1
|
Gong H, Liu J, Chen N, Zhao H, He B, Zhang H, Wang W, Tian Y. EDN1 and NTF3 in keloid pathogenesis: computational and experimental evidence as novel diagnostic biomarkers for fibrosis and inflammation. Front Genet 2025; 16:1516451. [PMID: 40051702 PMCID: PMC11882859 DOI: 10.3389/fgene.2025.1516451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/24/2025] [Indexed: 03/09/2025] Open
Abstract
Objective To investigate the roles of oxidative stress-related differentially expressed genes (OSRDEGs) in keloid formation and explore their potential value in diagnosis and treatment. Methods Gene expression data from the GEO database, including GSE145725 and GSE44270 as training sets and GSE7890 as a validation set, were utilized. OSRDEGs were identified, followed by Weighted Gene Co-expression Network Analysis (WGCNA), GO/KEGG enrichment analysis, and Gene Set Enrichment Analysis (GSEA). Key genes were further screened through protein-protein interaction (PPI) network analysis and receiver operating characteristic (ROC) curve analysis. miRNA targets, transcription factors (TF), and potential drug targets of these genes were predicted. Immune cell infiltration analysis was performed to assess the association between OSRDEGs and immune cells, which was validated using GSE7890. Finally, the expression of key genes was experimentally validated using quantitative PCR (qPCR), immunohistochemistry (IHC), and hematoxylin-eosin (HE) staining. Results A total of 13 OSRDEGs were identified. WGCNA and functional enrichment analyses revealed that these genes were primarily involved in fibrosis and inflammatory processes in keloids, such as the MAPK signaling pathway, lymphocyte and monocyte proliferation, and inflammatory pathways involving IL-18 and IL-23. PPI network analysis, ROC analysis, and immune infiltration results identified Endothelin-1 (EDN1) and Neurotrophin-3(NTF3) as key genes with high sensitivity and specificity. These genes were positively and negatively correlated with activated mast cells, respectively, suggesting their dual regulatory roles in fibrosis and inflammation. External dataset validation, qPCR, correlation analysis, HE staining, and IHC results demonstrated that EDN1 and NTF3 were highly expressed in keloid tissues and were associated with excessive collagen deposition and immune cell infiltration. Conclusion EDN1 and NTF3, as OSRDEGs, play critical roles in the pathogenesis and progression of keloids. They may contribute to fibrosis and inflammation through the regulation of oxidative stress, the MAPK signaling pathway, and mast cell activation. These findings highlight EDN1 and NTF3 as potential diagnostic biomarkers and therapeutic targets, providing novel insights into the pathogenesis and treatment strategies for keloids.
Collapse
Affiliation(s)
- Hui Gong
- Department of Dermatology and Medical Aesthetics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Liu
- Department of Pathogen Biology, College of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Nanji Chen
- Center of Medical Cosmetology, The People’s Hospital of Wusheng, Chongqing, China
| | - Hengguang Zhao
- Department of Dermatology and Medical Aesthetics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bailin He
- Department of Dermatology and Medical Aesthetics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongpei Zhang
- Department of Dermatology and Medical Aesthetics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenping Wang
- Department of Dermatology and Medical Aesthetics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Tian
- Department of Dermatology and Medical Aesthetics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Marinescu DC, Wong AW, Shah A, Hague CJ, Murphy D, Yang J, Johnston J, Leung J, Carlsten C, Ryerson CJ. Role of IPF genetic risk loci in post-COVID-19 lung abnormalities: a cohort study. BMJ Open Respir Res 2025; 12:e002725. [PMID: 39832890 PMCID: PMC11752054 DOI: 10.1136/bmjresp-2024-002725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 12/05/2024] [Indexed: 01/22/2025] Open
Abstract
INTRODUCTION Persistent lung abnormalities following COVID-19 infection are common. Similar parenchymal changes are observed in idiopathic pulmonary fibrosis (IPF). We investigated whether common genetic risk factors in IPF are associated with developing lung parenchymal abnormalities following severe COVID-19 disease. METHODS Consecutive adults hospitalised for laboratory-confirmed COVID-19 infection were prospectively recruited from March to May 2020. Three single-nucleotide polymorphisms (SNPs) conferring risk for IPF were genotyped (MUC5B rs35705950, ATP11A rs1278769 and DPP9 rs12610495). High-resolution CT and pulmonary function tests were performed at 3 months postdischarge from hospital. Ground glass opacities and reticulation on imaging were visually quantified by two expert thoracic radiologists. Linear regression was used to evaluate the association between risk alleles at each of the three SNPs and (a) lung parenchymal abnormalities as well as (b) pulmonary function, adjusted for age, sex, smoking history and days spent on supplemental oxygen during acute illness. RESULTS 71 patients were included. Mean age was 63±16 years, 62% were male, 31% were ever-smokers and median hospital length of stay was 9±11 days, with 23% requiring mechanical ventilation. The MUC5B risk allele was associated with a significant decrease in ground glass (β=-0.8, 95% CI -1.5 to -0.1, p=0.02) at 3 months, and this finding was paralleled by a concurrent but non-significant trend towards increased diffusion capacity for carbon monoxide (DLCO) (β=8.8, 95% CI -1.2 to 18.8, p=0.08) compared with patients without this risk allele. None of the risk alleles were significantly associated with reticulation at 3 months. CONCLUSION In an adjusted analysis controlling for severity of infection, MUC5B was associated with reduced ground glass and a trend towards concordant higher DLCO at 3 months after severe COVID-19 illness. This hypothesis-generating result suggests a possible protective effect of MUC5B in postinfectious lung abnormalities as compared with fibrosis in IPF, highlighting a plausible trade-off between its role in immune defence and epithelial cell function.
