOI: 10.1002/jcp.30104] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/08/2020] [Accepted: 09/30/2020] [Indexed: 02/05/2023]
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide, in which angiogenesis is highly required for lung cancer cell growth and metastasis. Genetic regulation of this multistep process is being studied extensively, however, relatively less is known about the epigenetic regulation of angiogenesis in lung cancer. Several epigenetic alterations contribute to regulating angiogenesis, such as epimodifications of DNA, posttranslational modification of histones, and expression of noncoding RNAs. Here, we review the current knowledge of the epigenetic regulation of angiogenesis and discuss the potential clinical applications of epigenetic-based anticancer therapy in lung cancer. Overall, epigenetic-based therapy will likely emerge as a prominent approach to treat lung cancer in the future.
Collapse
Affiliation(s)
- Heng Wee Tan
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Yan-Ming Xu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - San-Hai Qin
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Guo-Feng Chen
- Department of Hepatobiliary Surgery, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, People's Republic of China
| | - Andy T Y Lau
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| |
Collapse
|
7
|
Kim A, Suzuki Y, Nagasaki Y. Molecular design of a high-performance polymeric carrier for delivery of a variety of boronic acid-containing drugs. Acta Biomater 2021; 121:554-565. [PMID: 33321218 DOI: 10.1016/j.actbio.2020.12.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/03/2020] [Accepted: 12/08/2020] [Indexed: 12/19/2022]
Abstract
Because of their many useful and unique properties, boronic acids are well suited for biomedical applications such as antitumor chemotherapy and boron neutron capture therapy (BNCT). Bortezomib, a boronic acid derivative, has drawn a lot of attention as a potent proteasome inhibitor. Nevertheless, because of rapid excretion and off-target effects, the clinical translation of boronic acid-containing drugs is limited. To this end, we employed a polymeric carrier to stably encapsulate boronic acid-containing drugs and achieve superior pharmacokinetics with an on-target drug release capability. Accordingly, to construct a supramolecular polymeric nanoparticle, we took advantage of the facile, stable, and pH-sensitive conjugation between boronic acids and diethanolamine-installed polymeric carriers. We demonstrated the feasibility of our molecular design by generating and applying bortezomib-loaded nanoparticles to a subcutaneous tumor-bearing mouse model. Stable encapsulation and pH-sensitive release of bortezomib facilitated antitumor efficacy and alleviated hepatotoxicity. We also verified the versatility of our approach through biological evaluations of the nanoparticles encapsulating benzo(b)thiophene-2-boronic acid, phenylboronic acid, and p-phenylene-diboronic acid.
Collapse
|
8
|
Lee SM, Wages NA, Goodman KA, Lockhart AC. Designing Dose-Finding Phase I Clinical Trials: Top 10 Questions That Should Be Discussed With Your Statistician. JCO Precis Oncol 2021; 5:317-324. [PMID: 34151131 DOI: 10.1200/po.20.00379] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/08/2020] [Accepted: 12/21/2020] [Indexed: 01/22/2023] Open
Abstract
In recent years, the landscape in clinical trial development has changed to involve many molecularly targeted agents, immunotherapies, or radiotherapy, as a single agent or in combination. Given their different mechanisms of action and lengths of administration, these agents have different toxicity profiles, which has resulted in numerous challenges when applying traditional designs such as the 3 + 3 design in dose-finding clinical trials. Novel methods have been proposed to address these design challenges such as combinations of therapies or late-onset toxicities. However, their design and implementation require close collaboration between clinicians and statisticians to ensure that the appropriate design is selected to address the aims of the study and that the design assumptions are pertinent to the study drug. The goal of this paper is to provide guidelines for appropriate questions that should be considered early in the design stage to facilitate the interactions between clinical and statistical teams and to improve the design of dose-finding clinical trials for novel anticancer agents.
Collapse
Affiliation(s)
- Shing M Lee
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY
| | - Nolan A Wages
- Division of Translational Research and Applied Statistics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA
| | - Karyn A Goodman
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - A Craig Lockhart
- Division of Medical Oncology, University of Miami, Sylvester Comprehensive Cancer Center, Miami, FL
| |
Collapse
|
9
|
Wages NA, Reed DR, Keng MK, Conaway MR, Petroni GR. Adapting isotonic dose-finding to a dynamic set of drug combinations with application to a phase I leukemia trial. Clin Trials 2021; 18:314-323. [PMID: 33426919 DOI: 10.1177/1740774520983484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND/AIMS This article describes the proposed design of a phase I study evaluating the safety of ceramide nanoliposome and vinblastine among an initial set of 19 possible dose combinations in patients with relapsed/refractory acute myeloid leukemia and patients with untreated acute myeloid leukemia who are not candidates for intensive induction chemotherapy. METHODS Extensive collaboration between statisticians and clinical investigators revealed the need to incorporate several adaptive features into the design, including the flexibility of adding or eliminating certain dose combinations based on safety criteria applied to multiple dose pairs. During the design stage, additional dose levels of vinblastine were added, increasing the dimension of the drug combination space and thus the complexity of the problem. Increased complexity made application of existing drug combination dose-finding methods unsuitable in their current form. RESULTS Our solution to these challenges was to adapt a method based on isotonic regression to meet the research objectives of the study. Application of this adapted method is described herein, and a simulation study of the design's operating characteristics is conducted. CONCLUSION The aim of this article is to bring to light examples of novel design applications as a means of augmenting the implementation of innovative designs in the future and to demonstrate the flexibility of adaptive designs in satisfying changing design conditions.
Collapse
Affiliation(s)
- Nolan A Wages
- Department of Public Health Sciences, Division of Translational Research & Applied Statistics, University of Virginia, Charlottesville, VA, USA
| | - Daniel R Reed
- Division of Hematology/Oncology, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Michael K Keng
- Division of Hematology/Oncology, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Mark R Conaway
- Department of Public Health Sciences, Division of Translational Research & Applied Statistics, University of Virginia, Charlottesville, VA, USA
| | - Gina R Petroni
- Department of Public Health Sciences, Division of Translational Research & Applied Statistics, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
10
|
Kulka LAM, Fangmann PV, Panfilova D, Olzscha H. Impact of HDAC Inhibitors on Protein Quality Control Systems: Consequences for Precision Medicine in Malignant Disease. Front Cell Dev Biol 2020; 8:425. [PMID: 32582706 PMCID: PMC7291789 DOI: 10.3389/fcell.2020.00425] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 05/07/2020] [Indexed: 12/21/2022] Open
Abstract
Lysine acetylation is one of the major posttranslational modifications (PTM) in human cells and thus needs to be tightly regulated by the writers of this process, the histone acetyl transferases (HAT), and the erasers, the histone deacetylases (HDAC). Acetylation plays a crucial role in cell signaling, cell cycle control and in epigenetic regulation of gene expression. Bromodomain (BRD)-containing proteins are readers of the acetylation mark, enabling them to transduce the modification signal. HDAC inhibitors (HDACi) have been proven to be efficient in hematologic malignancies with four of them being approved by the FDA. However, the mechanisms by which HDACi exert their cytotoxicity are only partly resolved. It is likely that HDACi alter the acetylation pattern of cytoplasmic proteins, contributing to their anti-cancer potential. Recently, it has been demonstrated that various protein quality control (PQC) systems are involved in recognizing the altered acetylation pattern upon HDACi treatment. In particular, molecular chaperones, the ubiquitin proteasome system (UPS) and autophagy are able to sense the structurally changed proteins, providing additional targets. Recent clinical studies of novel HDACi have proven that proteins of the UPS may serve as biomarkers for stratifying patient groups under HDACi regimes. In addition, members of the PQC systems have been shown to modify the epigenetic readout of HDACi treated cells and alter proteostasis in the nucleus, thus contributing to changing gene expression profiles. Bromodomain (BRD)-containing proteins seem to play a potent role in transducing the signaling process initiating apoptosis, and many clinical trials are under way to test BRD inhibitors. Finally, it has been demonstrated that HDACi treatment leads to protein misfolding and aggregation, which may explain the effect of panobinostat, the latest FDA approved HDACi, in combination with the proteasome inhibitor bortezomib in multiple myeloma. Therefore, proteins of these PQC systems provide valuable targets for precision medicine in cancer. In this review, we give an overview of the impact of HDACi treatment on PQC systems and their implications for malignant disease. We exemplify the development of novel HDACi and how affected proteins belonging to PQC can be used to determine molecular signatures and utilized in precision medicine.
