1
|
Zhou S, Cheng K, Peng Y, Liu Y, Hu Q, Zeng S, Qi X, Yu L. Regulation mechanism of endoplasmic reticulum stress on metabolic enzymes in liver diseases. Pharmacol Res 2024; 207:107332. [PMID: 39089398 DOI: 10.1016/j.phrs.2024.107332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
The endoplasmic reticulum (ER) plays a pivotal role in protein folding and secretion, Ca2+ storage, and lipid synthesis in eukaryotic cells. When the burden of protein synthesis and folding required to be handled exceeds the processing capacity of the ER, the accumulation of misfolded/unfolded proteins triggers ER stress. In response to short-term ER stress, the unfolded protein response (UPR) is activated to allow cells to survive. When ER stress is severe and sustained, it typically provokes cell death through multiple approaches. It is well documented that ER stress and metabolic deregulation are functionally intertwined, both are considered contributing factors to the pathogenesis of liver diseases, including non-alcoholic fatty liver disease (NAFLD), alcoholic liver disease (ALD), ischemia/reperfusion (I/R) injury, viral hepatitis, liver fibrosis, and hepatocellular carcinoma (HCC). Hepatocytes are rich in smooth and rough ER, which harbor metabolic enzymes that are capable of sensing alterations in various nutritional status and external stimuli. Extensive research has focused on the molecular mechanism linking ER stress with metabolic enzymes. The purpose of this review is to summarize the current knowledge regarding the effects of ER stress on metabolic enzymes in various liver diseases and to provide potential therapeutic strategies for chronic liver diseases via targeting UPR.
Collapse
Affiliation(s)
- Shaojun Zhou
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Kaiwen Cheng
- Medical Research Center, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing 312000, China
| | - Yi Peng
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuxi Liu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Qingqing Hu
- The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Jinhua 322023, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Xuchen Qi
- Department of Pharmacy, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing 312000, China; Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310020, China.
| | - Lushan Yu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China; Department of Pharmacy, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing 312000, China; Westlake Laboratory of Life Sciences and Biomedicine of Zhejiang Province, Hangzhou 310024, China; Department of Pharmacy, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China.
| |
Collapse
|
2
|
Lv XL, Li WL, Sun FJ, An YZ, Sun N, Lv XP, Gao XL. Investigation of the mutual crosstalk between ER stress and PI3K/AKT/mTOR signaling pathway in iron overload-induced liver injury in chicks. Biometals 2024; 37:955-969. [PMID: 38483766 DOI: 10.1007/s10534-024-00588-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/26/2024] [Indexed: 07/18/2024]
Abstract
Iron is an essential element for the normal functioning of living organisms, but excessive iron deposition can lead to organ damage. This study aims to investigate the interaction between the endoplasmic reticulum stress signaling pathway and the PI3K/AKT/mTOR signaling pathway in liver injury induced by iron overload in chicks. Rspectively, 150 one-day-old broilers were divided into three groups and supplemented with 50 (C), 500 (E1), and 1000 (E2) mg ferrous sulfate monohydrate/kg in the basal diet. Samples were taken after continuous feeding for 14 days. The results showed that iron overload could upregulate the levels of ALT and AST. Histopathological examination revealed bleeding in the central vein of the liver accompanied by inflammatory cell infiltration. Hoechst staining showed that the iron overload group showed significant bright blue fluorescence, and ultrastructural observations showed chromatin condensation as well as mitochondrial swelling and cristae disorganization in the iron overload group. RT-qPCR and Western blot results showed that iron overload upregulated the expression of Bax, Caspase-3, Caspase-9, GRP78, GRP94, P-PERK, ATF4, eIF2α, IRE1, and ATF6, while downregulating the expression of Bcl-2 and the PI3K/AKT/mTOR pathway. XBP-1 splicing experiment showed significant splicing of XBP-1 gene after iron overload. PCA and correlation analysis suggested a potential association between endoplasmic reticulum stress, the PI3K/AKT/mTOR signaling pathway, and liver injury in chicks. In summary, iron overload can induce cell apoptosis and liver injury by affecting endoplasmic reticulum stress and the PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Xiang-Long Lv
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Wen-Lei Li
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Feng-Jiao Sun
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yu-Zhi An
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Ning Sun
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xiao-Ping Lv
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xue-Li Gao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
3
|
Luo S, Luo R, Deng G, Huang F, Lei Z. Programmed cell death, from liver Ischemia-Reperfusion injury perspective: An overview. Heliyon 2024; 10:e32480. [PMID: 39040334 PMCID: PMC11260932 DOI: 10.1016/j.heliyon.2024.e32480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/26/2024] [Accepted: 06/04/2024] [Indexed: 07/24/2024] Open
Abstract
Liver ischemia-reperfusion injury (LIRI) commonly occurs in liver resection, liver transplantation, shock, and other hemorrhagic conditions, resulting in profound local and systemic effects via associated inflammatory responses and hepatic cell death. Hepatocyte death is a significant component of LIRI and its mechanism was previously thought to be limited to apoptosis and necrosis. With the discovery of novel types of programmed cell death (PCD), necroptosis, ferroptosis, pyroptosis, autophagy, NETosis, and parthanatos have been shown to be involved in LIRI. Understanding the mechanisms underlying cell death following LIRI is indispensable to mitigating the widespread effects of LIRI. Here, we review the roles of different PCD and discuss potential therapy in LIRI.