Collapse
Affiliation(s)
- Daniel-Costin Marinescu
- Division of Respiratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Lung Health, Vancouver, British Columbia, Canada
- Centre for Heart Lung Innovation, Vancouver, British Columbia, Canada
| | - Alyson W Wong
- Division of Respiratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Heart Lung Innovation, Vancouver, British Columbia, Canada
| | - Aditi Shah
- Division of Respiratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Lung Health, Vancouver, British Columbia, Canada
| | - Cameron J Hague
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Darra Murphy
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Julia Yang
- Centre for Heart Lung Innovation, Vancouver, British Columbia, Canada
| | - James Johnston
- Division of Respiratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Janice Leung
- Division of Respiratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Heart Lung Innovation, Vancouver, British Columbia, Canada
| | - Christopher Carlsten
- Division of Respiratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Lung Health, Vancouver, British Columbia, Canada
- Centre for Heart Lung Innovation, Vancouver, British Columbia, Canada
| | - Christopher J Ryerson
- Division of Respiratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Heart Lung Innovation, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Lettieri S, Bertuccio FR, del Frate L, Perrotta F, Corsico AG, Stella GM. The Plastic Interplay between Lung Regeneration Phenomena and Fibrotic Evolution: Current Challenges and Novel Therapeutic Perspectives. Int J Mol Sci 2023; 25:547. [PMID: 38203718 PMCID: PMC10779349 DOI: 10.3390/ijms25010547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Interstitial lung diseases (ILDs) are a heterogeneous group of pulmonary disorders characterized by variable degrees of inflammation, interstitial thickening, and fibrosis leading to distortion of the pulmonary architecture and gas exchange impairment. Among them, idiopathic pulmonary fibrosis (IPF) displays the worst prognosis. The only therapeutic options consist of the two antifibrotic drugs, pirfenidone and nintedanib, which limit fibrosis progression but do not reverse the lung damage. The shift of the pathogenetic paradigm from inflammatory disease to epithelium-derived disease has definitively established the primary role of type II alveolar cells, which lose their epithelial phenotype and acquire a mesenchymal phenotype with production of collagen and extracellular matrix (EMC) deposition. Some predisposing environmental and genetic factors (e.g., smoke, pollution, gastroesophageal reflux, variants of telomere and surfactant genes) leading to accelerated senescence set a pro-fibrogentic microenvironment and contribute to the loss of regenerative properties of type II epithelial cells in response to pathogenic noxae. This review provides a complete overview of the different pathogenetic mechanisms leading to the development of IPF. Then, we summarize the currently approved therapies and the main clinical trials ongoing. Finally, we explore the potentialities offered by agents not only interfering with the processes of fibrosis but also restoring the physiological properties of alveolar regeneration, with a particular focus on potentialities and concerns about cell therapies based on mesenchymal stem cells (MSCs), whose anti-inflammatory and immunomodulant properties have been exploited in other fibrotic diseases, such as graft versus host disease (GVHD) and COVID-19-related ARDS.
Collapse
Affiliation(s)
- Sara Lettieri
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (S.L.); (F.R.B.); (L.d.F.); (A.G.C.)
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Francesco R. Bertuccio
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (S.L.); (F.R.B.); (L.d.F.); (A.G.C.)
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Lucia del Frate
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (S.L.); (F.R.B.); (L.d.F.); (A.G.C.)
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Fabio Perrotta
- Department of Translational Medical Science, University of Campania Luigi Vanvitelli, 80055 Naples, Italy;
| | - Angelo G. Corsico
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (S.L.); (F.R.B.); (L.d.F.); (A.G.C.)
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Giulia M. Stella
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (S.L.); (F.R.B.); (L.d.F.); (A.G.C.)
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| |
Collapse
|
4
|
Strykowski R, Adegunsoye A. Idiopathic Pulmonary Fibrosis and Progressive Pulmonary Fibrosis. Immunol Allergy Clin North Am 2023; 43:209-228. [PMID: 37055085 DOI: 10.1016/j.iac.2023.01.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF), a common interstitial lung disease (ILD), is a chronic, progressive fibrosing interstitial pneumonia, with an unknown cause. IPF has been linked to several genetic and environmental risk factors. Disease progression is common and associated with worse outcomes. Management often encompasses pharmacotherapy, supportive interventions, addressing comorbidities when present, and treating hypoxia with ambulatory O2. Consideration for antifibrotic therapy and lung transplantation evaluation should occur early. Patients with ILD other than IPF, and who have radiological evidence of pulmonary fibrosis, may have progressive pulmonary fibrosis.
Collapse
|
5
|
Kato K, Papageorgiou I, Shin YJ, Kleinhenz JM, Palumbo S, Hahn S, Irish JD, Rounseville SP, Knox KS, Hecker L. Lung-Targeted Delivery of Dimethyl Fumarate Promotes the Reversal of Age-Dependent Established Lung Fibrosis. Antioxidants (Basel) 2022; 11:492. [PMID: 35326142 PMCID: PMC8944574 DOI: 10.3390/antiox11030492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 01/27/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF), a severe and deadly form of lung fibrosis, is widely regarded as a disease of aging. We previously demonstrated that aged mice with persistent lung fibrosis and IPF lung myofibroblasts exhibit deficient Nrf2-mediated antioxidant responses. Tecfidera is an orally administered FDA-approved drug for the treatment of multiple sclerosis, where the active pharmaceutical ingredient is dimethyl fumarate (DMF), an active Nrf2 activator. However, no studies have evaluated the efficacy of DMF for age-associated persistent lung fibrosis. Here, we demonstrate that in IPF lung fibroblasts, DMF treatment inhibited both TGF-β-mediated pro-fibrotic phenotypes and led to a reversal of established pro-fibrotic phenotypes. We also evaluated the pre-clinical efficacy of lung-targeted (inhaled) vs. systemic (oral) delivery of DMF in an aging murine model of bleomycin-induced persistent lung fibrosis. DMF or vehicle was administered daily to aged mice by oral gavage or intranasal delivery from 3-6 weeks post-injury when mice exhibited non-resolving lung fibrosis. In contrast to systemic (oral) delivery, only lung-targeted (inhaled) delivery of DMF restored lung Nrf2 expression levels, reduced lung oxidative stress, and promoted the resolution of age-dependent established fibrosis. This is the first study to demonstrate the efficacy of lung-targeted DMF delivery to promote the resolution of age-dependent established lung fibrosis.