Collapse
Affiliation(s)
- Linda Anna Michelle Kulka
- Medical Faculty, Institute of Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Pia-Victoria Fangmann
- Medical Faculty, Institute of Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Diana Panfilova
- Medical Faculty, Institute of Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Heidi Olzscha
- Medical Faculty, Institute of Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
11
|
Oduah EI, Grossman SR. Harnessing the vulnerabilities of p53 mutants in lung cancer - Focusing on the proteasome: a new trick for an old foe? Cancer Biol Ther 2020; 21:293-302. [PMID: 32041464 PMCID: PMC7515531 DOI: 10.1080/15384047.2019.1702403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 11/02/2019] [Accepted: 12/01/2019] [Indexed: 12/25/2022] Open
Abstract
Gain-of-function (GOF) p53 mutations occur commonly in human cancer and lead to both loss of p53 tumor suppressor function and acquisition of aggressive cancer phenotypes. The oncogenicity of GOF mutant p53 is highly related to its abnormal protein stability relative to wild type p53, and overall stoichiometric excess. We provide an overview of the mechanisms of dysfunction and abnormal stability of GOF p53 specifically in lung cancer, the leading cause of cancer-related mortality, where, depending on histologic subtype, 33-90% of tumors exhibit GOF p53 mutations. As a distinguishing feature and oncogenic mechanism in lung and many other cancers, GOF p53 represents an appealing and cancer-specific therapeutic target. We review preclinical evidence demonstrating paradoxical depletion of GOF p53 by proteasome inhibitors, as well as preclinical and clinical studies of proteasome inhibition in lung cancer. Finally, we provide a rationale for a reexamination of proteasome inhibition in lung cancer, focusing on tumors expressing GOF p53 alleles.
Collapse
Affiliation(s)
- Eziafa I. Oduah
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Steven R. Grossman
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
- VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
12
|
Wages NA, Conaway MR. Revisiting isotonic phase I design in the era of model-assisted dose-finding. Clin Trials 2018; 15:524-529. [PMID: 30101616 DOI: 10.1177/1740774518792258] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Background/aims In the conduct of phase I trials, the limited use of innovative model-based designs in practice has led to an introduction of a class of "model-assisted" designs with the aim of effectively balancing the trade-off between design simplicity and performance. Prior to the recent surge of these designs, methods that allocated patients to doses based on isotonic toxicity probability estimates were proposed. Like model-assisted methods, isotonic designs allow investigators to avoid difficulties associated with pre-trial parametric specifications of model-based designs. The aim of this work is to take a fresh look at an isotonic design in light of the current landscape of model-assisted methods. Methods The isotonic phase I method of Conaway, Dunbar, and Peddada was proposed in 2004 and has been regarded primarily as a design for dose-finding in drug combinations. It has largely been overlooked in the single-agent setting. Given its strong simulation performance in application to more complex dose-finding problems, such as drug combinations and patient heterogeneity, as well as the recent development of user-friendly software to accompany the method, we take a fresh look at this design and compare it to a current model-assisted method. We generated operating characteristics of the Conaway-Dunbar-Peddada method using a new web application developed for simulating and implementing the design and compared it to the recently proposed Keyboard design that is based on toxicity probability intervals. Results The Conaway-Dunbar-Peddada method has better performance in terms of accuracy of dose recommendation and safety in patient allocation in 17 of 20 scenarios considered. The Conaway-Dunbar-Peddada method also allocated fewer patients to doses above the maximum tolerated dose than the Keyboard method in many of scenarios studied. Overall, the performance of the Conaway-Dunbar-Peddada method is strong when compared to the Keyboard method, making it a viable simple alternative to the model-assisted methods developed in recent years. Conclusion The Conaway-Dunbar-Peddada method does not rely on the specification and fitting of a parametric model for the entire dose-toxicity curve to estimate toxicity probabilities as other model-based designs do. It relies on a similar set of pre-trial specifications to toxicity probability interval-based methods, yet unlike model-assisted methods, it is able to borrow information across all dose levels, increasing its efficiency. We hope this concise study of the Conaway-Dunbar-Peddada method, and the availability of user-friendly software, will augment its use in practice.
Collapse
Affiliation(s)
- Nolan A Wages
- Division of Translational Research & Applied Statistics, Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Mark R Conaway
- Division of Translational Research & Applied Statistics, Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
13
|
Chromatin dynamics at the core of kidney fibrosis. Matrix Biol 2018; 68-69:194-229. [DOI: 10.1016/j.matbio.2018.02.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 02/16/2018] [Accepted: 02/17/2018] [Indexed: 02/06/2023]
|
14
|
Roeten MSF, Cloos J, Jansen G. Positioning of proteasome inhibitors in therapy of solid malignancies. Cancer Chemother Pharmacol 2018; 81:227-243. [PMID: 29184971 PMCID: PMC5778165 DOI: 10.1007/s00280-017-3489-0] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 11/19/2017] [Indexed: 12/13/2022]
Abstract
Targeting of the protein degradation pathway, in particular, the ubiquitin-proteasome system, has emerged as an attractive novel cancer chemotherapeutic modality. Although proteasome inhibitors have been most successfully applied in the treatment of hematological malignancies, they also received continuing interest for the treatment of solid tumors. In this review, we summarize the current positioning of proteasome inhibitors in the treatment of common solid malignancies (e.g., lung, colon, pancreas, breast, and head and neck cancer), addressing topics of their mechanism(s) of action, predictive factors and molecular mechanisms of resistance.
Collapse
Affiliation(s)
- Margot S F Roeten
- Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Jacqueline Cloos
- Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands.
- Department of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands.
| | - Gerrit Jansen
- Amsterdam Rheumatology and Immunology Center, Location VUmc, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Cho JH, Oezkan F, Koenig M, Otterson GA, Herman JG, He K. Epigenetic Therapeutics and Their Impact in Immunotherapy of Lung Cancer. CURRENT PHARMACOLOGY REPORTS 2017; 3:360-373. [PMID: 29503796 PMCID: PMC5831502 DOI: 10.1007/s40495-017-0110-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Lung cancer is the leading cause of cancer-related death in the United States and worldwide. Novel therapeutic developments are critically necessary to improve outcomes for this disease. Aberrant epigenetic change plays an important role in lung cancer development and progression. Therefore, drugs targeting the epigenome are being investigated in the treatment of lung cancer. Monotherapy of epigenetic therapeutics such as DNA methyltransferase inhibitors (DNMTi) and histone deacetylase inhibitors (HDACi) have so far not shown any apparent benefit while one of the clinical trials with the combinations of DNMTi and HDACi showed a small positive signal for treating lung cancer. Combinations of DNMTi and HDACi with chemotherapies have some efficacy but are often limited by increased toxicities. Preclinical data and clinical trial results suggest that combining epigenetic therapeutics with targeted therapies might potentially improve outcomes in lung cancer patients. Furthermore, several clinical studies suggest that the HDACi vorinostat could be used as a radiosensitizer in lung cancer patients receiving radiation therapy. Immune checkpoint blockade therapies are revolutionizing lung cancer management. However, only a minority of lung cancer patients experience long-lasting benefits from immunotherapy. The role of epigenetic reprogramming in boosting the effects of immunotherapy is an area of active investigation. Preclinical studies and early clinical trial results support this approach which may improve lung cancer treatment, with potentially prolonged survival and tolerable toxicity. In this review, we discuss the current status of epigenetic therapeutics and their combination with other antineoplastic therapies, including novel immunotherapies, in lung cancer management.
