1
|
Cramer J, Böttcher-Rebmann G, Lenarz T, Rau TS. A method for accurate and reproducible specimen alignment for insertion tests of cochlear implant electrode arrays. Int J Comput Assist Radiol Surg 2024; 19:1883-1893. [PMID: 37204650 PMCID: PMC11582122 DOI: 10.1007/s11548-023-02930-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/19/2023] [Indexed: 05/20/2023]
Abstract
PURPOSE The trajectory along which the cochlear implant electrode array is inserted influences the insertion forces and the probability for intracochlear trauma. Controlling the trajectory is especially relevant for reproducible conditions in electrode insertion tests. Using ex vivo cochlear specimens, manual alignment of the invisibly embedded cochlea is imprecise and hardly reproducible. The aim of this study was to develop a method for creating a 3D printable pose setting adapter to align a specimen along a desired trajectory toward an insertion axis. METHODS Planning points of the desired trajectory into the cochlea were set using CBCT images. A new custom-made algorithm processed these points for automated calculation of a pose setting adapter. Its shape ensures coaxial positioning of the planned trajectory to both the force sensor measuring direction and the insertion axis. The performance of the approach was evaluated by dissecting and aligning 15 porcine cochlear specimens of which four were subsequently used for automated electrode insertions. RESULTS The pose setting adapter could easily be integrated into an insertion force test setup. Its calculation and 3D printing was possible in all 15 cases. Compared to planning data, a mean positioning accuracy of 0.21 ± 0.10 mm at the level of the round window and a mean angular accuracy of 0.43° ± 0.21° were measured. After alignment, four specimens were used for electrode insertions, demonstrating the practical applicability of our method. CONCLUSION In this work, we present a new method, which enables automated calculation and creation of a ready-to-print pose setting adapter for alignment of cochlear specimens in insertion test setups. The approach is characterized by a high level of accuracy and reproducibility in controlling the insertion trajectory. Therefore, it enables a higher degree of standardization in force measurement when performing ex vivo insertion tests and thereby improves reliability in electrode testing.
Collapse
Affiliation(s)
- Jakob Cramer
- Department of Otolaryngology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Georg Böttcher-Rebmann
- Department of Otolaryngology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Thomas Lenarz
- Department of Otolaryngology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Cluster of Excellence EXC 2177/1 "Hearing4all", Hannover Medical School, Hannover, Germany
| | - Thomas S Rau
- Department of Otolaryngology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Cluster of Excellence EXC 2177/1 "Hearing4all", Hannover Medical School, Hannover, Germany
| |
Collapse
|
2
|
Panario J, Bester C, O'Leary S. Predicting Postoperative Speech Perception and Audiometric Thresholds Using Intracochlear Electrocochleography in Cochlear Implant Recipients. Ear Hear 2024; 45:1173-1190. [PMID: 38816899 DOI: 10.1097/aud.0000000000001506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
OBJECTIVES Electrocochleography (ECochG) appears to offer the most accurate prediction of post-cochlear implant hearing outcomes. This may be related to its capacity to interrogate the health of underlying cochlear tissue. The four major components of ECochG (cochlear microphonic [CM], summating potential [SP], compound action potential [CAP], and auditory nerve neurophonic [ANN]) are generated by different cochlear tissue components. Analyzing characteristics of these components can reveal the state of hair and neural cell in a cochlea. There is limited evidence on the characteristics of intracochlear (IC) ECochG recordings measured across the array postinsertion but compared with extracochlear recordings has better signal to noise ratio and spatial specificity. The present study aimed to examine the relationship between ECochG components recorded from an IC approach and postoperative speech perception or audiometric thresholds. DESIGN In 113 human subjects, responses to 500 Hz tone bursts were recorded at 11 IC electrodes across a 22-electrode cochlear implant array immediately following insertion. Responses to condensation and rarefaction stimuli were then subtracted from one another to emphasize the CM and added to one another to emphasize the SP, ANN, and CAP. Maximum amplitudes and