Collapse
Affiliation(s)
- Kosuke Kato
- Division of Pulmonary, Allergy and Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA; (K.K.); (I.P.); (Y.-J.S.); (J.M.K.)
| | - Ioannis Papageorgiou
- Division of Pulmonary, Allergy and Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA; (K.K.); (I.P.); (Y.-J.S.); (J.M.K.)
| | - Yoon-Joo Shin
- Division of Pulmonary, Allergy and Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA; (K.K.); (I.P.); (Y.-J.S.); (J.M.K.)
| | - Jennifer M. Kleinhenz
- Division of Pulmonary, Allergy and Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA; (K.K.); (I.P.); (Y.-J.S.); (J.M.K.)
| | - Sunny Palumbo
- Division of Pulmonary, Allergy and Critical Care and Sleep Medicine, Department of Medicine, University of Arizona, Tucson, AZ 85721, USA; (S.P.); (S.H.); (J.D.I.); (S.P.R.)
| | - Seongmin Hahn
- Division of Pulmonary, Allergy and Critical Care and Sleep Medicine, Department of Medicine, University of Arizona, Tucson, AZ 85721, USA; (S.P.); (S.H.); (J.D.I.); (S.P.R.)
| | - Joseph D. Irish
- Division of Pulmonary, Allergy and Critical Care and Sleep Medicine, Department of Medicine, University of Arizona, Tucson, AZ 85721, USA; (S.P.); (S.H.); (J.D.I.); (S.P.R.)
| | - Skye P. Rounseville
- Division of Pulmonary, Allergy and Critical Care and Sleep Medicine, Department of Medicine, University of Arizona, Tucson, AZ 85721, USA; (S.P.); (S.H.); (J.D.I.); (S.P.R.)
| | - Kenneth S. Knox
- Division of Pulmonary, Allergy and Critical Care and Sleep Medicine, Department of Medicine, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA;
| | - Louise Hecker
- Division of Pulmonary, Allergy and Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA; (K.K.); (I.P.); (Y.-J.S.); (J.M.K.)
- Atlanta VA Healthcare System, Atlanta, GA 30033, USA
| |
Collapse
|
6
|
Akbar I, Mann J, Niewodowski D, Mackintosh J, Glaspole IN, Barnes H. Antifibrotic therapies for idiopathic pulmonary fibrosis. Hippokratia 2021. [DOI: 10.1002/14651858.cd015076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ihya Akbar
- Universitas Indonesia; Jakarta Indonesia
- Monash University; Melbourne Australia
| | - Jennifer Mann
- Department of Respiratory and Sleep Medicine; Austin Health; Melbourne Australia
- The Institute for Breathing and Sleep; Melbourne Australia
| | | | | | - Ian N Glaspole
- Monash University; Melbourne Australia
- Department of Allergy, Immunology and Respiratory Medicine; Alfred Health; Melbourne Australia
| | - Hayley Barnes
- Monash University; Melbourne Australia
- Department of Allergy, Immunology and Respiratory Medicine; Alfred Health; Melbourne Australia
| |
Collapse
|
7
|
Kato K, Logsdon NJ, Shin YJ, Palumbo S, Knox A, Irish JD, Rounseville SP, Rummel SR, Mohamed M, Ahmad K, Trinh JM, Kurundkar D, Knox KS, Thannickal VJ, Hecker L. Impaired Myofibroblast Dedifferentiation Contributes to Nonresolving Fibrosis in Aging. Am J Respir Cell Mol Biol 2020; 62:633-644. [PMID: 31962055 DOI: 10.1165/rcmb.2019-0092oc] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal age-associated disease with no cure. Although IPF is widely regarded as a disease of aging, the cellular mechanisms that contribute to this age-associated predilection remain elusive. In this study, we sought to evaluate the consequences of senescence on myofibroblast cell fate and fibrotic responses to lung injury in the context of aging. We demonstrated that nonsenescent lung myofibroblasts maintained the capacity for dedifferentiation, whereas senescent/IPF myofibroblasts exhibited an impaired capacity for dedifferentiation. We previously demonstrated that the transcription factor MyoD acts as a critical switch in the differentiation and dedifferentiation of myofibroblasts. Here, we demonstrate that decreased levels of MyoD preceded myofibroblast dedifferentiation and apoptosis susceptibility in nonsenescent cells, whereas MyoD expression remained elevated in senescent/IPF myofibroblasts, which failed to undergo dedifferentiation and demonstrated resistance to apoptosis. Genetic strategies to silence MyoD restored the susceptibility of IPF myofibroblasts to undergo apoptosis and led to a partial reversal of age-associated persistent fibrosis in vivo. The capacity for myofibroblast dedifferentiation and subsequent apoptosis may be critical for normal physiologic responses to tissue injury, whereas restricted dedifferentiation and apoptosis resistance in senescent cells may underlie the progressive nature of age-associated human fibrotic disorders. These studies support the concept that senescence may promote profibrotic effects via impaired myofibroblast dedifferentiation and apoptosis resistance, which contributes to myofibroblast accumulation and ultimately persistent fibrosis in aging.
