1
|
Lee EM, Srinivasan S, Purvine SO, Fiedler TL, Leiser OP, Proll SC, Minot SS, Deatherage Kaiser BL, Fredricks DN. Optimizing metaproteomics database construction: lessons from a study of the vaginal microbiome. mSystems 2023; 8:e0067822. [PMID: 37350639 PMCID: PMC10469846 DOI: 10.1128/msystems.00678-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 04/06/2023] [Indexed: 06/24/2023] Open
Abstract
Metaproteomics, a method for untargeted, high-throughput identification of proteins in complex samples, provides functional information about microbial communities and can tie functions to specific taxa. Metaproteomics often generates less data than other omics techniques, but analytical workflows can be improved to increase usable data in metaproteomic outputs. Identification of peptides in the metaproteomic analysis is performed by comparing mass spectra of sample peptides to a reference database of protein sequences. Although these protein databases are an integral part of the metaproteomic analysis, few studies have explored how database composition impacts peptide identification. Here, we used cervicovaginal lavage (CVL) samples from a study of bacterial vaginosis (BV) to compare the performance of databases built using six different strategies. We evaluated broad versus sample-matched databases, as well as databases populated with proteins translated from metagenomic sequencing of the same samples versus sequences from public repositories. Smaller sample-matched databases performed significantly better, driven by the statistical constraints on large databases. Additionally, large databases attributed up to 34% of significant bacterial hits to taxa absent from the sample, as determined orthogonally by 16S rRNA gene sequencing. We also tested a set of hybrid databases which included bacterial proteins from NCBI RefSeq and translated bacterial genes from the samples. These hybrid databases had the best overall performance, identifying 1,068 unique human and 1,418 unique bacterial proteins, ~30% more than a database populated with proteins from typical vaginal bacteria and fungi. Our findings can help guide the optimal identification of proteins while maintaining statistical power for reaching biological conclusions. IMPORTANCE Metaproteomic analysis can provide valuable insights into the functions of microbial and cellular communities by identifying a broad, untargeted set of proteins. The databases used in the analysis of metaproteomic data influence results by defining what proteins can be identified. Moreover, the size of the database impacts the number of identifications after accounting for false discovery rates (FDRs). Few studies have tested the performance of different strategies for building a protein database to identify proteins from metaproteomic data and those that have largely focused on highly diverse microbial communities. We tested a range of databases on CVL samples and found that a hybrid sample-matched approach, using publicly available proteins from organisms present in the samples, as well as proteins translated from metagenomic sequencing of the samples, had the best performance. However, our results also suggest that public sequence databases will continue to improve as more bacterial genomes are published.
Collapse
Affiliation(s)
- Elliot M. Lee
- Fred Hutchinson Cancer Research Center, Seattle, Washington, DC, USA
- University of Washington, Seattle, Washington, DC, USA
| | | | - Samuel O. Purvine
- Pacific Northwest National Laboratory, Richland, Washington, DC, USA
| | - Tina L. Fiedler
- Fred Hutchinson Cancer Research Center, Seattle, Washington, DC, USA
| | - Owen P. Leiser
- Pacific Northwest National Laboratory, Richland, Washington, DC, USA
| | - Sean C. Proll
- Fred Hutchinson Cancer Research Center, Seattle, Washington, DC, USA
| | - Samuel S. Minot
- Fred Hutchinson Cancer Research Center, Seattle, Washington, DC, USA
| | | | - David N. Fredricks
- Fred Hutchinson Cancer Research Center, Seattle, Washington, DC, USA
- University of Washington, Seattle, Washington, DC, USA
| |
Collapse
|
2
|
Dong M, Dong Y, Bai J, Li H, Ma X, Li B, Wang C, Li H, Qi W, Wang Y, Fan A, Han C, Xue F. Interactions between microbiota and cervical epithelial, immune, and mucus barrier. Front Cell Infect Microbiol 2023; 13:1124591. [PMID: 36909729 PMCID: PMC9998931 DOI: 10.3389/fcimb.2023.1124591] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/31/2023] [Indexed: 02/26/2023] Open
Abstract
The female reproductive tract harbours hundreds of bacterial species and produces numerous metabolites. The uterine cervix is located between the upper and lower parts of the female genital tract. It allows sperm and birth passage and hinders the upward movement of microorganisms into a relatively sterile uterus. It is also the predicted site for sexually transmitted infection (STI), such as Chlamydia, human papilloma virus (HPV), and human immunodeficiency virus (HIV). The healthy cervicovaginal microbiota maintains cervical epithelial barrier integrity and modulates the mucosal immune system. Perturbations of the microbiota composition accompany changes in microbial metabolites that induce local inflammation, damage the cervical epithelial and immune barrier, and increase susceptibility to STI infection and relative disease progression. This review examined the intimate interactions between the cervicovaginal microbiota, relative metabolites, and the cervical epithelial-, immune-, and mucus barrier, and the potent effect of the host-microbiota interaction on specific STI infection. An improved understanding of cervicovaginal microbiota regulation on cervical microenvironment homeostasis might promote advances in diagnostic and therapeutic approaches for various STI diseases.