extracochlear electrode locations were recorded for each of these ECochG components. These were added stepwise to a multi-factor generalized additive model to develop a best-fit model predictive model for pure-tone audiometric thresholds (PTA) and speech perception scores (speech recognition threshold [SRT] and consonant-vowel-consonant phoneme [CVC-P]) at 3- and 12-month postoperative timepoints. This best-fit model was tested against a generalized additive model using clinical factors alone (preoperative score, age, and gender) as a null model proxy. RESULTS ECochG-factor models were superior to clinical factor models in predicting postoperative PTA, CVC-P, and SRT outcomes at both timepoints. Clinical factor models explained a moderate amount of PTA variance ( r2 = 45.9% at 3-month, 31.8% at 12-month, both p < 0.001) and smaller variances of CVC-P and SRT ( r2 range = 6 to 13.7%, p = 0.008 to 0.113). Age was not a significant predictive factor. ECochG models explained more variance at the 12-month timepoint ( r2 for PTA = 52.9%, CVC-P = 39.6%, SRT = 36.4%) compared with the 3-month one timepoint ( r2 for PTA = 49.4%, CVC-P = 26.5%, SRT = 22.3%). The ECochG model was based on three factors: maximum SP deflection amplitude, and electrode position of CM and SP peaks. Adding neural (ANN and/or CAP) factors to the model did not improve variance explanation. Large negative SP deflection was associated with poorer outcomes and a large positive SP deflection with better postoperative outcomes. Mid-array peaks of SP and CM were both associated with poorer outcomes. CONCLUSIONS Postinsertion IC-ECochG recordings across the array can explain a moderate amount of postoperative speech perception and audiometric thresholds. Maximum SP deflection and its location across the array appear to have a significant predictive value which may reflect the underlying state of cochlear health.
Collapse
Affiliation(s)
- Jared Panario
- Department Otolaryngology, University of Melbourne, Melbourne, Victoria, Australia
| | - Christofer Bester
- Department Otolaryngology, University of Melbourne, Melbourne, Victoria, Australia
| | - Stephen O'Leary
- Department Otolaryngology, University of Melbourne, Melbourne, Victoria, Australia
- Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Vranken B, Schoovaerts M, Geerardyn A, Kerkhofs L, Devos J, Hermans R, Putzeys T, Verhaert N. Innovative computed tomography based mapping of the surgical posterior tympanotomy: An exploratory study. Heliyon 2024; 10:e36335. [PMID: 39262979 PMCID: PMC11388378 DOI: 10.1016/j.heliyon.2024.e36335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/13/2024] Open
Abstract
Robotic devices have recently enhanced cochlear implantation by improving precision resulting in reduced intracochlear damage during electrode insertion. This study aimed to gain first insights into the expected dimensions of the cone-like workspace from the posterior tympanotomy towards the round window membrane. This retrospective chart review analyzed ten postoperative CT scans of adult patients who were implanted with a CI in the past ten years. The dimensions of the cone-like workspace were determined using four landmarks (P1-P4). In the anteroposterior range, P1 and P2 were defined on the edge of the bony layer over the facial nerve and chorda tympani nerve, respectively. In the inferosuperior range, P3 was defined on the bony edge of the incus buttress and P4 was obtained at a distance of 0.45 mm between the facial nerve and the chorda tympani nerve. After selecting the landmarks, the calculations of the dimensions of the surgical access space were done in a standardized coordinate system and presented using descriptive statistics. The cone-like space is limited by two maximal angles, α and β. The average angle α of 19.84 (±3.55) degrees defines the angle towards the round window membrane between P1 and P2. The second average angle β of 53.56 (±10.29) degrees defines the angle towards the round window membrane between P3 and P4. Based on the angles the mean anteroposterior range of 2.25 (±0.42) mm and mean inferosuperior range of 6.73 (±2.42) mm. The distance from the posterior tympanotomy to the round window membrane was estimated at 6.05 (±0.71) mm. These findings present data on the hypothetical maximum workspace in which a future robotically steered insertion tool can be positioned for an optimal automated electrode insertion. A larger sample size is necessary before generalizing these dimensions to a population. Further research including preoperative CT scans is needed for planning robotic-steered cochlear implantation.