Collapse
Affiliation(s)
- Kosuke Kato
- Division of Pulmonary, Allergy and Critical Care and Sleep Medicine, University of Arizona, Tucson, Arizona
| | - Naomi J Logsdon
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Yoon-Joo Shin
- Division of Pulmonary, Allergy and Critical Care and Sleep Medicine, University of Arizona, Tucson, Arizona
| | - Sunny Palumbo
- Division of Pulmonary, Allergy and Critical Care and Sleep Medicine, University of Arizona, Tucson, Arizona
| | - Adam Knox
- Division of Pulmonary, Allergy and Critical Care and Sleep Medicine, University of Arizona, Tucson, Arizona
| | - Joseph D Irish
- Division of Pulmonary, Allergy and Critical Care and Sleep Medicine, University of Arizona, Tucson, Arizona
| | - Skye P Rounseville
- Division of Pulmonary, Allergy and Critical Care and Sleep Medicine, University of Arizona, Tucson, Arizona
| | - Sydney R Rummel
- Division of Pulmonary, Allergy and Critical Care and Sleep Medicine, University of Arizona, Tucson, Arizona
| | - Mohamed Mohamed
- Division of Pulmonary, Allergy and Critical Care and Sleep Medicine, University of Arizona, Tucson, Arizona
| | - Kareem Ahmad
- Division of Pulmonary, Allergy and Critical Care and Sleep Medicine, University of Arizona, Tucson, Arizona
| | - Johnny M Trinh
- Division of Pulmonary, Allergy and Critical Care and Sleep Medicine, University of Arizona, Tucson, Arizona
| | - Deepali Kurundkar
- Division of Pulmonary, Allergy and Critical Care and Sleep Medicine, University of Arizona, Tucson, Arizona
| | - Kenneth S Knox
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona
| | - Victor J Thannickal
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama.,Birmingham VA Medical Center, Birmingham, Alabama; and
| | - Louise Hecker
- Division of Pulmonary, Allergy and Critical Care and Sleep Medicine, University of Arizona, Tucson, Arizona.,Southern Arizona VA Health Care System, Tucson, Arizona
| |
Collapse
|
8
|
NADPH oxidases: Pathophysiology and therapeutic potential in age-associated pulmonary fibrosis. Redox Biol 2020; 33:101541. [PMID: 32360174 PMCID: PMC7251244 DOI: 10.1016/j.redox.2020.101541] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress has been associated with a number of human fibrotic diseases, including idiopathic pulmonary fibrosis (IPF). Although oxidative stress is associated with both fibrosis and aging, the precise cellular sources(s) of reactive oxygen species (ROS) that contribute to the disease pathogenesis remain poorly understood. NADPH oxidase (Nox) enzymes are an evolutionarily conserved family, where their only known function is the production of ROS. A growing body of evidence supports a link between excessive Nox-derived ROS and numerous chronic diseases (including fibrotic disease), which is most prevalent among the elderly population. In this review, we examine the evidence for Nox isoforms in the pathogenesis of IPF, and the potential to target this enzyme family for the treatment of IPF and related fibrotic disorders. A better understanding of the Nox-mediated redox imbalance in aging may be critical to the development of more effective therapeutic strategies for age-associated fibrotic disorders. Strategies aimed at specifically blocking the source(s) of ROS through Nox inhibition may prove to be more effective as anti-fibrotic therapies, as compared to antioxidant approaches. This review also discusses the potential of Nox-targeting therapeutics currently in development.
Collapse
|
9
|
Chu SG, Poli De Frias S, Sakairi Y, Kelly RS, Chase R, Konishi K, Blau A, Tsai E, Tsoyi K, Padera RF, Sholl LM, Goldberg HJ, Mallidi HR, Camp PC, El-Chemaly SY, Perrella MA, Choi AMK, Washko GR, Raby BA, Rosas IO. Biobanking and cryopreservation of human lung explants for omic analysis. Eur Respir J 2020; 55:13993003.01635-2018. [PMID: 31699836 DOI: 10.1183/13993003.01635-2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/10/2019] [Indexed: 02/05/2023]
Affiliation(s)
- Sarah G Chu
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,These authors contributed equally to the manuscript
| | - Sergio Poli De Frias
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,These authors contributed equally to the manuscript
| | - Yuichi Sakairi
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rachel S Kelly
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Robert Chase
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kazuhisa Konishi
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ashley Blau
- Partners Biobank and Translational Genomics Core, Harvard Medical School, Boston, MA, USA
| | - Ellen Tsai
- Partners Biobank and Translational Genomics Core, Harvard Medical School, Boston, MA, USA
| | - Konstantin Tsoyi
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Robert F Padera
- Dept of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lynette M Sholl
- Dept of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hilary J Goldberg
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hari R Mallidi
- Division of Thoracic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Phillip C Camp
- Division of Thoracic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Souheil Y El-Chemaly
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mark A Perrella
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Dept of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - George R Washko
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Benjamin A Raby
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Division of Pulmonary and Respiratory Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ivan O Rosas
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Habiel DM, Espindola MS, Kitson C, Azzara AV, Coelho AL, Stripp B, Hogaboam CM. Characterization of CD28 null T cells in idiopathic pulmonary fibrosis. Mucosal Immunol 2019; 12:212-222. [PMID: 30315241 PMCID: PMC6301115 DOI: 10.1038/s41385-018-0082-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/02/2018] [Accepted: 08/08/2018] [Indexed: 02/04/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fibrotic lung disease, with unknown etiopathogenesis and suboptimal therapeutic options. Previous reports have shown that increased T-cell numbers and CD28null phenotype is predictive of prognosis in IPF, suggesting that these cells might have a role in this disease. Flow cytometric analysis of explanted lung cellular suspensions showed a significant increase in CD8+ CD28null T cells in IPF relative to normal lung explants. Transcriptomic analysis of CD3+ T cells isolated from IPF lung explants revealed a loss of CD28-transcript expression and elevation of pro-inflammatory cytokine expression in IPF relative to normal T cells. IPF lung explant-derived T cells (enriched with CD28null T cells), but not normal donor lung CD28+ T cells induced dexamethasone-resistant lung remodeling in humanized NSG mice. Finally, CD28null T cells expressed similar CTLA4 and significantly higher levels of PD-1 proteins relative to CD28+ T cells and blockade of either proteins in humanized NSG mice, using anti-CTLA4, or anti-PD1, mAb treatment-accelerated lung fibrosis. Together, these results demonstrate that IPF CD28null T cells may promote lung fibrosis but the immune checkpoint proteins, CTLA-4 and PD-1, appears to limit this effect.
