1
|
Rogalla S, Flisikowski K, Gorpas D, Mayer AT, Flisikowska T, Mandella MJ, Ma X, Casey KM, Felt SA, Saur D, Ntziachristos V, Schnieke A, Contag CH, Gambhir SS, Harmsen S. Biodegradable fluorescent nanoparticles for endoscopic detection of colorectal carcinogenesis. ADVANCED FUNCTIONAL MATERIALS 2019; 29:1904992. [PMID: 33041743 PMCID: PMC7546531 DOI: 10.1002/adfm.201904992] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Early and comprehensive endoscopic detection of colonic dysplasia - the most clinically significant precursor lesion to colorectal adenocarcinoma - provides an opportunity for timely, minimally-invasive intervention to prevent malignant transformation. Here, the development and evaluation of biodegradable near-infrared fluorescent silica nanoparticles (FSN) is described that have the potential to improve adenoma detection during fluorescence-assisted white-light colonoscopic surveillance in rodent and human-scale models of colorectal carcinogenesis. FSNs are biodegradable (t1/2 of 2.7 weeks), well-tolerated, and enable detection and delineation of adenomas as small as 0.5 mm2 with high tumor-to-background ratios. Furthermore, in the human-scale, APC 1311/+ porcine model, the clinical feasibility and benefit of using FSN-guided detection of colorectal adenomas using video-rate fluorescence-assisted white-light endoscopy is demonstrated. Since nanoparticles of similar size (e.g., 100-150-nm) or composition (i.e., silica, silica/gold hybrid) have already been successfully translated to the clinic, and, clinical fluorescent/white light endoscopy systems are becoming more readily available, there is a viable path towards clinical translation of the proposed strategy for early colorectal cancer detection and prevention in high-risk patients.
Collapse
Affiliation(s)
- Stephan Rogalla
- Molecular Imaging Program at Stanford University (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine (Gastroenterology & Hepatology), Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Krzysztof Flisikowski
- Chair of Livestock Biotechnology, Technische Universität München, Liesel-Beckmann Str. 1, D-85354 Freising, Germany
| | - Dimitris Gorpas
- Helmholtz Zentrum München, German Researcg Center for Environmental Health, Institute of Biological and Medical Imaging, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
- Chair of Biological Imaging, TranslaTUM, Technische Universität München, Einsteinstr. 25, 81675, München, Germany
| | - Aaron T. Mayer
- Molecular Imaging Program at Stanford University (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Bioengineering, Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305, USA
| | - Tatiana Flisikowska
- Chair of Livestock Biotechnology, Technische Universität München, Liesel-Beckmann Str. 1, D-85354 Freising, Germany
| | - Michael J. Mandella
- Molecular Imaging Program at Stanford University (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Quantitative Health Science and Engineering, Department of Biomedical Engineering, Michigan State University, 775 Woodlot Dr., East Lansing, MI 48824, USA
| | - Xiaopeng Ma
- Helmholtz Zentrum München, German Researcg Center for Environmental Health, Institute of Biological and Medical Imaging, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
- Chair of Biological Imaging, TranslaTUM, Technische Universität München, Einsteinstr. 25, 81675, München, Germany
| | - Kerriann M. Casey
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Stephen A. Felt
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dieter Saur
- Department of Internal Medicine II, Klinikum Rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, München, Germany
| | - Vasilis Ntziachristos
- Helmholtz Zentrum München, German Researcg Center for Environmental Health, Institute of Biological and Medical Imaging, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
- Chair of Biological Imaging, TranslaTUM, Technische Universität München, Einsteinstr. 25, 81675, München, Germany
| | - Angelika Schnieke
- Chair of Livestock Biotechnology, Technische Universität München, Liesel-Beckmann Str. 1, D-85354 Freising, Germany
| | - Christopher H. Contag
- Corresponding Authors: Prof. C. H. Contag , Prof. S. S. Gambhir , and Dr. S. Harmsen
| | - Sanjiv S. Gambhir
- Corresponding Authors: Prof. C. H. Contag , Prof. S. S. Gambhir , and Dr. S. Harmsen
| | - Stefan Harmsen
- Corresponding Authors: Prof. C. H. Contag , Prof. S. S. Gambhir , and Dr. S. Harmsen
| |
Collapse
|
2
|