Collapse
Affiliation(s)
- Ju Hwan Cho
- Arthur G. James Cancer Hospital Comprehensive Cancer Center, The
Ohio State University, Columbus, Ohio, USA
| | - Filiz Oezkan
- Arthur G. James Cancer Hospital Comprehensive Cancer Center, The
Ohio State University, Columbus, Ohio, USA
- Department of Interventional Pneumology, Ruhrlandklinik, West German
Lung Center, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Michael Koenig
- Arthur G. James Cancer Hospital Comprehensive Cancer Center, The
Ohio State University, Columbus, Ohio, USA
| | - Gregory A. Otterson
- Arthur G. James Cancer Hospital Comprehensive Cancer Center, The
Ohio State University, Columbus, Ohio, USA
| | - James Gordon Herman
- Department of Medicine, Division of Hematology/Oncology, University
of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kai He
- Arthur G. James Cancer Hospital Comprehensive Cancer Center, The
Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
16
|
Love SB, Brown S, Weir CJ, Harbron C, Yap C, Gaschler-Markefski B, Matcham J, Caffrey L, McKevitt C, Clive S, Craddock C, Spicer J, Cornelius V. Embracing model-based designs for dose-finding trials. Br J Cancer 2017; 117:332-339. [PMID: 28664918 PMCID: PMC5537496 DOI: 10.1038/bjc.2017.186] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/27/2017] [Accepted: 05/31/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Dose-finding trials are essential to drug development as they establish recommended doses for later-phase testing. We aim to motivate wider use of model-based designs for dose finding, such as the continual reassessment method (CRM). METHODS We carried out a literature review of dose-finding designs and conducted a survey to identify perceived barriers to their implementation. RESULTS We describe the benefits of model-based designs (flexibility, superior operating characteristics, extended scope), their current uptake, and existing resources. The most prominent barriers to implementation of a model-based design were lack of suitable training, chief investigators' preference for algorithm-based designs (e.g., 3+3), and limited resources for study design before funding. We use a real-world example to illustrate how these barriers can be overcome. CONCLUSIONS There is overwhelming evidence for the benefits of CRM. Many leading pharmaceutical companies routinely implement model-based designs. Our analysis identified barriers for academic statisticians and clinical academics in mirroring the progress industry has made in trial design. Unified support from funders, regulators, and journal editors could result in more accurate doses for later-phase testing, and increase the efficiency and success of clinical drug development. We give recommendations for increasing the uptake of model-based designs for dose-finding trials in academia.
Collapse
Affiliation(s)
- Sharon B Love
- Oxford Clinical Trials Research Unit, Centre for Statistics in Medicine, NDORMS, University of Oxford, Botnar Research Centre, Windmill Road, Oxford OX3 7LD, UK
| | - Sarah Brown
- Clinical Trials Research Unit, Leeds Institute of Clinical Trials Research, University of Leeds, Leeds LS2 9JT, UK
| | - Christopher J Weir
- Edinburgh Clinical Trials Unit, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh Medical School, Teviot Place, Edinburgh EH8 9AG, UK
| | - Chris Harbron
- Roche Pharmaceuticals, 6 Falcon Way, Shire Park, Welwyn Garden City AL7 1TW, UK
| | - Christina Yap
- Cancer Research UK Clinical Trials Unit, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Birgit Gaschler-Markefski
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biostatistics and Data Sciences, Birkendorfer Strasse 65, Biberach an der Riss 88400, Germany
| | - James Matcham
- AstraZeneca, DaVinci Building, Melbourn Science Park, Royston SG8 6HB, UK
| | - Louise Caffrey
- School of Social Work and Social Policy, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Christopher McKevitt
- Division of Health and Social Care Research, Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Sally Clive
- Edinburgh Cancer Centre, Western General Hospital, Edinburgh EX4 2XU, UK
| | - Charlie Craddock
- Centre for Clinical Haematology, Haematology – University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital, Queen Elizabeth Medical Centre, Birmingham B15 2TH, UK
| | - James Spicer
- Division of Cancer Studies, Bermondsey Wing, Guy’s Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Victoria Cornelius
- Imperial Clinical Trials Unit, Imperial College London, Stadium House, 68 Wood Lane, London W12 7RH, UK
| |
Collapse
|
17
|
Chiuzan C, Shtaynberger J, Manji GA, Duong JK, Schwartz GK, Ivanova A, Lee SM. Dose-finding designs for trials of molecularly targeted agents and immunotherapies. J Biopharm Stat 2017; 27:477-494. [PMID: 28166468 DOI: 10.1080/10543406.2017.1289952] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Recently, there has been a surge of early phase trials of molecularly targeted agents (MTAs) and immunotherapies. These new therapies have different toxicity profiles compared to cytotoxic therapies. MTAs can benefit from new trial designs that allow inclusion of low-grade toxicities, late-onset toxicities, addition of an efficacy endpoint, and flexibility in the specification of a target toxicity probability. To study the degree of adoption of these methods, we conducted a Web of Science search of articles published between 2008 and 2014 that describe phase 1 oncology trials. Trials were categorized based on the dose-finding design used and the type of drug studied. Out of 1,712 dose-finding trials that met our criteria, 1,591 (92.9%) utilized a rule-based design, and 92 (5.4%; range 2.3% in 2009 to 9.7% in 2014) utilized a model-based or novel design. Over half of the trials tested an MTA or immunotherapy. Among the MTA and immunotherapy trials, 5.8% used model-based methods, compared to 3.9% and 8.3% of the chemotherapy or radiotherapy trials, respectively. While the percentage of trials using novel dose-finding designs has tripled since 2007, the adoption of these designs continues to remain low.
Collapse
Affiliation(s)
- Cody Chiuzan
- a Department of Biostatistics, Mailman School of Public Health , Columbia University , New York , New York , USA
| | - Jonathan Shtaynberger
- a Department of Biostatistics, Mailman School of Public Health , Columbia University , New York , New York , USA
| | - Gulam A Manji
- b Division of Hematology and Oncology, Department of Medicine , Columbia University , New York , New York , USA
| | - Jimmy K Duong
- a Department of Biostatistics, Mailman School of Public Health , Columbia University , New York , New York , USA
| | - Gary K Schwartz
- b Division of Hematology and Oncology, Department of Medicine , Columbia University , New York , New York , USA
| | - Anastasia Ivanova
- c Department of Biostatistics , UNC at Chapel Hill , Chapel Hill , North Carolina , USA
| | - Shing M Lee
- a Department of Biostatistics, Mailman School of Public Health , Columbia University , New York , New York , USA
| |
Collapse
|
18
|
Schiffmann I, Greve G, Jung M, Lübbert M. Epigenetic therapy approaches in non-small cell lung cancer: Update and perspectives. Epigenetics 2016; 11:858-870. [PMID: 27846368 PMCID: PMC5193491 DOI: 10.1080/15592294.2016.1237345] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/30/2016] [Accepted: 09/12/2016] [Indexed: 10/20/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) still constitutes the most common cancer-related cause of death worldwide. All efforts to introduce suitable treatment options using chemotherapeutics or targeted therapies have, up to this point, failed to exhibit a substantial effect on the 5-year-survival rate. The involvement of epigenetic alterations in the evolution of different cancers has led to the development of epigenetics-based therapies, mainly targeting DNA methyltransferases (DNMTs) and histone-modifying enzymes. So far, their greatest success stories have been registered in hematologic neoplasias. As the effects of epigenetic single agent treatment of solid tumors have been limited, the investigative focus now lies on combination therapies of epigenetically active agents with conventional chemotherapy, immunotherapy, or kinase inhibitors. This review includes a short overview of the most important preclinical approaches as well as an extensive discussion of clinical trials using epigenetic combination therapies in NSCLC, including ongoing trials. Thus, we are providing an overview of what lies ahead in the field of epigenetic combinatory therapies of NSCLC in the coming years.
