1
|
Al Hageh C, Chacar S, Ghassibe-Sabbagh M, Platt DE, Henschel A, Hamdan H, Gauguier D, El Murr Y, Alefishat E, Chammas E, O’Sullivan S, Abchee A, Nader M, Zalloua PA. Elevated Lp(a) Levels Correlate with Severe and Multiple Coronary Artery Stenotic Lesions. Vasc Health Risk Manag 2023; 19:31-41. [PMID: 36703868 PMCID: PMC9871050 DOI: 10.2147/vhrm.s394134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/21/2022] [Indexed: 01/19/2023] Open
Abstract
Backgrounds and Aims The role of Lipoprotein(a) (Lp(a)) in increasing the risk of cardiovascular diseases is reported in several populations. The aim of this study is to investigate the correlation of high Lp(a) levels with the degree of coronary artery stenosis. Methods Two hundred and sixty-eight patients were enrolled for this study. Patients who underwent coronary artery angiography and who had Lp(a) measurements available were included in this study. Binomial logistic regressions were applied to investigate the association between Lp(a) and stenosis in the four major coronary arteries. The effect of LDL and HDL Cholesterol on modulating the association of Lp(a) with coronary artery disease (CAD) was also evaluated. Multinomial regression analysis was applied to assess the association of Lp(a) with the different degrees of stenosis in the four major coronary arteries. Results Our analyses showed that Lp(a) is a risk factor for CAD and this risk is significantly apparent in patients with HDL-cholesterol ≥35 mg/dL and in non-obese patients. A large proportion of the study patients with elevated Lp(a) levels had CAD even when exhibiting high HDL serum levels. Increased HDL with low Lp(a) serum levels were the least correlated with stenosis. A significantly higher levels of Lp(a) were found in patients with >50% stenosis in at least two major coronary vessels arguing for pronounced and multiple stenotic lesions. Finally, the derived variant (rs1084651) of the LPA gene was significantly associated with CAD. Conclusion Our study highlights the importance of Lp(a) levels as an independent biological marker of severe and multiple coronary artery stenosis.
Collapse
Affiliation(s)
- Cynthia Al Hageh
- Department of Molecular Biology and Genetics, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Stephanie Chacar
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Michella Ghassibe-Sabbagh
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Daniel E Platt
- Computational Biology Center, IBM TJ Watson Research Centre, Yorktown Hgts, NY, USA
| | - Andreas Henschel
- Department of Electrical Engineering and Computer, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Hamdan Hamdan
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Dominique Gauguier
- Université Paris Cité, INSERM UMR 1124, Paris, 75006, France,McGill University and Genome Quebec Innovation Centre, Montreal, QC, H3A 0G1, Canada
| | - Yara El Murr
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Eman Alefishat
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates,Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, 127788, United Arab Emirates
| | - Elie Chammas
- School of Medicine, Lebanese University, Beirut, Lebanon
| | - Siobhán O’Sullivan
- Department of Molecular Biology and Genetics, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Antoine Abchee
- Sheikh Shakhbout Medical City, Abu Dhabi, United Arab Emirates
| | - Moni Nader
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates,Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, 127788, United Arab Emirates
| | - Pierre A Zalloua
- Department of Molecular Biology and Genetics, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates,Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, 127788, United Arab Emirates,Harvard T.H. Chan School of Public Health, Boston, MA, USA,Correspondence: Pierre A Zalloua; Moni Nader, College of Medicine and Health Sciences, Khalifa University for Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates, Email ;
| |
Collapse
|
4
|
Abstract
The reverse cholesterol transport pathway (RCT) is the focus of many cholesterol-lowering therapies. By way of this pathway, excess cholesterol is collected from peripheral tissues and delivered back to the liver and gastrointestinal tract for excretion from the body. For a long time this removal via the hepatobiliary secretion was considered to be the sole route involved in the RCT. However, observations from early studies in animals and humans already pointed towards the possibility of another route. In the last few years it has become evident that a non-biliary cholesterol secretion pathway exists in which the intestine plays a central role. This transintestinal cholesterol efflux (TICE) pathway contributes significantly to the total fecal neutral sterol excretion. Moreover, recent studies have shown that TICE is also sensitive to stimulation. As a consequence, the direct role of cholesterol secretion from blood via TICE makes the intestine a suitable and approachable target for cholesterol removal from the body and possibly reduction of atherosclerosis. In this review, the discovery and recent findings contributing to understanding the mechanism of TICE will be discussed.
Collapse
|
6
|
Pikuleva IA. Cholesterol-metabolizing cytochromes P450: implications for cholesterol lowering. Expert Opin Drug Metab Toxicol 2008; 4:1403-14. [PMID: 18950282 PMCID: PMC2957831 DOI: 10.1517/17425255.4.11.1403] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Cardiovascular disease (CVD) continues to be a leading cause of death worldwide. Elevated serum cholesterol is one of the classical risk factors for CVD, which also include age, hypertension, smoking, diabetes mellitus, obesity and family history. Several therapeutic drug classes have been developed to treat hypercholesterolemia; yet, an important percentage of patients do not reach their treatment goals. Therefore, new cholesterol-lowering medications that have sites of action different from that of drugs available at present need to be developed. This review summarizes new information about cytochrome P450 enzymes 7A1, 27A1 and 46A1. These enzymes play key roles in cholesterol elimination and have the potential to serve as targets for cholesterol-lowering.
Collapse
Affiliation(s)
- Irina A Pikuleva
- Case Western Reserve University, University Hospitals Case Medical Center, Department of Ophthalmology and Visual Sciences, Cleveland, OH 44106, USA.
| |
Collapse
|