Williet N, Petcu CA, Rinaldi L, Cottier M, Del Tedesco E, Clavel L, Dumas O, Jarlot C, Bouarioua N, Roblin X, Peoc'h M, Phelip JM. The level of epidermal growth factor receptors expression is correlated with the advancement of colorectal adenoma: validation of a surface biomarker. Oncotarget 2017; 8:16507-16517. [PMID: 28157706 PMCID: PMC5369981 DOI: 10.18632/oncotarget.14961] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 01/08/2017] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Data about the expression of Epidermal Growth Factor Receptors (EGFRs) in colorectal adenomas remain scarce. RESULTS 101 patients were enrolled including 53 controls. All adenomas (n = 38) and CRC (n = 5) were EGFR positive. Hyperplastic polyps (HP) (n = 8) and control colons (n = 53) were EGFR negative in half of cases (p < 0.0001). A well significant gradient of increased EGFR expression was observed between adjacent mucosa, hyperplastic lesions, low grade dysplasia (LGD) (n = 30), high grade dysplasia (HGD) adenomas (n = 9) and cancers (p < 0.0001). EGFR overexpression was reported in 100% of cancers, 77.8% of HGD, and 10% of LGD adenomas. By multivariate analysis in adenomas, associated factors with EGFR overexpression were HGD and tubulo-villous feature. MATERIALS AND METHODS All patients undergoing colonoscopy in the university center of Saint-Etienne were eligible to the study from December 2015 to March 2016. In patients with colorectal neoplasia (lesions group), biopsies were performed on the lesion before its resection, and on the adjacent and distal colon mucosa. In control group, biopsies were performed in the right and left side colon. The EGFR expression was assessed by immunohistochemical scores (Goldstein grade, intensity of staining, composite score), using a primary mouse monoclonal antibody (EGFR, clone 113, Novocastra). Outcomes were compared using Kruskal-Wallis and/or Mann-Whitney-U tests, appropriately. The associated clinical, endoscopic and histological factors with EGFR overexpression (composite score ≥ 6) were assessed for adenomas by logistic regression. CONCLUSIONS EGFR are early involved in colorectal carcinogenesis, and their expression is strongly correlated to the neoplasia stage, leading to validate EGFR as an interesting surface biomarker of adenomas.
Collapse
Affiliation(s)
- Nicolas Williet
- Department of Hepato-Gastroenterology, University Hospital of Saint-Etienne, France
| | | | - Leslie Rinaldi
- Department of Hepato-Gastroenterology, University Hospital of Saint-Etienne, France
| | - Michèle Cottier
- Inserm U1059, Saint-Etienne, France.,Laboratory of Cytopathology, University Hospital of Saint-Etienne, France
| | - Emilie Del Tedesco
- Department of Hepato-Gastroenterology, University Hospital of Saint-Etienne, France
| | - Léa Clavel
- Department of Hepato-Gastroenterology, University Hospital of Saint-Etienne, France
| | - Olivier Dumas
- Department of Hepato-Gastroenterology, University Hospital of Saint-Etienne, France
| | - Camille Jarlot
- Department of Hepato-Gastroenterology, University Hospital of Saint-Etienne, France
| | - Nadia Bouarioua
- Department of Hepato-Gastroenterology, University Hospital of Saint-Etienne, France
| | - Xavier Roblin
- Department of Hepato-Gastroenterology, University Hospital of Saint-Etienne, France
| | - Michel Peoc'h
- Department of Pathology, University Hospital of Saint-Etienne, France
| | - Jean-Marc Phelip
- Department of Hepato-Gastroenterology, University Hospital of Saint-Etienne, France
| |
Collapse
|
3
|
Chen J, Zeng F, Forrester SJ, Eguchi S, Zhang MZ, Harris RC. Expression and Function of the Epidermal Growth Factor Receptor in Physiology and Disease. Physiol Rev 2016; 96:1025-1069. [DOI: 10.1152/physrev.00030.2015] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) is the prototypical member of a family of membrane-associated intrinsic tyrosine kinase receptors, the ErbB family. EGFR is activated by multiple ligands, including EGF, transforming growth factor (TGF)-α, HB-EGF, betacellulin, amphiregulin, epiregulin, and epigen. EGFR is expressed in multiple organs and plays important roles in proliferation, survival, and differentiation in both development and normal physiology, as well as in pathophysiological conditions. In addition, EGFR transactivation underlies some important biologic consequences in response to many G protein-coupled receptor (GPCR) agonists. Aberrant EGFR activation is a significant factor in development and progression of multiple cancers, which has led to development of mechanism-based therapies with specific receptor antibodies and tyrosine kinase inhibitors. This review highlights the current knowledge about mechanisms and roles of EGFR in physiology and disease.