Collapse
Affiliation(s)
- Mengting Dong
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Yalan Dong
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Junyi Bai
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Huanrong Li
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaotong Ma
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Bijun Li
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Chen Wang
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Huiyang Li
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Wenhui Qi
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Yingmei Wang
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Aiping Fan
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Cha Han
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Cha Han, ; Fengxia Xue,
| | - Fengxia Xue
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Cha Han, ; Fengxia Xue,
| |
Collapse
|
3
|
Abril-Parreño L, Meade KG, Krogenæs AK, Druart X, Fair S, Cormican P. Conserved and breed-specific differences in the cervical transcriptome of sheep with divergent fertility at the follicular phase of a natural oestrus cycle. BMC Genomics 2021; 22:752. [PMID: 34666676 PMCID: PMC8527727 DOI: 10.1186/s12864-021-08060-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/01/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The outcome of cervical artificial insemination (AI) with frozen-thawed semen in sheep is limited by the inability of sperm to traverse the cervix of some ewe breeds. Previous research has demonstrated that cervical sperm transport is dependent on ewe breed, as sperm can traverse the cervix in greater numbers in some higher fertility ewe breeds. However, the molecular mechanisms underlying ewe breed differences in sperm transport through the cervix remain unknown. In this study, we aimed to characterise the cervical transcriptome of four European ewe breeds with known differences in pregnancy rates following cervical AI using frozen-thawed semen at the follicular phase of a natural oestrous cycle. Cervical post mortem tissue samples were collected from two Irish ewe breeds (Belclare and Suffolk; medium and low fertility, respectively) and from two Norwegian ewe breeds (Norwegian White Sheep (NWS) and Fur; high fertility compared to both Irish breeds) at the follicular phase of a natural oestrous cycle (n = 8 to 10 ewes per breed). RESULTS High-quality RNA extracted from biopsies of the mid-region of the cervix was analysed by RNA-sequencing and Gene Ontology (GO). After stringent filtering (P < 0.05 and FC > 1.5), a total of 11, 1539 and 748 differentially expressed genes (DEGs) were identified in Belclare, Fur and NWS compared to the low fertility Suffolk breed, respectively. Gene ontology analysis identified significantly enriched biological processes involved in muscle contraction, extracellular matrix (ECM) development and the immune response. Gene co-expression analysis revealed similar patterns in muscle contraction and ECM development modules in both Norwegian ewe breeds, which differed to the Irish ewe breeds. CONCLUSIONS These breed-specific biological processes may account for impaired cervical sperm transport through the cervix in sheep during the follicular phase of the reproductive cycle. This novel and comprehensive dataset provides a rich foundation for future targeted initiatives to improve cervical AI in sheep.