Collapse
Affiliation(s)
- Shaobin Luo
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha , PR China
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Rongkun Luo
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha , PR China
| | - Gang Deng
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha , PR China
| | - Feizhou Huang
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha , PR China
| | - Zhao Lei
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha , PR China
| |
Collapse
|
4
|
Liu N, Li M, Pang H, Tiantian T, Li X, Su Y, Jin M, Wu H, Qian C, Sun M. Bioinformatics-driven discovery of silica nanoparticles induces apoptosis and renal damage via the unfolded protein response in NRK-52E cells and rat kidney. Comput Biol Med 2024; 168:107816. [PMID: 38064850 DOI: 10.1016/j.compbiomed.2023.107816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/24/2023] [Accepted: 12/03/2023] [Indexed: 01/10/2024]
Abstract
Silica nanoparticles (SiNPs) are nanomaterials with widespread applications in drug delivery and disease diagnosis. Despite their utility, SiNPs can cause chronic kidney disease, hindering their clinical translation. The molecular mechanisms underlying SiNP-induced renal toxicity are complex and require further investigation. To address this challenge, we employed bioinformatics tools to predict the potential mechanisms underlying renal damage caused by SiNPs. We identified 1627 upregulated differentially expressed genes (DEGs) and 1334 downregulated DEGs. Functional enrichment analysis and protein-protein interaction network revealed that SiNP-induced renal damage is associated with apoptosis. Subsequently, we verified that SiNPs induced apoptosis in an in vitro model of NRK-52E cells via the unfolded protein response (UPR) in a dose-dependent manner. Furthermore, in an in vivo rat model, high-dose SiNP administration via tracheal drip caused hyalinization of the renal tubules, renal interstitial lymphocytic infiltration, and collagen fiber accumulation. Concurrently, we observed an increase in UPR-related protein levels at the onset of renal damage. Thus, our study confirmed that SiNPs induce apoptosis and renal damage through the UPR, adding to the theoretical understanding of SiNP-related kidney damage and offering a potential target for preventing and treating kidney injuries in SiNP clinical applications.
Collapse
Affiliation(s)
- Naimeng Liu
- Breast Surgery Department, General Surgery Center, The First Hospital of Jilin University, Street Xinmin 1, Changchun, China.
| | - Meng Li
- School of Public Health Jilin University, NO.1163 Xinmin Street, Changchun, China.
| | - Huan Pang
- School of Public Health Jilin University, NO.1163 Xinmin Street, Changchun, China.
| | - Tian Tiantian
- School of Public Health Jilin University, NO.1163 Xinmin Street, Changchun, China.
| | - Xinyue Li
- School of Public Health Jilin University, NO.1163 Xinmin Street, Changchun, China.
| | - Yanchi Su
- School of Artificial Intelligence, Jilin University, No.2699 Qianjin Street, Changchun, China.
| | - Minghua Jin
- School of Public Health Jilin University, NO.1163 Xinmin Street, Changchun, China.
| | - Hao Wu
- Department of Nephrology, The First Hospital of Jilin University, Street Xinmin 1, Changchun, China.
| | - Chuyue Qian
- Department of Nephrology, The First Hospital of Jilin University, Street Xinmin 1, Changchun, China.
| | - Mindan Sun
- Department of Nephrology, The First Hospital of Jilin University, Street Xinmin 1, Changchun, China.
| |
Collapse
|
5
|
Dong B, Sun Y, Cheng B, Xue Y, Li W, Sun X. Activating transcription factor (ATF) 6 upregulates cystathionine β synthetase (CBS) expression and hydrogen sulfide (H 2S) synthesis to ameliorate liver metabolic damage. Eur J Med Res 2023; 28:540. [PMID: 38007457 PMCID: PMC10676581 DOI: 10.1186/s40001-023-01520-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 11/09/2023] [Indexed: 11/27/2023] Open
Abstract
Activating transcription factor 6 (ATF6) is an endoplasmic reticulum stress responsive gene. We previously reported that conditional knockout of hepatic ATF6 exacerbated liver metabolic damage by repressing autophagy through mTOR pathway. However, the mechanism by which ATF6 influence liver metabolism has not been well established. Hydrogen sulfide (H2S) is a gaseous signaling molecule that plays an important role in regulating inflammation, and suppress nonalcoholic fatty liver in mice. Based on the previous study, we assumed that ATF6 may regulate H2S production to participate in liver metabolism. In order to clarify the mechanism by which ATF6 regulates H2S synthesis to ameliorate liver steatosis and inflammatory environment, we conducted the present study. We used the liver specific ATF6 knockout mice and fed on high-fat-diet, and found that H2S level was significantly downregulated in hepatic ATF6 knockout mice. Restoring H2S by the administration of slow H2S releasing agent GYY4137 ameliorated the hepatic steatosis and glucose tolerance. ATF6 directly binds to the promoter of cystathionine β synthetase (CBS), an important enzyme in H2S synthesis. Thus, ATF6 could upregulate H2S production through CBS. Sulfhydrated Sirtuin-1 (SIRT1) was downregulated in ATF6 knockout mice. The expression of pro-inflammatory factor IL-17A was upregulated and anti-inflammatory factor IL-10 was downregulated in ATF6 knockout mice. Our results suggest that ATF6 can transcriptionally enhance CBS expression as well as H2S synthesis. ATF6 increases SIRT1 sulfhydration and ameliorates lipogenesis and inflammation in the fatty liver. Therefore, ATF6 could be a novel therapeutic strategy for high-fat diet induced fatty liver metabolic abnormalities.
Collapse
Affiliation(s)
- Bingzi Dong
- Department of Endocrinology and Metabolic Diseases, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Ying Sun
- Health Management Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Bingfei Cheng
- Department of Endocrinology and Metabolic Diseases, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Yu Xue
- Department of Endocrinology and Metabolic Diseases, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Wei Li
- Interventional Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Xiaofang Sun
- Department of Endocrinology and Metabolic Diseases, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| |
Collapse
|