Collapse
Affiliation(s)
- Jianchun Chen
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Fenghua Zeng
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Steven J. Forrester
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Satoru Eguchi
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Ming-Zhi Zhang
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Raymond C. Harris
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
4
|
Tjalma JJ, Garcia-Allende PB, Hartmans E, Terwisscha van Scheltinga AG, Boersma-van Ek W, Glatz J, Koch M, van Herwaarden YJ, Bisseling TM, Nagtegaal ID, Timmer-Bosscha H, Koornstra JJ, Karrenbeld A, Kleibeuker JH, van Dam GM, Ntziachristos V, Nagengast WB. Molecular Fluorescence Endoscopy Targeting Vascular Endothelial Growth Factor A for Improved Colorectal Polyp Detection. J Nucl Med 2015; 57:480-5. [PMID: 26678613 DOI: 10.2967/jnumed.115.166975] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Small and flat adenomas are known to carry a high miss-rate during standard white-light endoscopy. Increased detection rate may be achieved by molecular fluorescence endoscopy with targeted near-infrared (NIR) fluorescent tracers. The aim of this study was to validate vascular endothelial growth factor A (VEGF-A) and epidermal growth factor receptor (EGFR)-targeted fluorescent tracers during ex vivo colonoscopy with an NIR endoscopy platform. METHODS VEGF-A and EGFR expression was determined by immunohistochemistry on a large subset of human colorectal tissue samples--48 sessile serrated adenomas/polyps, 70 sporadic high-grade dysplastic adenomas, and 19 hyperplastic polyps--and tissue derived from patients with Lynch syndrome--78 low-grade dysplastic adenomas, 57 high-grade dysplastic adenomas, and 31 colon cancer samples. To perform an ex vivo colonoscopy procedure, 14 mice with small intraperitoneal EGFR-positive HCT116(luc) tumors received intravenous bevacizumab-800CW (anti-VEGF-A), cetuximab-800CW (anti-EGFR), control tracer IgG-800CW, or sodium chloride. Three days later, 8 resected HCT116(luc) tumors (2-5 mm) were stitched into 1 freshly resected human colon specimen and followed by an ex vivo molecular fluorescence colonoscopy procedure. RESULTS Immunohistochemistry showed high VEGF-A expression in 79%-96% and high EGFR expression in 51%-69% of the colorectal lesions. Both targets were significantly overexpressed in the colorectal lesions, compared with the adjacent normal colon crypts. During ex vivo molecular fluorescence endoscopy, all tumors could clearly be delineated for both bevacizumab-800CW and cetuximab-800CW tracers. Specific tumor uptake was confirmed with fluorescent microscopy showing, respectively, stromal and cell membrane fluorescence. CONCLUSION VEGF-A is a promising target for molecular fluorescence endoscopy because it showed a high protein expression, especially in sessile serrated adenomas/polyps and Lynch syndrome. We demonstrated the feasibility to visualize small tumors in real time during colonoscopy using a NIR fluorescence endoscopy platform, providing the endoscopist a wide-field red-flag technique for adenoma detection. Clinical studies are currently being performed in order to provide in-human evaluation of our approach.