Collapse
Affiliation(s)
- Laura Abril-Parreño
- Laboratory of Animal Reproduction, Department of Biological Sciences, School of Natural Sciences, Biomaterials Research Cluster, Bernal Institute, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland.,Animal & Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Co. Meath, Ireland
| | - Kieran G Meade
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | | | - Xavier Druart
- UMR 6175 INRA, CNRS-Université de Tours-Haras Nationaux, Station de Physiologie de la Reproduction et des Comportements Institut National de la Recherche Agronomique, Nouzilly, France
| | - Sean Fair
- Laboratory of Animal Reproduction, Department of Biological Sciences, School of Natural Sciences, Biomaterials Research Cluster, Bernal Institute, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland.
| | - Paul Cormican
- Animal & Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Co. Meath, Ireland
| |
Collapse
|
4
|
Comprehensive Library Generation for Identification and Quantification of Endometrial Cancer Protein Biomarkers in Cervico-Vaginal Fluid. Cancers (Basel) 2021; 13:cancers13153804. [PMID: 34359700 PMCID: PMC8345211 DOI: 10.3390/cancers13153804] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 01/08/2023] Open
Abstract
Simple Summary Endometrial cancer is the most common cancer of the female reproductive tract, and its incidence is rising. Early diagnosis has the potential to improve survival as women can receive care at the earliest possible stage when curative treatment is likely. Current tests for endometrial cancer diagnosis are sequentially invasive with low patient acceptability. A detection tool based on minimally invasive samples such as cervico-vaginal fluid would be a major advance in the field. This study focuses on the potential of detecting endometrial cancer based on the proteins and peptides expressed in cervico-vaginal fluid. Using Sequential window acquisition of all theoretical mass spectra (SWATH-MS), we present a spectral library of thousands of proteins in the cervico-vaginal fluid of women with or at risk of endometrial cancer. This important resource will enable the identification of endometrial cancer biomarkers in cervico-vaginal fluid and advances our knowledge of the role of proteomics in endometrial cancer detection. Abstract Endometrial cancer is the most common gynaecological malignancy in high-income countries and its incidence is rising. Early detection, aided by highly sensitive and specific biomarkers, has the potential to improve outcomes as treatment can be provided when it is most likely to effect a cure. Sequential window acquisition of all theoretical mass spectra (SWATH-MS), an accurate and reproducible platform for analysing biological samples, offers a technological advance for biomarker discovery due to its reproducibility, sensitivity and potential for data re-interrogation. SWATH-MS requires a spectral library in order to identify and quantify peptides from multiplexed mass spectrometry data. Here we present a bespoke spectral library of 154,206 transitions identifying 19,394 peptides and 2425 proteins in the cervico-vaginal fluid of postmenopausal women with, or at risk of, endometrial cancer. We have combined these data with a library of over 6000 proteins generated based on mass spectrometric analysis of two endometrial cancer cell lines. This unique resource enables the study of protein biomarkers for endometrial cancer detection in cervico-vaginal fluid. Data are available via ProteomeXchange with unique identifier PXD025925.
Collapse
|
5
|
Baldeon-Vaca G, Marathe JG, Politch JA, Mausser E, Pudney J, Doud J, Nador E, Zeitlin L, Pauly M, Moench TR, Brennan M, Whaley KJ, Anderson DJ. Production and characterization of a human antisperm monoclonal antibody against CD52g for topical contraception in women. EBioMedicine 2021; 69:103478. [PMID: 34256345 PMCID: PMC8324805 DOI: 10.1016/j.ebiom.2021.103478] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Approximately 40% of human pregnancies are unintended, indicating a need for more acceptable effective contraception methods. New antibody production systems make it possible to manufacture reagent-grade human monoclonal antibodies (mAbs) for clinical use. We used the Nicotiana platform to produce a human antisperm mAb and tested its efficacy for on-demand topical contraception. METHODS Heavy and light chain variable region DNA sequences of a human IgM antisperm antibody derived from an infertile woman were inserted with human IgG1 constant region sequences into an agrobacterium and transfected into Nicotiana benthamiana. The product, an IgG1 mAb ["Human Contraception Antibody" (HCA)], was purified on Protein A columns, and QC was performed using the LabChip GXII Touch protein characterization system and SEC-HPLC. HCA was tested for antigen specificity by immunofluorescence and western blot assays, antisperm activity by sperm agglutination and complement dependent sperm immobilization assays, and safety in a human vaginal tissue (EpiVaginal™) model. FINDINGS HCA was obtained at concentrations ranging from 0.4 to 4 mg/ml and consisted of > 90% IgG monomers. The mAb specifically reacted with a glycan epitope on CD52g, a glycoprotein produced in the male reproductive tract and found in abundance on sperm. HCA potently agglutinated sperm under a variety of relevant physiological conditions at concentrations ≥ 6.25 µg/ml, and mediated complement-dependent sperm immobilization at concentrations ≥ 1 µg/ml. HCA and its immune complexes did not induce inflammation in EpiVaginal™ tissue. INTERPRETATION HCA, an IgG1 mAb with potent sperm agglutination and immobilization activity and a good safety profile, is a promising candidate for female contraception. FUNDING This research was supported by grants R01 HD095630 and P50HD096957 from the National Institutes of Health.