Collapse
Affiliation(s)
- Brecht Vranken
- Faculty of Medicine, KU Leuven, Herestraat 49, 3000 Leuven Belgium
| | - Maarten Schoovaerts
- ExpORL, Department of Neurosciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Alexander Geerardyn
- ExpORL, Department of Neurosciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Lore Kerkhofs
- ExpORL, Department of Neurosciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Johannes Devos
- Department of Radiology, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Robert Hermans
- Department of Radiology, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Tristan Putzeys
- ExpORL, Department of Neurosciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Nicolas Verhaert
- ExpORL, Department of Neurosciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
- Department of Otorhinolaryngology - Head & Neck Surgery, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
4
|
Torres R, Daoudi H, Gu W, Breil E, Ferrary E, Sterkers O, Nguyen Y, Mosnier I. Exploring Trauma Patterns and Contributing Factors With Slim Straight Electrode Array After Cochlear Implantation. Otolaryngol Head Neck Surg 2024; 171:521-529. [PMID: 38532540 DOI: 10.1002/ohn.737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/09/2024] [Accepted: 02/29/2024] [Indexed: 03/28/2024]
Abstract
OBJECTIVE To assess trauma patterns associated with the insertion of lateral wall electrode arrays. The study focused on 3 categories-scala tympani (ST), intermediate, and scala vestibuli (SV)-to identify traumatic patterns and contributing factors. STUDY DESIGN Retrospective study. SETTING Data from 106 cochlear implant recipients at a tertiary otologic center. METHODS Demographic and surgical data were collected from recipients who underwent cochlear implantation manually and with RobOtol®. Measurements included cochlear dimensions, angular depth of insertion, and position of the first electrode. Three-dimensional reconstructions were used to analyze the electrode array location relative to the basilar membrane, categorized into ST, intermediate, and SV electrodes. Nontraumatic insertion was defined as all electrodes in the ST, while traumatic insertions had 1 or more electrodes in intermediate or SV locations. RESULTS Out of 106 cases, 44% had nontraumatic and 56% had traumatic insertions. Demographic and surgical characteristics showed no association with traumatic insertions. A deeper position of the first electrode, relative to the round window, was associated with traumatic insertions (P = .03). Three trauma patterns were observed: distal (facing the apical electrodes), proximal (facing the middle electrodes around 180°), and distal/proximal. CONCLUSION This study considers the intermediate position which could be associated with basilar membrane lesions. Risk zones for intracochlear trauma with lateral wall arrays were identified distally and proximally. Traumatic insertions were independently linked to deeper array placement. Future studies should explore whether gentler insertion, without insisting on further electrode array insertion depth, could reduce the trauma during cochlear implantation.
Collapse
Affiliation(s)
- Renato Torres
- Unité Fonctionnelle Implants Auditifs et Explorations Fonctionnelles, Service ORL, GHU Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (AP-HP)/Sorbonne Université, Paris, France
- Technologies et Thérapie Génique Pour la Surdité, Institut de l'Audition, Institut Pasteur/Inserm/Université Paris Cité, Paris, France
| | - Hannah Daoudi
- Unité Fonctionnelle Implants Auditifs et Explorations Fonctionnelles, Service ORL, GHU Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (AP-HP)/Sorbonne Université, Paris, France
- Technologies et Thérapie Génique Pour la Surdité, Institut de l'Audition, Institut Pasteur/Inserm/Université Paris Cité, Paris, France
| | - Wenxi Gu
- Unité Fonctionnelle Implants Auditifs et Explorations Fonctionnelles, Service ORL, GHU Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (AP-HP)/Sorbonne Université, Paris, France
- Technologies et Thérapie Génique Pour la Surdité, Institut de l'Audition, Institut Pasteur/Inserm/Université Paris Cité, Paris, France
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300), Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Eugénie Breil
- Unité Fonctionnelle Implants Auditifs et Explorations Fonctionnelles, Service ORL, GHU Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (AP-HP)/Sorbonne Université, Paris, France
| | - Evelyne Ferrary
- Unité Fonctionnelle Implants Auditifs et Explorations Fonctionnelles, Service ORL, GHU Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (AP-HP)/Sorbonne Université, Paris, France
- Technologies et Thérapie Génique Pour la Surdité, Institut de l'Audition, Institut Pasteur/Inserm/Université Paris Cité, Paris, France
| | - Olivier Sterkers
- Unité Fonctionnelle Implants Auditifs et Explorations Fonctionnelles, Service ORL, GHU Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (AP-HP)/Sorbonne Université, Paris, France