Collapse
Affiliation(s)
- Jolien J Tjalma
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - P Beatriz Garcia-Allende
- Chair for Biological Imaging & Institute for Biological and Medical Imaging, Technical University of Munich and Helmholtz Center Munich, Munich, Germany
| | - Elmire Hartmans
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anton G Terwisscha van Scheltinga
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Wytske Boersma-van Ek
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jürgen Glatz
- Chair for Biological Imaging & Institute for Biological and Medical Imaging, Technical University of Munich and Helmholtz Center Munich, Munich, Germany
| | - Maximilian Koch
- Chair for Biological Imaging & Institute for Biological and Medical Imaging, Technical University of Munich and Helmholtz Center Munich, Munich, Germany
| | - Yasmijn J van Herwaarden
- Department of Gastroenterology and Hepatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tanya M Bisseling
- Department of Gastroenterology and Hepatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Iris D Nagtegaal
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hetty Timmer-Bosscha
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan Jacob Koornstra
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Arend Karrenbeld
- Department of Pathology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; and
| | - Jan H Kleibeuker
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Gooitzen M van Dam
- Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Vasilis Ntziachristos
- Chair for Biological Imaging & Institute for Biological and Medical Imaging, Technical University of Munich and Helmholtz Center Munich, Munich, Germany
| | - Wouter B Nagengast
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
5
|
EGFR Overexpressed in Colonic Neoplasia Can be Detected on Wide-Field Endoscopic Imaging. Clin Transl Gastroenterol 2015; 6:e101. [PMID: 26181290 PMCID: PMC4816258 DOI: 10.1038/ctg.2015.28] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/22/2015] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Colorectal cancer initially lies dormant as dysplasia, a premalignant state that provides an opportunity for early cancer detection. Dysplasia can be flat in morphology, focal in size, and patchy in distribution, and thus it appears "invisible" on conventional wide-field endoscopy. AIMS We aim to develop and validate a peptide that is specific for epidermal growth factor receptor (EGFR), a cell surface target that is overexpressed in colonic adenomas and is readily accessible for imaging. METHODS We expressed and purified the extracellular domain of EGFR for use with phage display to identify a peptide QRHKPRE that binds to domain 2 of this target. A near-infrared fluorescence endoscope was used to perform in vivo imaging to validate specific peptide binding to spontaneous colonic adenomas in a mouse model with topical administration. We also validated specific peptide binding to human colonic adenomas on immunohistochemistry and immunofluorescence. RESULTS After labeling with Cy5.5, we validated specific peptide binding to EGFR on knockdown and competition studies. Peptide binding to cells occurred within 2.46 min and had an affinity of 50 nm. No downstream signaling was observed. We measured a target-to-background ratio of 4.0±1.7 and 2.7±0.7, for polyps and flat lesions, respectively. On immunofluorescence of human colonic specimens, greater intensity from peptide binding to dysplasia than normal was found with a 19.4-fold difference. CONCLUSIONS We have selected and validated a peptide that can be used as a specific contrast agent to identify colonic adenomas that overexpress EGFR in vivo on fluorescence endoscopy.
Collapse
|
6
|
Serine Protease Inhibitor Kazal Type 1 (SPINK1) Promotes Proliferation of Colorectal Cancer Through the Epidermal Growth Factor as a Prognostic Marker. Pathol Oncol Res 2015; 21:1201-8. [PMID: 26037168 DOI: 10.1007/s12253-015-9949-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 05/08/2015] [Indexed: 10/23/2022]
Abstract
Serine protease inhibitor Kazal type-1 (SPINK1), a trypsin kinase inhibitor, is involved in inflammation, cell proliferation and carcinogenesis. The role and association between SPINK1, EGFR and Ki-67 in colorectal adenoma (CRA) and colorectal cancer (CRC) are still unknown. In this study, we used immunohistochemical stain to evaluate expression of SPINK1, EGFR and Ki-67 proteins in 30 CRA and 53 CRC patients semiquantitatively, and then analyzed their correlation with clinicopathologic parameters. Our results revealed that SPINK1 expression was noted in the upper and basal parts of the crypts in CRA and was more intensely related with cellular atypia. EGFR expression was found in 13 out of 30 adenomas, including 9 out of 15 adenomas with dysplasia or synchronous CRC (60 %), and 4 out of 15 adenomas without dysplasia (26.7 %). In CRC, high SPINK1 expression was significantly associated with males (p = 0.041) and advanced disease stage (p = 0.015). EGFR positivity was significantly correlated with higher T stage (p = 0.004) and disease stage (stage I-IV, p = 0.017; early vs. late, p = 0.015). Pearson's correlation showed positive correlation between the SPINK1 intensity and EGFR immunoreactivity (p = 0.011), and Ki-67 and SPINK1 intensity or percentage (p = 0.017 and p = 0.039 respectively). In Kaplan-Meier analyses, patients with high SPINK1 intensity tended to have shorter overall survival (p = 0.03). Concomitant expression of high SPINK1 intensity and EGFR was also identified as being associated with poor prognosis (p = 0.015). In conclusion, high SPINK1 expression is associated with advanced stage and poor prognosis. There is positive correlation between high SPINK1 expression, EGFR immunoreactivity, and high Ki-67 labeling index. The SPINK1 protein seems to play a role in tumor proliferation and malignant transformation through the EGFR pathway. SPINK1 may serve as a prognostic biomarker in therapeutic targeting in the future.