Collapse
Affiliation(s)
- Gabriela Baldeon-Vaca
- Division of Medical Sciences, Boston University School of Medicine, Boston, MA 02118, United States
| | - Jai G Marathe
- Department of Medicine, Boston University School of Medicine, 670 Albany St. Rm 516, Boston, MA 02118, United States
| | - Joseph A Politch
- Department of Medicine, Boston University School of Medicine, 670 Albany St. Rm 516, Boston, MA 02118, United States
| | - Emilie Mausser
- Division of Medical Sciences, Boston University School of Medicine, Boston, MA 02118, United States
| | - Jeffrey Pudney
- Department of Medicine, Boston University School of Medicine, 670 Albany St. Rm 516, Boston, MA 02118, United States
| | - James Doud
- Department of Medicine, Boston University School of Medicine, 670 Albany St. Rm 516, Boston, MA 02118, United States
| | - Ellena Nador
- Division of Medical Sciences, Boston University School of Medicine, Boston, MA 02118, United States
| | - Larry Zeitlin
- Mapp Biopharmaceutical, Inc., 6160 Lusk Blvd., San Diego, CA 92121, United States
| | - Michael Pauly
- Mapp Biopharmaceutical, Inc., 6160 Lusk Blvd., San Diego, CA 92121, United States
| | - Thomas R Moench
- Mapp Biopharmaceutical, Inc., 6160 Lusk Blvd., San Diego, CA 92121, United States
| | - Miles Brennan
- Mapp Biopharmaceutical, Inc., 6160 Lusk Blvd., San Diego, CA 92121, United States; ZabBio, Inc. 6160 Lusk Blvd., San Diego, CA 92121, United States
| | - Kevin J Whaley
- Mapp Biopharmaceutical, Inc., 6160 Lusk Blvd., San Diego, CA 92121, United States; ZabBio, Inc. 6160 Lusk Blvd., San Diego, CA 92121, United States
| | - Deborah J Anderson
- Department of Medicine, Boston University School of Medicine, 670 Albany St. Rm 516, Boston, MA 02118, United States.
| |
Collapse
|
6
|
Onywera H, Anejo-Okopi J, Mwapagha LM, Okendo J, Williamson AL. Predictive functional analysis reveals inferred features unique to cervicovaginal microbiota of African women with bacterial vaginosis and high-risk human papillomavirus infection. PLoS One 2021; 16:e0253218. [PMID: 34143825 PMCID: PMC8213166 DOI: 10.1371/journal.pone.0253218] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 05/29/2021] [Indexed: 02/01/2023] Open
Abstract
Mounting evidence suggests that Lactobacillus species may not necessarily be the sine qua non of healthy cervicovaginal microbiota (CVM), especially among reproductive-age African women. A majority of African women have high-diversity non-Lactobacillus-dominated CVM whose bacterial functions remain poorly characterized. Functional profiling of the CVM is vital for investigating human host-microbiota interactions in health and disease. Here, we investigated the functional potential of L. iners-dominated and high-diversity non-Lactobacillus-dominated CVM of 75 African women with and without bacterial vaginosis (BV) and high-risk human papillomavirus (HR-HPV) infection. Functional contents were predicted using PICRUSt. Microbial taxonomic diversity, BV, and HR-HPV infection statuses were correlated with the inferred functional composition of the CVM. Differentially abundant inferred functional categories were identified using linear discriminant analysis (LDA) effect size (LEfSe) (p-value <0.05 and logarithmic LDA score >2.0). Of the 75 women, 56 (74.7%), 35 (46.7%), and 29 (38.7%) had high-diversity non-Lactobacillus-dominated CVM, BV, and HR-HPV infection, respectively. Alpha diversity of the inferred functional contents (as measured by Shannon diversity index) was significantly higher in women with high-diversity non-Lactobacillus-dominated CVM and BV than their respective counterparts (H statistic ≥11.5, q-value <0.001). Ordination of the predicted