- Technologies et Thérapie Génique Pour la Surdité, Institut de l'Audition, Institut Pasteur/Inserm/Université Paris Cité, Paris, France
| | - Yann Nguyen
- Unité Fonctionnelle Implants Auditifs et Explorations Fonctionnelles, Service ORL, GHU Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (AP-HP)/Sorbonne Université, Paris, France
- Technologies et Thérapie Génique Pour la Surdité, Institut de l'Audition, Institut Pasteur/Inserm/Université Paris Cité, Paris, France
| | - Isabelle Mosnier
- Unité Fonctionnelle Implants Auditifs et Explorations Fonctionnelles, Service ORL, GHU Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (AP-HP)/Sorbonne Université, Paris, France
- Technologies et Thérapie Génique Pour la Surdité, Institut de l'Audition, Institut Pasteur/Inserm/Université Paris Cité, Paris, France
| |
Collapse
|
5
|
Dhanasingh A, Nielsen SB, Beal F, Schilp S, Hessler R, Jolly C, Hochmair I. Cochlear implant electrode design for safe and effective treatment. Front Neurol 2024; 15:1348439. [PMID: 38756216 PMCID: PMC11096578 DOI: 10.3389/fneur.2024.1348439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 04/09/2024] [Indexed: 05/18/2024] Open
Abstract
The optimal placement of a cochlear implant (CI) electrode inside the scala tympani compartment to create an effective electrode-neural interface is the base for a successful CI treatment. The characteristics of an effective electrode design include (a) electrode matching every possible variation in the inner ear size, shape, and anatomy, (b) electrically covering most of the neuronal elements, and (c) preserving intra-cochlear structures, even in non-hearing preservation surgeries. Flexible electrode arrays of various lengths are required to reach an angular insertion depth of 680° to which neuronal cell bodies are angularly distributed and to minimize the rate of electrode scalar deviation. At the time of writing this article, the current scientific evidence indicates that straight lateral wall electrode outperforms perimodiolar electrode by preventing electrode tip fold-over and scalar deviation. Most of the available literature on electrode insertion depth and hearing outcomes supports the practice of physically placing an electrode to cover both the basal and middle turns of the cochlea. This is only achievable with longer straight lateral wall electrodes as single-sized and pre-shaped perimodiolar electrodes have limitations in reaching beyond the basal turn of the cochlea and in offering consistent modiolar hugging placement in every cochlea. For malformed inner ear anatomies that lack a central modiolar trunk, the perimodiolar electrode is not an effective electrode choice. Most of the literature has failed to demonstrate superiority in hearing outcomes when comparing perimodiolar electrodes with straight lateral wall electrodes from single CI manufacturers. In summary, flexible and straight lateral wall electrode type is reported to be gentle to intra-cochlear structures and has the potential to electrically stimulate most of the neuronal elements, which are necessary in bringing full benefit of the CI device to recipients.
Collapse
|
6
|
Zagabathuni A, Padi KK, Kameswaran M, Subramani K. Development of Automated Tool for Electrode Array Insertion and its Study on Intracochlear Pressure. Laryngoscope 2024; 134:1388-1395. [PMID: 37584398 DOI: 10.1002/lary.30966] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 06/05/2023] [Accepted: 07/14/2023] [Indexed: 08/17/2023]
Abstract
Cochlear implantation is the most successful approach for people with profound sensorineural hearing loss. Manual insertion of the electrode array may result in damaging the soft tissue structures and basilar membrane. An automated electrode array insertion device is reported to be less traumatic in cochlear implant surgery. OBJECTIVES The present work develops a simple, reliable, and compact device for automatically inserting the electrode array during cochlear implantation and test the device to observe intracochlear pressure during simulated electrode insertion. METHODS The device actuates the electrode array by a roller mechanism. For testing the automated device, a straight cochlea having the dimension of the scala tympani and a model electrode is developed using a 3D printer. A pressure sensor is utilized to observe the pressure change at different insertional conditions. RESULTS The electrode is inserted into a prototype cochlea at different speeds without any pause, and it is noticed that the pressure is increased with the depth of insertion of the electrode irrespective of the speed of electrode insertion. The rate of pressure change is observed to be increased exponentially with the speed of insertion. CONCLUSION At an insertion speed of 0.15 mm/s, the peak pressure is observed to be 133 Pa, which can be further evaluated in anatomical models for clinical scenarios. LEVEL OF EVIDENCE N/A Laryngoscope, 134:1388-1395, 2024.