Collapse
Affiliation(s)
- Insa Schiffmann
- Division of Hematology, Oncology and Stem Cell Transplantation, University of Freiburg, Medical Center, Freiburg, Germany
- University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Gabriele Greve
- Division of Hematology, Oncology and Stem Cell Transplantation, University of Freiburg, Medical Center, Freiburg, Germany
- University of Freiburg, Faculty of Biology, Freiburg, Germany
| | - Manfred Jung
- University of Freiburg, Institute of Pharmaceutical Sciences, Freiburg, Germany
- German Cancer Consortium (DKTK), Freiburg, Germany
| | - Michael Lübbert
- Division of Hematology, Oncology and Stem Cell Transplantation, University of Freiburg, Medical Center, Freiburg, Germany
- University of Freiburg, Faculty of Medicine, Freiburg, Germany
- German Cancer Consortium (DKTK), Freiburg, Germany
| |
Collapse
|
19
|
Di Paolo A, Del Re M, Petrini I, Altavilla G, Danesi R. Recent advances in epigenomics in NSCLC: real-time detection and therapeutic implications. Epigenomics 2016; 8:1151-67. [PMID: 27479016 DOI: 10.2217/epi.16.10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
NSCLC is an aggressive disease with one of the poorer prognosis among cancers. The disappointing response to chemotherapy drives the search for genetic biomarkers aimed at both attaining an earlier diagnosis and choosing the most appropriate chemotherapy. In this scenario, epigenomic markers, such as DNA methylation, histone acetylation and the expression of noncoding RNAs, have been demonstrated to be reliable for the stratification of NSCLC patients. Newest techniques with increased sensitivity and the isolation of nucleic acids from plasma may allow an early diagnosis and then monitoring the efficacy over time. However, prospective confirmatory studies are still lacking. This article presents an overview of the epigenetic markers evaluated in NSCLC and discusses the role of their real-time detection in the clinical management of the disease.
Collapse
Affiliation(s)
- Antonello Di Paolo
- Department of Clinical & Experimental Medicine, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| | - Marzia Del Re
- Department of Clinical & Experimental Medicine, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| | - Iacopo Petrini
- Department of Clinical & Experimental Medicine, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| | - Giuseppe Altavilla
- Department of Human Pathology, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy
| | - Romano Danesi
- Department of Clinical & Experimental Medicine, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| |
Collapse
|
20
|
Petroni GR, Wages NA, Paux G, Dubois F. Implementation of adaptive methods in early-phase clinical trials. Stat Med 2016; 36:215-224. [PMID: 26928191 DOI: 10.1002/sim.6910] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 12/15/2015] [Accepted: 01/27/2016] [Indexed: 12/29/2022]
Abstract
There has been constant development of novel statistical methods in the design of early-phase clinical trials since the introduction of model-based designs, yet the traditional or modified 3+3 algorithmic design remains the most widely used approach in dose-finding studies. Research has shown the limitations of this traditional design compared with more innovative approaches yet the use of these model-based designs remains infrequent. This can be attributed to several causes including a poor understanding from clinicians and reviewers into how the designs work, and how best to evaluate the appropriateness of a proposed design. These barriers are likely to be enhanced in the coming years as the recent paradigm of drug development involves a shift to more complex dose-finding problems. This article reviews relevant information that should be included in clinical trial protocols to aid in the acceptance and approval of novel methods. We provide practical guidance for implementing these efficient designs with the aim of augmenting a broader transition from algorithmic to adaptive model-guided designs. In addition we highlight issues to consider in the actual implementation of a trial once approval is obtained. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Gina R Petroni
- Division of Translational Research and Applied Statistics, Department of Public Health Sciences, The University of Virginia, Charlottesville, VA, 22908, U.S.A
| | - Nolan A Wages
- Division of Translational Research and Applied Statistics, Department of Public Health Sciences, The University of Virginia, Charlottesville, VA, 22908, U.S.A
| | - Gautier Paux
- Oncology Clinical Biostatistics, Institut de Recherches Internationales Servier (IRIS), Suresnes Cedex, 92284, France
| | - Frédéric Dubois
- Oncology Clinical Biostatistics, Institut de Recherches Internationales Servier (IRIS), Suresnes Cedex, 92284, France
| |
Collapse
|
21
|
Young JH, Peyton M, Seok Kim H, McMillan E, Minna JD, White MA, Marcotte EM. Computational discovery of pathway-level genetic vulnerabilities in non-small-cell lung cancer. Bioinformatics 2016; 32:1373-9. [PMID: 26755624 PMCID: PMC4848405 DOI: 10.1093/bioinformatics/btw010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 01/07/2016] [Indexed: 01/09/2023] Open
Abstract
Motivation: Novel approaches are needed for discovery of targeted therapies for non-small-cell lung cancer (NSCLC) that are specific to certain patients. Whole genome RNAi screening of lung cancer cell lines provides an ideal source for determining candidate drug targets. Results: Unsupervised learning algorithms uncovered patterns of differential vulnerability across lung cancer cell lines to loss of functionally related genes. Such genetic vulnerabilities represent candidate targets for therapy and are found to be involved in splicing, translation and protein folding. In particular, many NSCLC cell lines were especially sensitive to the loss of components of the LSm2-8 protein complex or the CCT/TRiC chaperonin. Different vulnerabilities were also found for different cell line subgroups. Furthermore, the predicted vulnerability of a single adenocarcinoma cell line to loss of the Wnt pathway was experimentally validated with screening of small-molecule Wnt inhibitors against an extensive cell line panel. Availability and implementation: The clustering algorithm is implemented in Python and is freely available at https://bitbucket.org/youngjh/nsclc_paper. Contact:marcotte@icmb.utexas.edu or jon.young@utexas.edu Supplementary information:Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jonathan H Young
- Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX, USA, Center for Systems and Synthetic Biology and Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Michael Peyton
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hyun Seok Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea, and
| | - Elizabeth McMillan
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John D Minna
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michael A White
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Edward M Marcotte
- Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX, USA, Center for Systems and Synthetic Biology and Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
22
|
Greve G, Schiffmann I, Pfeifer D, Pantic M, Schüler J, Lübbert M. The pan-HDAC inhibitor panobinostat acts as a sensitizer for erlotinib activity in EGFR-mutated and -wildtype non-small cell lung cancer cells. BMC Cancer 2015; 15:947. [PMID: 26675484 PMCID: PMC4682236 DOI: 10.1186/s12885-015-1967-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 12/01/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The receptor tyrosine kinase (RTK) EGFR is overexpressed and mutated in NSCLC. These mutations can be targeted by RTK inhibitors (TKIs) such as erlotinib. Chromatin-modifying agents may offer a novel therapeutic approach by sensitizing tumor cells to TKIs. METHODS The NSCLC cell lines HCC827 (EGFR mutant, adenocarcinoma), A549 (EGFR wt, adenocarcinoma) and NCI-H460 (EGFR wt, large cell carcinoma) were analyzed by SNP6.0 array. Changes in proliferation after panobinostat (LBH-589, PS) and erlotinib treatment were quantified by WST-1 assay and apoptosis by Annexin V/7-AAD flow cytometry. Abundance of target proteins and histone marks (acH3, H3K4me1/2/3) was determined by immunoblotting. RESULTS As expected, the EGFR wt cell lines A549 and NCI-H460 were quite insensitive to the growth-inhibitory effect of erlotinib (IC50 70-100 μM), compared to HCC827 (IC50<0.02 μM). All three cell lines were sensitive to PS treatment (IC50: HCC827 10 nM, A549 20 nM and NCI-H460 35 nM). The combination of both drugs further reduced proliferation in HCC827 and in A549, but not in NCI-H460. PS alone induced differentiation and expression of p21WAF1/CIP1 and p53 and decreased CHK1 in all three cell lines, with almost no further effect when combined with erlotinib. In contrast, combination treatment additively decreased pEGFR, pERK and pAKT in A549. Both drugs synergistically induced acH3 in the adenocarcinoma lines. Surprisingly, we also observed induction of H3K4 methylation marks after erlotinib treatment in HCC827 and in A549 that was further enhanced by combination with PS. CONCLUSION PS sensitized lung adenocarcinoma cells to the antiproliferative effects of erlotinib. In these cell lines, the drug combination also had a robust, not previously described effect on histone H3 acetylation and H3K4 methylation.