functional metagenome content (using Bray-Curtis distances) showed that the samples segregated according to the extent of microbial taxonomic diversity and BV (pseudo-F statistic ≥19.6, q-value = 0.001) but not HR-HPV status (pseudo-F statistic = 1.7, q-value = 0.159). LEfSe analysis of the inferred functional categories revealed that transport systems (including ABC transporters) and transcription factors were enriched in high-diversity CVM. Interestingly, transcription factors and sporulation functional categories were uniquely associated with high-diversity CVM, BV, and HR-HPV infection. Our predictive functional analysis reveals features unique to high-diversity CVM, BV and HR-HPV infections. Such features may represent important biomarkers of BV and HR-HPV infection. Our findings require proof-of-concept functional studies to examine the relevance of these potential biomarkers in women's reproductive health and disease.
Collapse
Affiliation(s)
- Harris Onywera
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Faculty of Health Sciences, Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
- Research, Innovations, and Academics Unit, Tunacare Services Health Providers Limited, Nairobi, Kenya
| | - Joseph Anejo-Okopi
- Department of Microbiology, University of Jos, Jos, Nigeria
- AIDS Prevention Initiative in Nigeria, Jos University Teaching Hospital, Jos, Nigeria
| | - Lamech M. Mwapagha
- Faculty of Health and Applied Sciences, Department of Natural and Applied Sciences, Namibia University of Science and Technology, Windhoek, Namibia
| | - Javan Okendo
- Division of Chemical and Systems Biology, Faculty of Health Sciences, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
- Centre for Research in Therapeutic Sciences (CREATES), Strathmore University, Nairobi, Kenya
| | - Anna-Lise Williamson
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Faculty of Health Sciences, Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
- SAMRC Gynaecological Cancer Research Centre, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
7
|
Chen X, Lu Y, Chen T, Li R. The Female Vaginal Microbiome in Health and Bacterial Vaginosis. Front Cell Infect Microbiol 2021; 11:631972. [PMID: 33898328 PMCID: PMC8058480 DOI: 10.3389/fcimb.2021.631972] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
The vaginal microbiome is an intricate and dynamic microecosystem that constantly undergoes fluctuations during the female menstrual cycle and the woman's entire life. A healthy vaginal microbiome is dominated by Lactobacillus which produce various antimicrobial compounds. Bacterial vaginosis (BV) is characterized by the loss or sharp decline in the total number of Lactobacillus and a corresponding marked increase in the concentration of anaerobic microbes. BV is a highly prevalent disorder of the vaginal microbiota among women of reproductive age globally. BV is confirmed to be associated with adverse gynecologic and obstetric outcomes, such as sexually transmitted infections, pelvic inflammatory disease, and preterm birth. Gardnerella vaginalis is the most common microorganism identified from BV. It is the predominant microbe in polymicrobial biofilms that could shelter G. vaginalis and other BV-associated microbes from adverse host environments. Many efforts have been made to increase our understanding of the vaginal microbiome in health and BV. Thus, improved novel and accurate diagnosis and therapeutic strategies for BV have been developed. This review covers the features of vaginal microbiome, BV, BV-associated diseases, and various strategies of diagnosis and treatment of BV, with an emphasis on recent research progresses.