Collapse
Affiliation(s)
- Aparna Zagabathuni
- School of Materials Science and Engineering, National Institute of Technology Calicut, Calicut, India
| | - Kishore Kumar Padi
- Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati, India
| | | | - Kanagaraj Subramani
- Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati, India
| |
Collapse
|
7
|
Lavenir L, Santos JC, Zemiti N, Kaderbay A, Venail F, Poignet P. Miniaturized Endoscopic 2D US Transducer for Volumetric Ultrasound Imaging of the Auditory System. IEEE Trans Biomed Eng 2023; 70:2624-2635. [PMID: 37027277 DOI: 10.1109/tbme.2023.3260683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
OBJECTIVE In this paper, we focus on the carrying out and validation of minimally invasive three-dimensional (3D) ultrasound (US) imaging of the auditory system, which is based on a new miniaturized endoscopic 2D US transducer. METHODS This unique probe consists of a 18 MHz 24 elements curved array transducer with a distal diameter of 4 mm so it can be inserted into the external auditory canal. Typical acquisition is achieved by rotating such a transducer around its own axis using a robotic platform. Reconstruction of a US volume from the set of acquired B-scans during the rotation is then performed using scan-conversion. The accuracy of the reconstruction procedure is evaluated using a dedicated phantom that includes a set of wires as reference geometry. RESULTS Twelve acquisitions obtained from different probe poses are compared to a micro-computed tomographic model of the phantom, leading to a maximum error of 0.20 mm. Additionally, acquisitions with a cadaveric head highlight the clinical applicability of this set up. Structures of the auditory system such as the ossicles and the round window can be identified from the obtained 3D volumes. CONCLUSION These results confirm that our technique enables the accurate imaging of the middle and inner ears without having to deteriorate the surrounding bone. SIGNIFICANCE Since US is a real-time, wide available and non-ionizing imaging modality, our acquisition setup could facilitate the minimally invasive diagnosis and surgical navigation for otology in a fast, cost-effective and safe way.
Collapse
|
8
|
Robotized Cochlear Implantation under Fluoroscopy: A Preliminary Series. J Clin Med 2022; 12:jcm12010211. [PMID: 36615012 PMCID: PMC9820833 DOI: 10.3390/jcm12010211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
It is known that visual feedback by fluoroscopy can detect electrode array (EA) misrouting within the cochlea while robotized EA-insertion (rob-EAI) permits atraumatic cochlear implantation. We report here our unique experience of both fluoroscopy feedback and rob-EAI in cochlear implant surgery. We retrospectively analyzed a cohort of consecutive patients implanted from November 2021−October 2022 using rob-EAI, with the RobOtol®, to determine the quality of EA-insertion and the additional time required. Twenty-three patients (10 females, 61+/−19 yo) were tentatively implanted using robot assistance, with a rob-EAI speed < 1 mm/s. Only three cases required a successful revised insertion by hand. Under fluoroscopy (n = 11), it was possible to achieve a remote rob-EAI (n = 8), as the surgeon was outside the operative room, behind an anti-radiation screen. No scala translocation occurred. The additional operative time due to robot use was 18+/−7 min with about 4 min more for remote rob-EAI. Basal cochlear turn fibrosis precluded rob-EAI. In conclusion, Rob-EAI can be performed in almost all cases with a low risk of scala translocation, except in the case of partial cochlear obstruction such as fibrosis. Fluoroscopy also permits remote rob-EAI.