Collapse
Affiliation(s)
- Gabriele Greve
- University of Freiburg Medical Center, Freiburg, Germany. .,University of Freiburg, Faculty of Biology, Freiburg, Germany.
| | - Insa Schiffmann
- University of Freiburg Medical Center, Freiburg, Germany. .,University of Freiburg, Faculty of Medicine, Freiburg, Germany.
| | | | - Milena Pantic
- University of Freiburg Medical Center, Freiburg, Germany.
| | - Julia Schüler
- Department for in vivo Tumorbiology, Oncotest GmbH, Freiburg, Germany.
| | - Michael Lübbert
- University of Freiburg Medical Center, Freiburg, Germany. .,DKTK, German Consortium for Translational Cancer Research, Freiburg, Germany.
| |
Collapse
|
23
|
Nervi C, De Marinis E, Codacci-Pisanelli G. Epigenetic treatment of solid tumours: a review of clinical trials. Clin Epigenetics 2015; 7:127. [PMID: 26692909 PMCID: PMC4676165 DOI: 10.1186/s13148-015-0157-2] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 11/10/2015] [Indexed: 12/12/2022] Open
Abstract
Epigenetic treatment has been approved by regulatory agencies for haematological malignancies. The success observed in cutaneous lymphomas represents a proof of principle that similar results may be obtained in solid tumours. Several agents that interfere with DNA methylation-demethylation and histones acetylation/deacetylation have been studied, and some (such as azacytidine, decitabine, valproic acid and vorinostat) are already in clinical use. The aim of this review is to provide a brief overview of the molecular events underlying the antitumour effects of epigenetic treatments and to summarise data available on clinical trials that tested the use of epigenetic agents against solid tumours. We not only list results but also try to indicate how the proper evaluation of this treatment might result in a better selection of effective agents and in a more rapid development. We divided compounds in demethylating agents and HDAC inhibitors. For each class, we report the antitumour activity and the toxic side effects. When available, we describe plasma pharmacokinetics and pharmacodynamic evaluation in tumours and in surrogate tissues (generally white blood cells). Epigenetic treatment is a reality in haematological malignancies and deserves adequate attention in solid tumours. A careful consideration of available clinical data however is required for faster drug development and possibly to re-evaluate some molecules that were perhaps discarded too early.
Collapse
Affiliation(s)
- Clara Nervi
- Department of Medical and Surgical Sciences and Biotechnology, University of Rome "la Sapienza", Corso della Repubblica, 97, 04100 Latina, Italy
| | - Elisabetta De Marinis
- Department of Medical and Surgical Sciences and Biotechnology, University of Rome "la Sapienza", Corso della Repubblica, 97, 04100 Latina, Italy
| | - Giovanni Codacci-Pisanelli
- Department of Medical and Surgical Sciences and Biotechnology, University of Rome "la Sapienza", Corso della Repubblica, 97, 04100 Latina, Italy
| |
Collapse
|
24
|
Hirakawa A, Wages NA, Sato H, Matsui S. A comparative study of adaptive dose-finding designs for phase I oncology trials of combination therapies. Stat Med 2015; 34:3194-213. [PMID: 25974405 PMCID: PMC4806394 DOI: 10.1002/sim.6533] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 03/10/2015] [Accepted: 04/29/2015] [Indexed: 11/06/2022]
Abstract
Little is known about the relative performance of competing model-based dose-finding methods for combination phase I trials. In this study, we focused on five model-based dose-finding methods that have been recently developed. We compared the recommendation rates for true maximum-tolerated dose combinations (MTDCs) and over-dose combinations among these methods under 16 scenarios for 3 × 3, 4 × 4, 2 × 4, and 3 × 5 dose combination matrices. We found that performance of the model-based dose-finding methods varied depending on (1) whether the dose combination matrix is square or not; (2) whether the true MTDCs exist within the same group along the diagonals of the dose combination matrix; and (3) the number of true MTDCs. We discuss the details of the operating characteristics and the advantages and disadvantages of the five methods compared.
Collapse
Affiliation(s)
- Akihiro Hirakawa
- Center for Advanced Medicine and Clinical Research, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Nolan A Wages
- Department of Public Health Sciences, University of Virginia, Charlottesville, 22904, Virginia, U.S.A
| | - Hiroyuki Sato
- Biostatistics Group, Office of New Drug V, Pharmaceuticals and Medical Devices Agency, Tokyo, 100-0013, Japan
| | - Shigeyuki Matsui
- Department of Biostatistics, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| |
Collapse
|
25
|
Fasan O, Boland P, Kropf P, Issa JJ. Epigenetics and Epigenetic Therapy of Cancer. TARGETED THERAPY IN TRANSLATIONAL CANCER RESEARCH 2015:72-79. [DOI: 10.1002/9781118468678.ch7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
26
|
Grigoreva TA, Tribulovich VG, Garabadzhiu AV, Melino G, Barlev NA. The 26S proteasome is a multifaceted target for anti-cancer therapies. Oncotarget 2015; 6:24733-49. [PMID: 26295307 PMCID: PMC4694792 DOI: 10.18632/oncotarget.4619] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 07/10/2015] [Indexed: 12/30/2022] Open
Abstract
Proteasomes play a critical role in the fate of proteins that are involved in major cellular processes, including signal transduction, gene expression, cell cycle, replication, differentiation, immune response, cellular response to stress, etc. In contrast to non-specific degradation by lysosomes, proteasomes are highly selective and destroy only the proteins that are covalently labelled with small proteins, called ubiquitins. Importantly, many diseases, including neurodegenerative diseases and cancers, are intimately connected to the activity of proteasomes making them an important pharmacological target. Currently, the vast majority of inhibitors are aimed at blunting the proteolytic activities of proteasomes. However, recent achievements in solving structures of proteasomes at very high resolution provided opportunities to design new classes of small molecules that target other physiologically-important enzymatic activities of proteasomes, including the de-ubiquitinating one. This review attempts to catalog the information available to date about novel classes of proteasome inhibitors that may have important pharmacological ramifications.
Collapse
Affiliation(s)
- Tatyana A Grigoreva
- St. Petersburg State Technological Institute (Technical University), St. Petersburng, Russia
| | | | | | - Gerry Melino
- St. Petersburg State Technological Institute (Technical University), St. Petersburng, Russia
- University of Rome Tor Vergata, Roma, Italy
| | | |
Collapse
|
27
|
Wages NA, Ivanova A, Marchenko O. Practical designs for Phase I combination studies in oncology. J Biopharm Stat 2015; 26:150-66. [PMID: 26379085 DOI: 10.1080/10543406.2015.1092029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Phase I trials evaluating the safety of multidrug combinations are becoming more common in oncology. Despite the emergence of novel methodology in the area, it is rare that innovative approaches are used in practice. In this article, we review three methods for Phase I combination studies that are easy to understand and straightforward to implement. We demonstrate the operating characteristics of the designs through illustration in a single trial, as well as through extensive simulation studies, with the aim of increasing the use of novel approaches in Phase I combination studies. Design specifications and software capabilities are also discussed.