Collapse
Affiliation(s)
- David M Habiel
- Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
| | - Milena S Espindola
- Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Chris Kitson
- Bristol-Myers Squibb, Fibrosis Discovery Biology, Pennington, NJ, 08534, USA
| | - Anthony V Azzara
- Bristol-Myers Squibb, Fibrosis Discovery Biology, Pennington, NJ, 08534, USA
| | - Ana Lucia Coelho
- Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Barry Stripp
- Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Cory M Hogaboam
- Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
| |
Collapse
|
11
|
Habiel DM, Espindola MS, Coelho AL, Hogaboam CM. Modeling Idiopathic Pulmonary Fibrosis in Humanized Severe Combined Immunodeficient Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:891-903. [PMID: 29378172 PMCID: PMC5954978 DOI: 10.1016/j.ajpath.2017.12.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 12/11/2017] [Accepted: 12/28/2017] [Indexed: 12/17/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fibrotic lung disease of unknown etiopathogenesis with limited therapeutic options. IPF is characterized by an abundance of fibroblasts and loss of epithelial progenitors, which cumulates in unrelenting fibrotic lung remodeling and loss of normal oxygenation. IPF has been challenging to model in rodents; nonetheless, mouse models of lung fibrosis provide clues as to the natural progression of lung injury and remodeling, but many have not been useful in predicting efficacy of therapeutics in clinical IPF. We provide a detailed methodologic description of various iterations of humanized mouse models, initiated by the i.v. injection of cells from IPF lung biopsy or explants specimens into severe combined immunodeficiency (SCID)/beige or nonobese diabetic SCID γ mice. Unlike cells from normal lung samples, IPF cells promote persistent, nonresolving lung remodeling in SCID mice. Finally, we provide examples and discuss potential advantages and pitfalls of human-specific targeting approaches in a humanized SCID model of pulmonary fibrosis.
Collapse
Affiliation(s)
- David M Habiel
- Women's Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California.
| | - Milena S Espindola
- Women's Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Ana L Coelho
- Women's Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Cory M Hogaboam
- Women's Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California.
| |
Collapse
|
12
|
Griffiths K, Habiel DM, Jaffar J, Binder U, Darby WG, Hosking CG, Skerra A, Westall GP, Hogaboam CM, Foley M. Anti-fibrotic Effects of CXCR4-Targeting i-body AD-114 in Preclinical Models of Pulmonary Fibrosis. Sci Rep 2018; 8:3212. [PMID: 29453386 PMCID: PMC5816662 DOI: 10.1038/s41598-018-20811-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/24/2018] [Indexed: 01/19/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic fibrotic lung disease that is prevalent in individuals >50 years of age, with a median survival of 3–5 years and limited therapeutic options. The disease is characterized by collagen deposition and remodeling of the lung parenchyma in a process that is thought to be driven by collagen-expressing immune and structural cells. The G-protein coupled C-X-C chemokine receptor 4, CXCR4, is a candidate therapeutic target for IPF owing to its role in the recruitment of CXCR4+ fibrocytes from the bone marrow to fibrotic lung tissue and its increased expression levels by structural cells in fibrotic lung tissue. We have engineered a novel fully human single domain antibody “i-body” called AD-114 that binds with high affinity to human CXCR4. We demonstrate here that AD-114 inhibits invasive wound healing and collagen 1 secretion by human IPF fibroblasts but not non-diseased control lung fibroblasts. Furthermore, in a murine bleomycin model of pulmonary fibrosis, AD-114 reduced the accumulation of fibrocytes (CXCR4+/Col1+/CD45+) in fibrotic murine lungs and ameliorated the degree of lung injury. Collectively, these studies demonstrate that AD-114 holds promise as a new biological therapeutic for the treatment of IPF.
Collapse
Affiliation(s)
- K Griffiths
- AdAlta Limited, La Trobe University, 15/2 Park Drive, Bundoora, 3083, Australia.,The Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, 3086, Australia
| | - D M Habiel
- Cedars-Sinai, Medical Centre, Los Angeles, CA, 90048, USA
| | - J Jaffar
- Department of Respiratory Medicine, Alfred Hospital and Monash University, Melbourne, Victoria, 3000, Australia
| | - U Binder
- XL-protein GmbH, Lise-Meitner-Str. 30, 85354, Freising, Germany
| | - W G Darby
- AdAlta Limited, La Trobe University, 15/2 Park Drive, Bundoora, 3083, Australia.,The Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, 3086, Australia
| | - C G Hosking
- AdAlta Limited, La Trobe University, 15/2 Park Drive, Bundoora, 3083, Australia.,The Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, 3086, Australia
| | - A Skerra
- XL-protein GmbH, Lise-Meitner-Str. 30, 85354, Freising, Germany
| | - G P Westall
- Department of Respiratory Medicine, Alfred Hospital and Monash University, Melbourne, Victoria, 3000, Australia
| | - C M Hogaboam
- Cedars-Sinai, Medical Centre, Los Angeles, CA, 90048, USA
| | - M Foley
- AdAlta Limited, La Trobe University, 15/2 Park Drive, Bundoora, 3083, Australia. .,The Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, 3086, Australia.