Collapse
|
7
|
Abstract
Adenomas are the easily identifiable precursors of the vast majority of colorectal cancers. Some of their morphological features, such as dysplasia, are predictive of their biological evolution toward adenocarcinomas. A large body of evidence has demonstrated that the epidermal growth factor receptor (EGFR) signaling pathway is commonly activated in colorectal cancer and EGFR-target therapies have improved the outcome for colorectal cancer patients. Nevertheless, the mechanisms underlying the role of EGFR in the adenoma-carcinoma sequence are not entirely clear. We retrospectively analyzed EGFR gene copy number by fluorescence in situ hybridization (FISH) in paraffin-embedded tissue from 215 patients recruited through a prospective colorectal cancer screening procedure and undergoing surgical colectomy. We observed that in human colorectal carcinogenesis, EGFR copy number increases progressively, from adenomas with high-grade dysplasia to locally advanced adenocarcinomas, through early invasive adenocarcinomas, suggesting that deregulation of EGFR may correlate with the malignant progression.
Collapse
|
8
|
Karmakar P, Chakrabarti MK. Thermostable direct hemolysin diminishes tyrosine phosphorylation of epidermal growth factor receptor through protein kinase C dependent mechanism. Biochim Biophys Acta Gen Subj 2012; 1820:1073-80. [PMID: 22543197 DOI: 10.1016/j.bbagen.2012.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 04/09/2012] [Accepted: 04/11/2012] [Indexed: 12/20/2022]
Abstract
BACKGROUND Adequate evidence mounts to the fact that several bacteria and their toxins have protective or curative roles in colorectal cancers. Thermostable direct hemolysin (TDH), produced by Vibrio parahaemolyticus, down regulates cell proliferation in colon carcinoma cell lines. TDH induces Ca2+ influx from an extracellular environment accompanied by protein kinase C phosphorylation. Activated protein kinase C inhibits the tyrosine kinase activity of epidermal growth factor receptor (EGFR), the rational target of anti-colorectal cancer therapy. METHODS Immunoblotting analyses were performed to ascertain protein kinase C activation, EGFR status, EGFR phosphorylation and mitogen activated protein kinase (MAPK) activity. Flow cytometry analysis and ELISA reconfirmed tyrosine phosphorylation of EGFR and ERK activations, respectively. PKC-α siRNA knockdown was done to corroborate the involvement of PKC-α in the undertaken study. RESULTS Our study showed the translocation of PKC-α from cytosol to the membrane fraction in colon carcinoma cell lines on incubation with TDH. The EGFR tyrosine kinase activity exhibited a down regulation on TDH treatment which involved PKC-α, as confirmed by siRNA knockdown. Also ERK phosphorylation occurred on PKC-α activation. CONCLUSION TDH activated PKC-α down regulates EGFR tyrosine kinase activity by MEK dependent mechanism involving MAPK. GENERAL SIGNIFICANCE In this study we have seen that TDH has an implication in EGFR based therapeutic approach in colorectal cancer via PKC mediated mechanism.
Collapse
Affiliation(s)
- Poulomee Karmakar
- National Institute of Cholera and Enteric Diseases, Scheme-XM, Beliaghata, Kolkata, India
| | | |
Collapse
|
9
|
Harrison S, Benziger H. The molecular biology of colorectal carcinoma and its implications: A review. Surgeon 2011; 9:200-10. [DOI: 10.1016/j.surge.2011.01.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 01/17/2011] [Accepted: 01/23/2011] [Indexed: 02/07/2023]
|