Collapse
Affiliation(s)
- Nolan A Wages
- a Division of Translational Research & Applied Statistics, Department of Public Health Sciences , University of Virginia , Charlottesville , Virginia , USA
| | - Anastasia Ivanova
- b Department of Biostatistics , The University of North Carolina at Chapel Hill , Chapel Hill , North Carolina , USA
| | - Olga Marchenko
- c Quantitative Decision Strategies and Analytics, Advisory Services, Quintiles Inc. , Durham , North Carolina , USA
| |
Collapse
|
28
|
Targeting Chromatin-Mediated Transcriptional Control of Gene Expression in Non-Small Cell Lung Cancer Therapy: Preclinical Rationale and Clinical Results. Drugs 2015; 75:1757-71. [DOI: 10.1007/s40265-015-0461-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
29
|
Riviere MK, Le Tourneau C, Paoletti X, Dubois F, Zohar S. Designs of drug-combination phase I trials in oncology: a systematic review of the literature. Ann Oncol 2015; 26:669-674. [DOI: 10.1093/annonc/mdu516] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
30
|
Obrist F, Manic G, Kroemer G, Vitale I, Galluzzi L. Trial Watch: Proteasomal inhibitors for anticancer therapy. Mol Cell Oncol 2015; 2:e974463. [PMID: 27308423 PMCID: PMC4904962 DOI: 10.4161/23723556.2014.974463] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 09/15/2014] [Accepted: 09/17/2014] [Indexed: 01/12/2023]
Abstract
The so-called "ubiquitin-proteasome system" (UPS) is a multicomponent molecular apparatus that catalyzes the covalent attachment of several copies of the small protein ubiquitin to other proteins that are generally (but not always) destined to proteasomal degradation. This enzymatic cascade is crucial for the maintenance of intracellular protein homeostasis (both in physiological conditions and in the course of adaptive stress responses), and regulates a wide array of signaling pathways. In line with this notion, defects in the UPS have been associated with aging as well as with several pathological conditions including cardiac, neurodegenerative, and neoplastic disorders. As transformed cells often experience a constant state of stress (as a result of the hyperactivation of oncogenic signaling pathways and/or adverse microenvironmental conditions), their survival and proliferation are highly dependent on the integrity of the UPS. This rationale has driven an intense wave of preclinical and clinical investigation culminating in 2003 with the approval of the proteasomal inhibitor bortezomib by the US Food and Drug Administration for use in multiple myeloma patients. Another proteasomal inhibitor, carfilzomib, is now licensed by international regulatory agencies for use in multiple myeloma patients, and the approved indications for bortezomib have been extended to mantle cell lymphoma. This said, the clinical activity of bortezomib and carfilzomib is often limited by off-target effects, innate/acquired resistance, and the absence of validated predictive biomarkers. Moreover, the antineoplastic activity of proteasome inhibitors against solid tumors is poor. In this Trial Watch we discuss the contribution of the UPS to oncogenesis and tumor progression and summarize the design and/or results of recent clinical studies evaluating the therapeutic profile of proteasome inhibitors in cancer patients.
Collapse
Affiliation(s)
- Florine Obrist
- Université Paris-Sud/Paris XI; Le Kremlin-Bicêtre, France
- INSERM, U1138; Paris, France
- Equipe 11 labelisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
| | | | - Guido Kroemer
- INSERM, U1138; Paris, France
- Equipe 11 labelisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers; Paris, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou; Paris, France
- Metabolomics and Cell Biology Platforms; Gustave Roussy Cancer Campus; Villejuif, France
| | - Ilio Vitale
- Regina Elena National Cancer Institute; Rome, Italy
- Department of Biology, University of Rome “Tor Vergata”
| | - Lorenzo Galluzzi
- INSERM, U1138; Paris, France
- Equipe 11 labelisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
| |
Collapse
|
31
|
Wu Q, Cheng Z, Zhu J, Xu W, Peng X, Chen C, Li W, Wang F, Cao L, Yi X, Wu Z, Li J, Fan P. Suberoylanilide hydroxamic acid treatment reveals crosstalks among proteome, ubiquitylome and acetylome in non-small cell lung cancer A549 cell line. Sci Rep 2015; 5:9520. [PMID: 25825284 PMCID: PMC4379480 DOI: 10.1038/srep09520] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 03/03/2015] [Indexed: 12/31/2022] Open
Abstract
Suberoylanilide hydroxamic acid (SAHA) is a well-known histone deacetylase (HDAC) inhibitor and has been used as practical therapy for breast cancer and non-small cell lung cancer (NSCLC). It is previously demonstrated that SAHA treatment could extensively change the profile of acetylome and proteome in cancer cells. However, little is known about the impact of SAHA on other protein modifications and the crosstalks among different modifications and proteome, hindering the deep understanding of SAHA-mediated cancer therapy. In this work, by using SILAC technique, antibody-based affinity enrichment and high-resolution LC-MS/MS analysis, we investigated quantitative proteome, acetylome and ubiquitylome as well as crosstalks among the three datasets in A549 cells toward SAHA treatment. In total, 2968 proteins, 1099 acetylation sites and 1012 ubiquitination sites were quantified in response to SAHA treatment, respectively. With the aid of intensive bioinformatics, we revealed that the proteome and ubiquitylome were negatively related upon SAHA treatment. Moreover, the impact of SAHA on acetylome resulted in 258 up-regulated and 99 down-regulated acetylation sites at the threshold of 1.5 folds. Finally, we identified 55 common sites with both acetylation and ubiquitination, among which ubiquitination level in 43 sites (78.2%) was positive related to acetylation level.
Collapse
Affiliation(s)
- Quan Wu
- Central Laboratory of Medical Research Centre, Affiliated Provincial Hospital, Anhui Medical University, Hefei, 230001, China
| | - Zhongyi Cheng
- Institute for Advanced Study of Translational Medicine, Tongji University, Shanghai, 200092, China
| | - Jun Zhu
- Jingjie PTM Biolab (Hangzhou) Co. Ltd, Hangzhou 310018, China
| | - Weiqing Xu
- Central Laboratory of Medical Research Centre, Affiliated Provincial Hospital, Anhui Medical University, Hefei, 230001, China
| | - Xiaojun Peng
- Jingjie PTM Biolab (Hangzhou) Co. Ltd, Hangzhou 310018, China
| | - Chuangbin Chen
- Jingjie PTM Biolab (Hangzhou) Co. Ltd, Hangzhou 310018, China
| | - Wenting Li
- Central Laboratory of Medical Research Centre, Affiliated Provincial Hospital, Anhui Medical University, Hefei, 230001, China
| | - Fengsong Wang
- School of Life science, Anhui Medical University, Hefei, 230032, China
| | - Lejie Cao
- Department of Respiration, Affiliated Provincial Hospital, Anhui Medical University, Hefei, 230001, China
| | - Xingling Yi
- Jingjie PTM Biolab (Hangzhou) Co. Ltd, Hangzhou 310018, China
| | - Zhiwei Wu
- Central Laboratory of Medical Research Centre, Affiliated Provincial Hospital, Anhui Medical University, Hefei, 230001, China
| | - Jing Li
- Central Laboratory of Medical Research Centre, Affiliated Provincial Hospital, Anhui Medical University, Hefei, 230001, China
| | - Pingsheng Fan
- Department of Oncology, Affiliated Provincial Hospital, Anhui Medical University, Hefei, 230001, China
| |
Collapse
|
32
|
Wamsley JJ, Kumar M, Allison DF, Clift SH, Holzknecht CM, Szymura SJ, Hoang SA, Xu X, Moskaluk CA, Jones DR, Bekiranov S, Mayo MW. Activin upregulation by NF-κB is required to maintain mesenchymal features of cancer stem-like cells in non-small cell lung cancer. Cancer Res 2014; 75:426-35. [PMID: 25432175 DOI: 10.1158/0008-5472.can-13-2702] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Soluble growth factors and cytokines within the tumor microenvironment aid in the induction of the epithelial-to-mesenchymal transition (EMT). Although EMT promotes the development of cancer-initiating cells (CIC), cellular mechanisms by which cancer cells maintain mesenchymal phenotypes remain poorly understood. Work presented here indicates that induction of EMT stimulates non-small cell lung cancer (NSCLC) to secrete soluble factors that function in an autocrine fashion. Using gene expression profiling of all annotated and predicted secreted gene products, we find that NF-κB activity is required to upregulate INHBA/Activin, a morphogen in the TGFβ superfamily. INHBA is capable of inducing and maintaining mesenchymal phenotypes, including the expression of EMT master-switch regulators and self-renewal factors that sustain CIC phenotypes and promote lung metastasis. Our work demonstrates that INHBA mRNA and protein expression are commonly elevated in primary human NSCLC and provide evidence that INHBA is a critical autocrine factor that maintains mesenchymal properties of CICs to promote metastasis in NSCLC.