Collapse
|
9
|
Claussen AD, Shibata SB, Kaufmann CR, Henslee A, Hansen MR. Comparative Analysis of Robotics-Assisted and Manual Insertions of Cochlear Implant Electrode Arrays. Otol Neurotol 2022; 43:1155-1161. [PMID: 36201552 PMCID: PMC10962863 DOI: 10.1097/mao.0000000000003707] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
HYPOTHESIS Robotics-assisted cochlear implant (CI) insertions will result in reduced intracochlear trauma when compared with manual, across multiple users. BACKGROUND Whether intracochlear trauma and translocations are two factors that may contribute to significant variability in CI outcomes remains to be seen. To address this issue, we have developed a robotics-assisted insertion system designed to aid the surgeon in inserting electrode arrays with consistent speeds and reduced variability. This study evaluated the effect of robotics-assisted insertions on the intracochlear trauma as compared with manual insertions in cadaveric cochleae in a simulated operative environment. METHODS Twelve neurotologists performed bilateral electrode insertions into cochleae of full cadaveric heads using both the robotics-assisted system and manual hand insertion. Lateral wall electrodes from three different manufacturers (n = 24) were used and randomized between surgeons. Insertion angle of the electrode and trauma scoring were evaluated using high-resolution three-dimensional x-ray microscopy and compared between robotics-assisted and manual insertions. RESULTS Three-dimensional x-ray microscopy provided excellent resolution to characterize the in situ trauma and insertion angle. Robotics-assisted insertions significantly decreased insertional intracochlear trauma as measured by reduced trauma scores compared with manual insertions (average: 1.3 versus 2.2, device versus manual, respectively; p < 0.05). There was no significant difference between insertion angles observed for manual and robotics-assisted techniques (311 ± 131° versus 307 ± 96°, device versus manual, respectively). CONCLUSIONS Robotics-assisted insertion systems enable standardized electrode insertions across individual surgeons and experience levels. Clinical trials are necessary to investigate whether insertion techniques that reduce insertional variability and the likelihood of intracochlear trauma also improve CI auditory outcomes.
Collapse
Affiliation(s)
| | - Seiji B Shibata
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa
| | | | | | | |
Collapse
|
10
|
Robotics and cochlear implant surgery: goals and developments. Curr Opin Otolaryngol Head Neck Surg 2022; 30:314-319. [PMID: 36036531 DOI: 10.1097/moo.0000000000000837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Cochlear implantation (CI) is a viable option for patients with severe sensorineural hearing loss. Advances in CI have focused on minimizing cochlear trauma to improve hearing preservation outcomes, and in doing so expanding candidacy to patients with useful cochlear reserve. Robotics holds promise as a potential tool to minimize intracochlear trauma with electrode insertion, improve surgical efficiency, and reduce surgical complications. The purpose of this review is to summarize efforts and advances in the field of robotic-assisted CI. RECENT FINDINGS Work on robotics and CI over the past few decades has explored distinct surgical aspects, including image-based surgical planning and intraoperative guidance, minimally invasive robotic-assisted approaches mainly through percutaneous keyhole direct cochlear access, robotic electrode insertion systems, robotic manipulators, and drilling feedback control through end effector sensors. Feasibility and safety have been established and many devices are undergoing clinical trials for clinical adoption, with some having already achieved approval of national licensing bodies. SUMMARY Significant work has been done over the past two decades that has shown robotic-assisted CI to be feasible and safe. Wider clinical adoption can potentially result in improved hearing preservation and quality of life outcomes to more CI candidates.
Collapse
|
11
|
Best Fit 3D Basilar Membrane Reconstruction to Routinely Assess the Scalar Position of the Electrode Array after Cochlear Implantation. J Clin Med 2022; 11:jcm11082075. [PMID: 35456169 PMCID: PMC9030636 DOI: 10.3390/jcm11082075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 12/04/2022] Open
Abstract
The scalar position of the electrode array is assumed to be associated with auditory performance after cochlear implantation. We propose a new method that can be routinely applied in clinical practice to assess the position of an electrode array. Ten basilar membrane templates were generated using micro-computed tomography (micro-CT), based on the dimensions of 100 cochleae. Five surgeons were blinded to determine the position of the electrode array in 30 cadaveric cochleae. The procedure consisted of selecting the appropriate template based on cochlear dimensions, merging the electrode array reconstruction with the template using four landmarks, determining the position of the array according to the template position, and comparing the results obtained to histology data. The time taken to analyze each implanted cochlea was approximately 12 min. We found that, according to histology, surgeons were in almost perfect agreement when determining an electrode translocated to the scala vestibuli with the perimodiolar MidScala array (Fleiss’ kappa (κ) = 0.82), and in moderate agreement when using the lateral wall EVO array (κ = 0.42). Our data indicate that an adapted basilar membrane template can be used as a rapid and reproducible method to assess the position of the electrode array after cochlear implantation.