Collapse
Affiliation(s)
| | | | | | - Rongguo Li
- Department of Clinical Laboratory, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
8
|
Redelinghuys MJ, Geldenhuys J, Jung H, Kock MM. Bacterial Vaginosis: Current Diagnostic Avenues and Future Opportunities. Front Cell Infect Microbiol 2020; 10:354. [PMID: 32850469 PMCID: PMC7431474 DOI: 10.3389/fcimb.2020.00354] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 06/09/2020] [Indexed: 12/16/2022] Open
Abstract
A healthy female genital tract harbors a microbiome dominated by lactic acid and hydrogen peroxide producing bacteria, which provide protection against infections by maintaining a low pH. Changes in the bacterial compositions of the vaginal microbiome can lead to bacterial vaginosis (BV), which is often associated with vaginal inflammation. Bacterial vaginosis increases the risk of acquiring sexually transmitted infections (STIs) like human immunodeficiency virus (HIV) and affects women's reproductive health negatively. In pregnant women, BV can lead to chorioamnionitis and adverse pregnancy outcomes, including preterm premature rupture of the membranes and preterm birth. In order to manage BV effectively, good diagnostic procedures are required. Traditionally clinical and microscopic methods have been used to diagnose BV; however, these methods require skilled staff and time and suffer from reduced sensitivity and specificity. New diagnostics, including highly sensitive and specific point-of-care (POC) tests, treatment modalities and vaccines can be developed based on the identification of biomarkers from the growing pool of vaginal microbiome and vaginal metabolome data. In this review the current and future diagnostic avenues will be discussed.
Collapse
Affiliation(s)
- Mathys J. Redelinghuys
- School of Clinical Medicine, Wits Reproductive Health and HIV Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Janri Geldenhuys
- UP-Ampath Translational Genomics Initiative, Department of Biochemistry, Genetics and Microbiology, Faculty of Health Sciences and Faculty of Natural and Agricultural Sciences, Division of Genetics, University of Pretoria, Pretoria, South Africa
| | - Hyunsul Jung
- Department of Medical Microbiology, University of Pretoria, Pretoria, South Africa
| | - Marleen M. Kock
- Department of Medical Microbiology, University of Pretoria, Pretoria, South Africa
- Department of Medical Microbiology, Tshwane Academic Division, National Health Laboratory Service, Pretoria, South Africa
| |
Collapse
|
9
|
Fang J, Chen L, Chen Z, Jiang X, Pan M. Association of the vaginal microbiota with pregnancy outcomes in Chinese women after cervical cerclage. Reprod Biomed Online 2020; 41:698-706. [PMID: 32855065 DOI: 10.1016/j.rbmo.2020.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/09/2020] [Accepted: 06/22/2020] [Indexed: 10/24/2022]
Abstract
RESEARCH QUESTION The study aimed to investigate the relationship between risk factors associated with vaginal microbiota and outcomes of cervical cerclage. DESIGN A retrospective cohort study of singleton pregnancies with cervical cerclage was conducted. Before cerclage, participants underwent a vaginal microbiota assay, including morphological examination and functional vaginal microecological analysis using a vaginitis multi-test kit. The chi-squared test and logistic and linear regression analyses were performed to evaluate the associations of various risk factors with maternal and neonatal outcomes. RESULTS Eighty-five participants were included. The mean interval between cerclage and delivery was 69.4 ± 36.7 days, and 12 (14.1%) of newborns died. A higher grade of vaginal cleanliness, a higher pH, a lower abundance of Lactobacillus spp., a higher sialidase-positive percentage, a higher positive percentage of clue cells, a higher lactobacillary grade, a higher Nugent score and a higher rate of microecological dysbiosis were significantly associated with a poor neonatal outcome and shorter cerclage to delivery intervals (P < 0.001-0.041). Furthermore, sialidase positivity was associated with the highest risk of cervical cerclage failure (odds ratio [OR] 10.469; 95% confidence interval [CI] 1.096-36.087), followed by the presence of bulging membranes (OR 6.400; 95% CI 0.428-15.641) and vaginal microbiota dysbiosis (OR 6.038; 95% CI 0.173-17.072). CONCLUSIONS An absence of Lactobacillus spp. and some functional factors of vaginal microbiota are potential risk factors that predict subsequent cerclage failure. These findings indicate the potential clinical utility of these factors to predict cervical cerclage failure for managing patient expectations and providing improved postoperative surveillance.