Collapse
Affiliation(s)
- J Jacob Wamsley
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia
| | - Manish Kumar
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia
| | - David F Allison
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia
| | - Sheena H Clift
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia
| | - Caitlyn M Holzknecht
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia
| | - Szymon J Szymura
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia
| | - Stephen A Hoang
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia
| | - Xiaojiang Xu
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia
| | | | - David R Jones
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia. Department of Thoracic Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Stefan Bekiranov
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia
| | - Marty W Mayo
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|
33
|
Azzoli CG, Pisters KM. Neoadjuvant Chemotherapy for Resectable Non-Small Cell Lung Cancer. Lung Cancer 2014. [DOI: 10.1002/9781118468791.ch19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
34
|
Maciag AE, Holland RJ, Kim Y, Kumari V, Luthers C, Sehareen WS, Biswas D, Morris NL, Ji X, Anderson LM, Saavedra JE, Keefer LK. Nitric oxide (NO) releasing poly ADP-ribose polymerase 1 (PARP-1) inhibitors targeted to glutathione S-transferase P1-overexpressing cancer cells. J Med Chem 2014; 57:2292-302. [PMID: 24521039 PMCID: PMC3983374 DOI: 10.1021/jm401550d] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Indexed: 11/29/2022]
Abstract
We report the antitumor effects of nitric oxide (NO) releasing derivatives of the PARP-1 inhibitor olaparib (1). Compound 5b was prepared by coupling the carboxyl group of 3b and the free amino group of arylated diazeniumdiolated piperazine 4. Analogue 5a has the same structure except that the F is replaced by H. Compound 13 is the same as 5b except that a Me2N-N(O)═NO- group was added para and ortho to the nitro groups of the dinitrophenyl ring. The resulting prodrugs are activated by glutathione in a reaction accelerated by glutathione S-transferase P1 (GSTP1), an enzyme frequently overexpressed in cancers. This metabolism generates NO plus a PARP-1 inhibitor simultaneously, consuming reducing equivalents, leading to DNA damage concomitant with inhibition of DNA repair, and in the case of 13 inducing cross-linking glutathionylation of proteins. Compounds 5b and 13 reduced the growth rates of A549 human lung adenocarcinoma xenografts with no evidence of systemic toxicity.
Collapse
Affiliation(s)
- Anna E. Maciag
- Chemical
Biology Laboratory, Leidos Biomedical Research,
Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Ryan J. Holland
- Chemical
Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Youseung Kim
- Chemical
Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Vandana Kumari
- Macromolecular
Crystallography Laboratory, National Cancer
Institute, Frederick, Maryland 21702, United
States
| | - Christina
E. Luthers
- Chemical
Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Waheed S. Sehareen
- Chemical
Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Debanjan Biswas
- Chemical
Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Nicole L. Morris
- Laboratory
Animal Sciences Program, Leidos Biomedical
Research, Inc., Frederick National Laboratory for Cancer
Research, Frederick, Maryland 21702, United States
| | - Xinhua Ji
- Macromolecular
Crystallography Laboratory, National Cancer
Institute, Frederick, Maryland 21702, United
States
| | - Lucy M. Anderson
- Chemical
Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Joseph E. Saavedra
- Chemical
Biology Laboratory, Leidos Biomedical Research,
Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Larry K. Keefer
- Chemical
Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
35
|
Roca H, Pande M, Huo JS, Hernandez J, Cavalcoli JD, Pienta KJ, McEachin RC. A bioinformatics approach reveals novel interactions of the OVOL transcription factors in the regulation of epithelial - mesenchymal cell reprogramming and cancer progression. BMC SYSTEMS BIOLOGY 2014; 8:29. [PMID: 24612742 PMCID: PMC4008156 DOI: 10.1186/1752-0509-8-29] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 03/03/2014] [Indexed: 01/10/2023]
Abstract
Background Mesenchymal to Epithelial Transition (MET) plasticity is critical to cancer progression, and we recently showed that the OVOL transcription factors (TFs) are critical regulators of MET. Results of that work also posed the hypothesis that the OVOLs impact MET in a range of cancers. We now test this hypothesis by developing a model, OVOL Induced MET (OI-MET), and sub-model (OI-MET-TF), to characterize differential gene expression in MET common to prostate cancer (PC) and breast cancer (BC). Results In the OI-MET model, we identified 739 genes differentially expressed in both the PC and BC models. For this gene set, we found significant enrichment of annotation for BC, PC, cancer, and MET, as well as regulation of gene expression by AP1, STAT1, STAT3, and NFKB1. Focusing on the target genes for these four TFs plus the OVOLs, we produced the OI-MET-TF sub-model, which shows even greater enrichment for these annotations, plus significant evidence of cooperation among these five TFs. Based on known gene/drug interactions, we prioritized targets in the OI-MET-TF network for follow-on analysis, emphasizing the clinical relevance of this work. Reflecting these results back to the OI-MET model, we found that binding motifs for the TF pair AP1/MYC are more frequent than expected and that the AP1/MYC pair is significantly enriched in binding in cancer models, relative to non-cancer models, in these promoters. This effect is seen in both MET models (solid tumors) and in non-MET models (leukemia). These results are consistent with our hypothesis that the OVOLs impact cancer susceptibility by regulating MET, and extend the hypothesis to include mechanisms not specific to MET. Conclusions We find significant evidence of the OVOL, AP1, STAT1, STAT3, and NFKB1 TFs having important roles in MET, and more broadly in cancer. We prioritize known gene/drug targets for follow-up in the clinic, and we show that the AP1/MYC TF pair is a strong candidate for intervention.
Collapse
Affiliation(s)
| | | | | | | | | | - Kenneth J Pienta
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
| | | |
Collapse
|
36
|
Ree AH, Saelen MG, Kalanxhi E, Østensen IHG, Schee K, Røe K, Abrahamsen TW, Dueland S, Flatmark K. Biomarkers of histone deacetylase inhibitor activity in a phase 1 combined-modality study with radiotherapy. PLoS One 2014; 9:e89750. [PMID: 24587009 PMCID: PMC3934935 DOI: 10.1371/journal.pone.0089750] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 01/22/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Following the demonstration that histone deacetylase inhibitors enhanced experimental radiation-induced clonogenic suppression, the Pelvic Radiation and Vorinostat (PRAVO) phase 1 study, combining fractionated radiotherapy with daily vorinostat for pelvic carcinoma, was designed to evaluate both clinical and novel biomarker endpoints, the latter relating to pharmacodynamic indicators of vorinostat action in clinical radiotherapy. PATIENTS AND METHODS Potential biomarkers of vorinostat radiosensitizing action, not simultaneously manifesting molecular perturbations elicited by the radiation itself, were explored by gene expression array analysis of study patients' peripheral blood mononuclear cells (PBMC), sampled at baseline (T0) and on-treatment two and 24 hours (T2 and T24) after the patients had received vorinostat. RESULTS This strategy revealed 1,600 array probes that were common for the comparisons T2 versus T0 and T24 versus T2 across all of the patients, and furthermore, that no significantly differential expression was observed between the T0 and T24 groups. Functional annotation analysis of the array data showed that a significant number of identified genes were implicated in gene regulation, the cell cycle, and chromatin biology. Gene expression was validated both in patients' PBMC and in vorinostat-treated human carcinoma xenograft models, and transient repression of MYC was consistently observed. CONCLUSION Within the design of the PRAVO study, all of the identified genes showed rapid and transient induction or repression and therefore, in principle, fulfilled the requirement of being pharmacodynamic biomarkers of vorinostat action in fractionated radiotherapy, possibly underscoring the role of MYC in this therapeutic setting.