Collapse
|
12
|
Intracochlear New Fibro-Ossification and Neuronal Degeneration Following Cochlear Implant Electrode Translocation: Long-Term Histopathological Findings in Humans. Otol Neurotol 2022; 43:e153-e164. [PMID: 35015749 DOI: 10.1097/mao.0000000000003402] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE We aim to assess the histopathology of human temporal bones (TBs) with evidence of cochlear implantation (CI) electrode scalar translocation. STUDY DESIGN Otopathology study. SETTING Otopathology laboratory. PATIENTS TBs from patients who had a history of CI and histopathological evidence of interscalar translocation. Specimens with electrode placed entirely within the ST served as controls. INTERVENTION Histopathological assessment of human TBs. MAIN OUTCOME MEASURES TBs from each patient were harvested postmortem and histologically analyzed for intracochlear changes in the context of CI electrode translocation and compared to controls. Intracochlear new fibro-ossification, and spiral ganglion neuron (SGN) counts were assessed. Postoperative word recognition scores (WRS) were also compared. RESULTS Nineteen human TBs with electrode translocation and eight controls were identified. The most common site of translocation was the ascending limb of the basal turn (n = 14 TBs). The average angle of insertion at the point of translocation was 159° ± 79°. Eighteen translocated cases presented moderate fibroosseous changes in the basal region of the cochlea, extending to the translocation point and/or throughout the electrode track in 42%. Lower SGN counts were more pronounced in translocated cases compared to controls, with a significant difference for segment II (p = 0.019). Although final postoperative hearing outcomes were similar between groups, translocated cases had slower rate of improvement in WRS (p = 0.021). CONCLUSIONS Cochlear implant electrode translocation was associated with greater fibroosseous formation and lower SGN population. Our findings suggest that scalar translocations may slow the rate of improvement in WRS overtime as compared to atraumatic electrode insertions.Level of evidence: IV.
Collapse
|
13
|
Partouche E, Adenis V, Gnansia D, Stahl P, Edeline JM. Increased Threshold and Reduced Firing Rate of Auditory Cortex Neurons after Cochlear Implant Insertion. Brain Sci 2022; 12:brainsci12020205. [PMID: 35203968 PMCID: PMC8870646 DOI: 10.3390/brainsci12020205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 12/10/2022] Open
Abstract
The cochlear implant (CI) is the most successful neuroprosthesis allowing thousands of patients with profound hearing loss to recover speech understanding. Recently, cochlear implants have been proposed to subjects with residual hearing and, in these cases, shorter CIs were implanted. To be successful, it is crucial to preserve the patient’s remaining hearing abilities after the implantation. Here, we quantified the effects of CI insertion on the responses of auditory cortex neurons in anesthetized guinea pigs. The responses of auditory cortex neurons were determined before and after the insertion of a 300 µm diameter CI (six stimulating electrodes, length 6 mm). Immediately after CI insertion there was a 5 to 15 dB increase in the threshold for cortical neurons from the middle to the high frequencies, accompanied by a decrease in the evoked firing rate. Analyzing the characteristic frequency (CF) values revealed that in large number of cases, the CFs obtained after insertion were lower than before. These effects were not detected in the control animals. These results indicate that there is a small but immediate cortical hearing loss after CI insertion, even with short length CIs. Therefore, efforts should be made to minimize the damages during CI insertion to preserve the cortical responses to acoustic stimuli.