Collapse
Affiliation(s)
- Jiaoning Fang
- Department of Obstetrics, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Lihua Chen
- Department of Gynecologics, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Zhiwei Chen
- Department of Gynecologics, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Xiaoxiang Jiang
- Department of Gynecologics, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Mian Pan
- Department of Obstetrics, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China.
| |
Collapse
|
10
|
Identification of Cultivable Bacteria in Amniotic Fluid Using Cervicovaginal Fluid Protein Microarray in Preterm Premature Rupture of Membranes. Reprod Sci 2020; 27:1008-1017. [PMID: 31942709 DOI: 10.1007/s43032-020-00143-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 07/23/2019] [Indexed: 01/07/2023]
Abstract
We aimed to identify cervicovaginal fluid (CVF) protein biomarkers of microbial invasion of the amniotic cavity (MIAC) in women with preterm premature rupture of membranes (PPROM), using an antibody microarray. This retrospective cohort study included 99 consecutive women with singleton pregnancies and PPROM (23-33 weeks) who underwent amniocentesis and who gave CVF samples. CVF proteomes from the MIAC (n = 20) versus non-MIAC groups (n = 20) were comparatively profiled by an antibody microarray using a nested case-control study design. The seven candidate biomarkers of interest were validated in the total cohort (n = 99) by enzyme-linked immunosorbent assays (ELISA). For comparison with candidate markers, amniotic fluid (AF) white blood cell (WBC) count was also measured. The primary outcome measure was MIAC (defined as positive AF culture). Thirty of the proteins studied exhibited significant intergroup differences. Measurements of the total cohort with ELISA confirmed a significant increase in the levels of CVF IL-8, lipocalin-2, MIP-1α, MMP-9, and TIMP-1 in women with MIAC, independent of gestational age at sampling. A combined, non-invasive model was developed by using a stepwise regression procedure, which included CVF IL-8 and CVF MMP-9 (area under the curve [AUC] = 0.763), and this AUC was comparable with the AUC of AF WBC. Using protein-antibody microarray technology, we found several novel, independent, non-invasive biomarkers to identify MIAC in women with PPROM: IL-8, lipocalin-2, MIP-1α, MMP-9, and TIMP-1. Furthermore, the combined non-invasive model (IL-8 and MMP-9) was a useful independent predictor for MIAC with good discriminatory power, similar to AF WBC count.
Collapse
|
11
|
Vazquez F, Fernández-Blázquez A, García B. Vaginosis. Vaginal microbiota. Enferm Infecc Microbiol Clin 2018; 37:592-601. [PMID: 30594321 DOI: 10.1016/j.eimc.2018.11.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 11/18/2018] [Indexed: 11/30/2022]
Abstract
The latest advances in the vaginal microbiome and molecular diagnosis of bacterial vaginosis have allowed for a better knowledge of this entity, characterising aspects of its pathogenesis and the establishment of the vaginal biolayer, the models and new theories of its aetiology, how it is transmitted, with it being considered nowadays as a probable sexually transmitted infection, the separation of other entities such as aerobic vaginosis, its molecular diagnosis and treatment with new molecules to prevent frequent relapses. This entity and the study of the vaginal microbiome have made it possible to consider these infections as a polymicrobial syndrome, putting an end to the dogma: one microorganism, one disease. In addition, a lesser-known entity such as aerobic vaginosis and the methods for its detection are updated.
Collapse
Affiliation(s)
- Fernando Vazquez
- Servicio de Microbiología, Hospital Universitario Central de Asturias, Oviedo, España; Departamento de Biología Funcional, Universidad de Oviedo, Oviedo, España; Fundación de Investigación Oftalmológica, Instituto Oftalmológico Fernández-Vega, Oviedo, España; Fundación para la Investigación y la Innovación Biosanitaria del Principado de Asturias (FINBA), Oviedo, España; Grupo GEITS de la SEIMC.
| | | | - Beatriz García
- Departamento de Biología Funcional, Universidad de Oviedo, Oviedo, España; Fundación de Investigación Oftalmológica, Instituto Oftalmológico Fernández-Vega, Oviedo, España; Fundación para la Investigación y la Innovación Biosanitaria del Principado de Asturias (FINBA), Oviedo, España
| |
Collapse
|