Collapse
Affiliation(s)
- Anne Hansen Ree
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- * E-mail:
| | - Marie Grøn Saelen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Tumor Biology, Oslo University Hospital – Norwegian Radium Hospital, Oslo, Norway
| | - Erta Kalanxhi
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway
| | - Ingrid H. G. Østensen
- Department of Genes and Environment, Norwegian Institute of Public Health, Oslo, Norway
| | - Kristina Schee
- Department of Tumor Biology, Oslo University Hospital – Norwegian Radium Hospital, Oslo, Norway
| | - Kathrine Røe
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway
| | - Torveig Weum Abrahamsen
- Department of Tumor Biology, Oslo University Hospital – Norwegian Radium Hospital, Oslo, Norway
| | - Svein Dueland
- Department of Oncology, Oslo University Hospital – Norwegian Radium Hospital, Oslo, Norway
| | - Kjersti Flatmark
- Department of Tumor Biology, Oslo University Hospital – Norwegian Radium Hospital, Oslo, Norway
- Department of Gastroenterological Surgery, Oslo University Hospital – Norwegian Radium Hospital, Oslo, Norway
| |
Collapse
|
37
|
Zhang X, Li W, Wang C, Leng X, Lian S, Feng J, Li J, Wang H. Inhibition of autophagy enhances apoptosis induced by proteasome inhibitor bortezomib in human glioblastoma U87 and U251 cells. Mol Cell Biochem 2014; 385:265-75. [PMID: 24104452 PMCID: PMC3840293 DOI: 10.1007/s11010-013-1835-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 09/26/2013] [Indexed: 01/09/2023]
Abstract
Glioblastoma is the most aggressive cerebral gliomas. Despite advances in therapies, the prognosis is still very poor. Therefore, novel therapeutic strategies are required. As a proteasome inhibitor, bortezomib has shown its efficacy as an active antitumor agent against a variety of tumors. However, inhibition of proteasome activity leads to cell death and also induces cell autophagy, and due to the dual roles of autophagy in the survival and death of tumor cells, the effect of inhibition of autophagy on glioblastoma cells remains to be explored. We therefore assessed whether bortezomib is capable of inducing autophagy, and investigated the antitumor effect of bortezomib combined with autophagy inhibitors on human glioblastoma U251 and U87 cells. Cell viability was measured by MTT assay. The expressions of autophagy and apoptosis-related proteins were determined by Western blot analysis. U251 and U87 cells proliferation was inhibited in a dose-dependent manner. Both apoptosis and autophagy induced by bortezomib were observed in human glioblastoma U87 and U251 cells. However, when U251 and U87 cells were co-treated with bortezomib and autophagy inhibitors 3-MA or Atg7 siRNA, the autophagy inhibitors blocked the autophagy in the cells and resulted in a further inhibition of cell proliferation and a further increase in cell apoptosis as compared with that treated with bortezomib alone. These findings indicated that combination of bortezomib and autophagy inhibitors may shed new light on glioblastoma treatment.
Collapse
Affiliation(s)
- Xudong Zhang
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, 130033 Jilin China
| | - Weiming Li
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, 130033 Jilin China
| | - Chunlan Wang
- Jilin Academy of Traditional Chinese Medicine Hospital of Jilin Province, Changchun, 130033 Jilin China
| | - Xiangyang Leng
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, 130033 Jilin China
| | - Shulin Lian
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, 130033 Jilin China
| | - Jingbin Feng
- The People’s Hospital of Sanya City Hainan Province, Sanya, 572000 Hainan China
| | - Jinliang Li
- The Yong Plastic Surgery Clinic, Shuangliao, 136200 Jilin China
| | - Hailiang Wang
- The Second Clinical Hospital of Jilin University, Changchun, 130033 Jilin China
| |
Collapse
|
38
|
Wu Q, Xu W, Cao L, Li X, He T, Wu Z, Li W. SAHA treatment reveals the link between histone lysine acetylation and proteome in nonsmall cell lung cancer A549 Cells. J Proteome Res 2013; 12:4064-73. [PMID: 23909948 DOI: 10.1021/pr4004079] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Suberoylanilide hydroxamic acid (SAHA) is a well-known pan HDAC inhibitor, and its clinical application (Vorinostat) has been demonstrated to treat nonsmall cell lung cancer (NSCLS). Nevertheless, the impact of SAHA treatment on histone lysine acetylation and proteome in NSCLS cells still need further elucidate. In NSCLS A549 cells, by using stable isotope labeling for cell culture (SILAC)-based quantitative proteomics, biochemistry assay, and bioinformatic analysis, here we for the first time comprehensively identified and quantified histone lysine acetylation in A549 cells toward SAHA treatment. Despite the fact that SAHA treatment significantly increased histone lysine acetylation in specific sites, unexpectedly, some important "histone markers" showed markedly decreased acetylation level. Further quantitative proteome studies showed that among totally quantifiable 2818 nonredundant proteins, 1355 proteins were with increased level and 1463 with decreased level in response to SAHA treatment. Bioinformatic analysis further revealed that those quantifiable proteins were mainly involved in multiple biological functions and metabolic and enzyme-regulated pathways as well as protein complexes. By establishing the link between histone modification and whole proteome in response to SAHA treatment in NSCLS cells, this study therefore may deepen our understanding of HDAC inhibitor-mediated cancer therapeutics.
Collapse
Affiliation(s)
- Quan Wu
- Central Laboratory, Affiliated Provincial Hospital, Anhui Medical University, Hefei, China.
| | | | | | | | | | | | | |
Collapse
|
39
|
Hoang T, Campbell TC, Zhang C, Kim K, Kolesar JM, Oettel KR, Blank JH, Robinson EG, Ahuja HG, Kirschling RJ, Johnson PH, Huie MS, Wims ME, Larson MM, Hernan HR, Traynor AM. Vorinostat and bortezomib as third-line therapy in patients with advanced non-small cell lung cancer: a Wisconsin Oncology Network Phase II study. Invest New Drugs 2013; 32:195-9. [PMID: 23728919 DOI: 10.1007/s10637-013-9980-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Accepted: 05/13/2013] [Indexed: 10/26/2022]
Abstract
INTRODUCTION The primary objective of this phase II trial was to evaluate the efficacy and tolerability of vorinostat and bortezomib as third-line therapy in advanced non-small cell lung cancer (NSCLC) patients. METHODS Eligibility criteria included recurrent/metastatic NSCLC, having received 2 prior systemic regimens, and performance status 0-2. Patients took vorinostat 400 mg PO daily days 1-14 and bortezomib 1.3 mg/m2 IV day 1, 4, 8 and 11 in a 21-day cycle. Primary endpoint was 3-month progression free survival (3m-PFS), with a goal of at least 40 % of patients being free of progression at that time point. This study followed a two-stage minimax design. RESULTS Eighteen patients were enrolled in the first stage. All patients had two prior lines of treatment. Patients received a median of two treatment cycles (range: 1-6) on study. There were no anti-tumor responses; stable disease was observed in 5 patients (27.8 %). Median PFS was 1.5 months, 3m-PFS rate 11.1 %, and median overall survival 4.7 months. The most common grade 3/4 toxicities were thrombocytopenia and fatigue. Two patients who had baseline taxane-related grade 1 peripheral neuropathy developed grade 3 neuropathy. The study was closed at its first interim analysis for lack of efficacy. CONCLUSIONS Bortezomib and vorinostat displayed minimal anti-tumor activity as third-line therapy in NSCLC. We do not recommend this regimen for further investigation in unselected patients.
Collapse
Affiliation(s)
- Tien Hoang
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Liu SV, Fabbri M, Gitlitz BJ, Laird-Offringa IA. Epigenetic therapy in lung cancer. Front Oncol 2013; 3:135. [PMID: 23755372 PMCID: PMC3667274 DOI: 10.3389/fonc.2013.00135] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 05/13/2013] [Indexed: 12/21/2022] Open
Abstract
Epigenetic deregulation of gene function has been strongly implicated in carcinogenesis and is one of the mechanisms contributing to the development of lung cancer. The inherent reversibility of epigenetic alterations makes them viable therapeutic targets. Here, we review the therapeutic implications of epigenetic changes in lung cancer, and recent advances in therapeutic strategies targeting DNA methylation and histone acetylation.
Collapse
Affiliation(s)
- Stephen V Liu
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California , Los Angeles, CA , USA
| | | | | | | |
Collapse
|