| |
Collapse
|
13
|
TRAIL-Dependent Resolution of Pulmonary Fibrosis. Mediators Inflamm 2018; 2018:7934362. [PMID: 29670467 PMCID: PMC5833466 DOI: 10.1155/2018/7934362] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/02/2017] [Indexed: 02/06/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common form of interstitial lung disease characterized by the persistence of activated myofibroblasts resulting in excessive deposition of extracellular matrix proteins and profound tissue remodeling. In the present study, the expression of tumor necrosis factor- (TNF-) related apoptosis-inducing ligand (TRAIL) was key to the resolution of bleomycin-induced pulmonary fibrosis. Both in vivo and in vitro studies demonstrated that Gr-1+TRAIL+ bone marrow-derived myeloid cells blocked the activation of lung myofibroblasts. Although soluble TRAIL was increased in plasma from IPF patients, the presence of TRAIL+ myeloid cells was markedly reduced in IPF lung biopsies, and primary lung fibroblasts from this patient group expressed little of the TRAIL receptor-2 (DR5) when compared with appropriate normal samples. IL-13 was a potent inhibitor of DR5 expression in normal fibroblasts. Together, these results identified TRAIL+ myeloid cells as a critical mechanism in the resolution of pulmonary fibrosis, and strategies directed at promoting its function might have therapeutic potential in IPF.
Collapse
|
14
|
Hecker L. Mechanisms and consequences of oxidative stress in lung disease: therapeutic implications for an aging populace. Am J Physiol Lung Cell Mol Physiol 2017; 314:L642-L653. [PMID: 29351446 DOI: 10.1152/ajplung.00275.2017] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The rapid expansion of the elderly population has led to the recent epidemic of age-related diseases, including increased incidence and mortality of chronic and acute lung diseases. Numerous studies have implicated aging and oxidative stress in the pathogenesis of various pulmonary diseases; however, despite recent advances in these fields, the specific contributions of aging and oxidative stress remain elusive. This review will discuss the consequences of aging on lung morphology and physiology, and how redox imbalance with aging contributes to lung disease susceptibility. Here, we focus on three lung diseases for which aging is a significant risk factor: acute respiratory distress syndrome (ARDS), chronic obstructive pulmonary disease (COPD), and idiopathic pulmonary fibrosis (IPF). Preclinical and clinical development for redox- and senescence-altering therapeutic strategies are discussed, as well as scientific advancements that may direct current and future therapeutic development. A deeper understanding of how aging impacts normal lung function, redox balance, and injury-repair processes will inspire the development of new therapies to prevent and/or reverse age-associated pulmonary diseases, and ultimately increase health span and longevity. This review is intended to encourage basic, clinical, and translational research that will bridge knowledge gaps at the intersection of aging, oxidative stress, and lung disease to fuel the development of more effective therapeutic strategies for lung diseases that disproportionately afflict the elderly.
Collapse
Affiliation(s)
- Louise Hecker
- Division of Pulmonary, Allergy and Critical Care and Sleep Medicine, University of Arizona , Tucson, Arizona and Southern Arizona Veterans Affairs Health Care System, Tucson, Arizona
| |
Collapse
|
15
|
Chen C, Yun XJ, Liu LZ, Guo H, Liu LF, Chen XL. Exogenous nitric oxide enhances the prophylactic effect of aminoguanidine, a preferred iNOS inhibitor, on bleomycin-induced fibrosis in the lung: Implications for the direct roles of the NO molecule in vivo. Nitric Oxide 2017; 70:31-41. [PMID: 28757441 DOI: 10.1016/j.niox.2017.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 06/12/2017] [Accepted: 07/25/2017] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Inducible nitric oxide synthase (iNOS) aggravates and endothelial nitric oxide synthase (eNOS) ameliorates fibrosis in the lung. Our previous study demonstrated that aminoguanidine (AG), a preferred iNOS inhibitor, prevents bleomycin-induced injury and fibrosis in the lung. The diethylenetriamine nitric oxide adduct (DETA/NO) is a slow-release NO donor. Here, to clarify the exact role of the nitric oxide (NO) molecule in the pathogenesis of pulmonary fibrosis in vivo, we observed the effects of inhalation of aerosolized DETA/NO on fibrosis in the lungs of bleomycin-exposed rats with AG treatment, including the effects on the myofibroblast number, collagen deposition, peroxynitrite anion (ONOO-) formation, and injury in the lung. DESIGN AND METHODS Rats received a single intratracheal instillation of bleomycin or normal saline (NS) on day 0, followed by a daily intraperitoneal injection of AG or NS from day 1 to day 13. Each group was additionally given a daily inhalation of DETA/NO or placebo from day 1 to day 13. On day 14, half of the rats in each group was euthanized, and plasma nitrite and nitrate (NOx), myofibroblasts, type I collagen, ONOO- and injury in the lung were estimated by the Griess reaction, western blotting, immunohistochemical staining, sirius red staining, and hematoxylin and eosin (HE) staining, respectively. On day 28, the other half of the rats in each group was euthanized, and the total collagen of the lung was evaluated by hydroxyproline assay. RESULTS ① At the day 14 time point, AG reduced the plasma NOx level in bleomycin rats, while this drug had no significant effect on sham rats. Inhalation of aerosolized DETA/NO increased the plasma NOx level of bleomycin + AG rats, sham rats and sham + AG rats. However, due to large areas of airspace obliteration in the lungs of bleomycin rats, DETA/NO inhalation had no significant effect on the plasma NOx level in these rats. ② At the day 14 time point, AG reduced ONOO- formation (marked by nitrotyrosine, NT), injury, myofibroblast number, and type I collagen deposition in the lungs of bleomycin rats, while this drug had no significant impact on the above parameters in the lungs of sham rats. Interestingly, DETA/NO inhalation enhanced the preventive effects afforded by AG on myofibroblast number and type I collagen deposition, but had no significant impact on ONOO- and injury in lung. ③ At the day 28 time point, because rats were not exposed to DETA/NO after day 13, there was no significant difference of the plasma NOx level in sham rats, sham + AG rats, bleomycin rats, and bleomycin + AG rats between DETA/NO inhalation and placebo inhalation. Interestingly, rats administered both DETA/NO and AG still showed a reduction in total collagen of the entire lung compared to rats administered AG alone at this time point. CONCLUSIONS Exogenous NO enhances the prophylactic effect afforded by AG on the myofibroblast number and collagen deposition in the lungs of bleomycin-treated rats in vivo. These results suggest that NO has a direct antifibrotic effect in lungs, except for the formation of ONOO- in the development of pulmonary fibrosis in vivo.
Collapse
Affiliation(s)
- Chao Chen
- Department of Pathophysiology, Institute of Basic Medicine, Hebei Medical University, 361 Zongshan East Road, Shijiazhuang, Hebei, 050017, PR China; Department of Cardiology, Cangzhou Central Hospital, Cangzhou, Hebei, 061014, PR China
| | - Xiao-Jing Yun
- Department of Pathophysiology, Institute of Basic Medicine, Hebei Medical University, 361 Zongshan East Road, Shijiazhuang, Hebei, 050017, PR China
| | - Li-Ze Liu
- Department of Pathophysiology, Institute of Basic Medicine, Hebei Medical University, 361 Zongshan East Road, Shijiazhuang, Hebei, 050017, PR China
| | - Hong Guo
- Department of Pathophysiology, Institute of Basic Medicine, Hebei Medical University, 361 Zongshan East Road, Shijiazhuang, Hebei, 050017, PR China
| | - Lian-Feng Liu
- Department of Pathophysiology, Institute of Basic Medicine, Hebei Medical University, 361 Zongshan East Road, Shijiazhuang, Hebei, 050017, PR China
| | - Xiao-Ling Chen
- Department of Pathophysiology, Institute of Basic Medicine, Hebei Medical University, 361 Zongshan East Road, Shijiazhuang, Hebei, 050017, PR China.
| |
Collapse
|
16
|
Predescu SA, Zhang J, Bardita C, Patel M, Godbole V, Predescu DN. Mouse Lung Fibroblast Resistance to Fas-Mediated Apoptosis Is Dependent on the Baculoviral Inhibitor of Apoptosis Protein 4 and the Cellular FLICE-Inhibitory Protein. Front Physiol 2017; 8:128. [PMID: 28352235 PMCID: PMC5348516 DOI: 10.3389/fphys.2017.00128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 02/17/2017] [Indexed: 01/01/2023] Open
Abstract
A characteristic feature of idiopathic pulmonary fibrosis (IPF) is accumulation of apoptotic resistant fibroblasts/myofibroblasts in the fibroblastic foci. As caveolin (Cav)-null mice develop pulmonary fibrosis (PF), we hypothesized that the participating fibroblasts display an apoptosis-resistant phenotype. To test this hypothesis and identify the molecular mechanisms involved we isolated lung fibroblasts from Cav-null mice and examined the expression of several inhibitors of apoptosis (IAPs), of c-FLIP, of Bcl-2 proteins and of the death receptor CD95/Fas. We found significant increase in XIAP and c-FLIP constitutive protein expression with no alteration of Bcl-2 and lower levels of CD95/Fas. The isolated fibroblasts were then treated with the CD95/Fas ligand (FasL) to induce apoptosis. While the morphological and biochemical alterations induced by FasL were similar in wild-type (wt) and Cav-null mouse lung fibroblasts, the time course and the extent of the alterations were greater in the Cav-null fibroblasts. Several salient features of Cav-null fibroblasts response such as loss of membrane potential, fragmentation of the mitochondrial continuum concurrent with caspase-8 activation, and subsequent Bid cleavage, prior to caspase-3 activation were detected. Furthermore, M30 antigen formation, phosphatidylserine expression and DNA fragmentation were caspase-3 dependent. SiRNA-mediated silencing of XIAP and c-FLIP, individually or combined, enhanced the sensitivity of lung fibroblasts to FasL-induced apoptosis. Pharmacological inhibition of Bcl-2 had no effect. Together our findings support a mechanism in which CD95/Fas engagement activates caspase-8, inducing mitochondrial apoptosis through Bid cleavage. XIAP and c-FLIP fine tune this process in a cell-type specific manner.
Collapse
Affiliation(s)
- Sanda A Predescu
- Department of Internal Medicine, Division of Pulmonary and Critical Care, Rush University, Medical College Chicago, IL, USA
| | - Jian Zhang
- Department of Biological Sciences, Columbia University New York, NY, USA
| | - Cristina Bardita
- Department of Internal Medicine, Division of Pulmonary and Critical Care, Rush University, Medical College Chicago, IL, USA
| | - Monal Patel
- Northwestern University Feinberg School of Medicine Chicago, IL, USA
| | - Varun Godbole
- Department of Internal Medicine, Division of Pulmonary and Critical Care, Rush University, Medical College Chicago, IL, USA
| | - Dan N Predescu
- Department of Internal Medicine, Division of Pulmonary and Critical Care, Rush University, Medical College Chicago, IL, USA
| |
Collapse
|
17
|
Hecker L, Thannickal VJ. Getting to the core of fibrosis: targeting redox imbalance in aging. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:93. [PMID: 27047952 DOI: 10.21037/atm.2015.12.45] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Louise Hecker
- 1 Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Arizona, Tucson, AZ 85724, USA ; 2 Southern Arizona VA Health Cara System (SAVAHCS), Tucson, AZ 85723, USA ; 3 Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294-0006, USA
| | - Victor J Thannickal
- 1 Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Arizona, Tucson, AZ 85724, USA ; 2 Southern Arizona VA Health Cara System (SAVAHCS), Tucson, AZ 85723, USA ; 3 Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294-0006, USA
| |
Collapse
|
18
|
Wollin L, Wex E, Pautsch A, Schnapp G, Hostettler KE, Stowasser S, Kolb M. Mode of action of nintedanib in the treatment of idiopathic pulmonary fibrosis. Eur Respir J 2015; 45:1434-45. [PMID: 25745043 PMCID: PMC4416110 DOI: 10.1183/09031936.00174914] [Citation(s) in RCA: 667] [Impact Index Per Article: 66.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 01/05/2015] [Indexed: 12/21/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and ultimately fatal disease characterised by fibrosis of the lung parenchyma and loss of lung function. Although the pathogenic pathways involved in IPF have not been fully elucidated, IPF is believed to be caused by repetitive alveolar epithelial cell injury and dysregulated repair, in which there is uncontrolled proliferation of lung fibroblasts and differentiation of fibroblasts into myofibroblasts, which excessively deposit extracellular matrix (ECM) proteins in the interstitial space. A number of profibrotic mediators including platelet-derived growth factor (PDGF), fibroblast growth factor (FGF) and transforming growth factor-β are believed to play important roles in the pathogenesis of IPF. Nintedanib is a potent small molecule inhibitor of the receptor tyrosine kinases PDGF receptor, FGF receptor and vascular endothelial growth factor receptor. Data from in vitro studies have shown that nintedanib interferes with processes active in fibrosis such as fibroblast proliferation, migration and differentiation, and the secretion of ECM. In addition, nintedanib has shown consistent anti-fibrotic and anti-inflammatory activity in animal models of lung fibrosis. These data provide a strong rationale for the clinical efficacy of nintedanib in patients with IPF, which has recently been demonstrated in phase III clinical trials. Nintedanib interferes with processes active in fibrosis, e.g. fibroblast proliferation, migration anddifferentiationhttp://ow.ly/Iae9z
Collapse
Affiliation(s)
- Lutz Wollin
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Eva Wex
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | | | - Gisela Schnapp
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | | | - Susanne Stowasser
- Boehringer Ingelheim Pharma GmbH & Co. KG, Ingelheim am Rhein, Germany
| | | |
Collapse
|
19
|
Habiel DM, Hogaboam C. Heterogeneity in fibroblast proliferation and survival in idiopathic pulmonary fibrosis. Front Pharmacol 2014; 5:2. [PMID: 24478703 PMCID: PMC3899580 DOI: 10.3389/fphar.2014.00002] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 01/06/2014] [Indexed: 12/12/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common form of interstitial lung disease characterized by the persistence of activated myofibroblasts resulting in excessive deposition of extracellular matrix proteins and profound tissue remodeling. Myofibroblasts have been shown to arise from interstitial fibroblasts, epithelial to mesenchymal transition of type II alveolar epithelial cells, and the differentiation of recruited fibrocytes. There are many mechanisms that are utilized by these cells for survival, proliferation, and persistent activation including up-regulation of cytokines [i.e., Interleukin 6 (IL-6) and C-C motif chemokine ligand 21 (CCL21)], cytokine receptors [i.e., Interleukin 6Receptor 1 (IL-6R1), Glycoprotein 130 (gp130) and C-C Chemokine Receptor type 7 (CCR7)], and innate pattern recognition receptors [(PRRs; i.e., Toll Like Receptor 9 (TLR9)]. In this review, we will discuss the role of the cytokines IL-6 and CCL21, their receptors and the PRR, TLR9, in fibroblast recruitment, activation, survival, and differentiation into myofibroblasts in IPF.
Collapse
Affiliation(s)
- David M Habiel
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedar Sinai Medical Center Los Angeles, CA, USA
| | - Cory Hogaboam
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedar Sinai Medical Center Los Angeles, CA, USA
| |
Collapse
|
20
|
Van De Water L, Varney S, Tomasek JJ. Mechanoregulation of the Myofibroblast in Wound Contraction, Scarring, and Fibrosis: Opportunities for New Therapeutic Intervention. Adv Wound Care (New Rochelle) 2013; 2:122-141. [PMID: 24527336 DOI: 10.1089/wound.2012.0393] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Indexed: 12/31/2022] Open
Abstract
SIGNIFICANCE Myofibroblasts are responsible for wound closure that occurs in healed acute wounds. However, their actions can result in disfiguring scar contractures, compromised organ function, and a tumor promoting stroma. Understanding the mechanisms regulating their contractile machinery, gene expression, and lifespan is essential to develop new therapies to control their function. RECENT ADVANCES Mechanical stress and transforming growth factor beta-1 (TGF-β1) regulate myofibroblast differentiation from mesenchymal progenitors. As these precursor cells differentiate, they assemble a contractile apparatus to generate the force used to contract wounds. The mechanisms by which mechanical stress promote expression of contractile genes through the TGF-β1 and serum response factor pathways and offer therapeutic targets to limit myofibroblast function are being elucidated. CRITICAL ISSUES Emerging evidence suggests that the integration of mechanical cues with intracellular signaling pathways is critical to myofibroblast function via its effects on gene expression, cellular contraction, and paracrine signaling with neighboring cells. In addition, while apoptosis is clearly one pathway that can limit myofibroblast lifespan, recent data suggest that pathogenic myofibroblasts can become senescent and adopt a more beneficial phenotype, or may revert to a quiescent state, thereby limiting their function. FUTURE DIRECTIONS Given the important role that myofibroblasts play in pathologies as disparate as cutaneous scarring, organ fibrosis, and tumor progression, knowledge gained in the areas of intracellular signaling networks, mechanical signal transduction, extracellular matrix biology, and cell fate will support efforts to develop new therapies with a wide impact.
Collapse
Affiliation(s)
| | - Scott Varney
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York
| | - James J. Tomasek
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
21
|
|