Collapse
Affiliation(s)
- Elie Partouche
- Paris-Saclay Institute of Neurosciences (Neuro-PSI), CNRS UMR 9197, Universite Paris-Saclay, 91400 Saclay, France; (E.P.); (V.A.)
| | - Victor Adenis
- Paris-Saclay Institute of Neurosciences (Neuro-PSI), CNRS UMR 9197, Universite Paris-Saclay, 91400 Saclay, France; (E.P.); (V.A.)
| | - Dan Gnansia
- Department of Scientific and Clinical Research, Oticon Medical, 06224 Vallauris, France; (D.G.); (P.S.)
| | - Pierre Stahl
- Department of Scientific and Clinical Research, Oticon Medical, 06224 Vallauris, France; (D.G.); (P.S.)
| | - Jean-Marc Edeline
- Paris-Saclay Institute of Neurosciences (Neuro-PSI), CNRS UMR 9197, Universite Paris-Saclay, 91400 Saclay, France; (E.P.); (V.A.)
- Correspondence:
| |
Collapse
|
14
|
Robotics, automation, active electrode arrays, and new devices for cochlear implantation: A contemporary review. Hear Res 2022; 414:108425. [PMID: 34979455 DOI: 10.1016/j.heares.2021.108425] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 12/16/2021] [Accepted: 12/23/2021] [Indexed: 01/14/2023]
Abstract
In the last two decades, cochlear implant surgery has evolved into a minimally invasive, hearing preservation surgical technique. The devices used during surgery have benefited from technological advances that have allowed modification and possible improvement of the surgical technique. Robotics has recently gained popularity in otology as an effective tool to overcome the surgeon's limitations such as tremor, drift and accurate force control feedback in laboratory testing. Cochlear implantation benefits from robotic assistance in several steps during the surgical procedure: (i) during the approach to the middle ear by automated mastoidectomy and posterior tympanotomy or through a tunnel from the postauricular skin to the middle ear (i.e. direct cochlear access); (ii) a minimally invasive cochleostomy by a robot-assisted drilling tool; (iii) alignment of the correct insertion axis on the basal cochlear turn; (iv) insertion of the electrode array with a motorized insertion tool. In recent years, the development of bone-attached parallel robots and image-guided surgical robotic systems has allowed the first successful cochlear implantation procedures in patients via a single hole drilled tunnel. Several other robotic systems, new materials, sensing technologies applied to the electrodes, and smart devices have been developed, tested in experimental models and finally some have been used in patients with the aim of reducing trauma in cochleostomy, and permitting slow and more accurate insertion of the electrodes. Despite the promising results in laboratory tests in terms of minimal invasiveness, reduced trauma and better hearing preservation, so far, no clinical benefits on residual hearing preservation or better speech performance have been demonstrated. Before these devices can become the standard approach for cochlear implantation, several points still need to be addressed, primarily cost and duration of the procedure. One can hope that improvement in the cost/benefit ratio will expand the technology to every cochlear implantation procedure. Laboratory research and clinical studies on patients should continue with the aim of making intracochlear implant insertion an atraumatic and reversible gesture for total preservation of the inner ear structure and physiology.
Collapse
|
15
|
Areias B, Parente MPL, Gentil F, Natal Jorge RM. Finite element modelling of the surgical procedure for placement of a straight electrode array: Mechanical and clinical consequences. J Biomech 2021; 129:110812. [PMID: 34688063 DOI: 10.1016/j.jbiomech.2021.110812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/07/2021] [Accepted: 10/07/2021] [Indexed: 11/16/2022]
Abstract
A cochlear implant is an electronic device implanted into the cochlea to directly stimulate the auditory nerve. Such device is used in patients with severe-to-profound hearing loss. The cochlear implant surgery is safe, but involves some risks, such as infections, device malfunction or damage of the facial nerve and it can result on a poor hearing outcome, due to the destruction of any present residual hearing. Future improvements in cochlear implant surgery will necessarily involve the decrease of the intra-cochlear damage. Several implant related variables, such as materials, geometrical design, processor and surgical techniques can be optimized in order for the patients to partially recover their hearing capacities The straight electrode is a type of cochlear implant that many authors indicate as being the less traumatic. From the finite element analysis conducted in this work, the influence of the insertion speed, the friction coefficient between the cochlear wall and the electrode array, and several configurations of the cochlear implant tip were studied. The numerical simulations of the implantation showed the same pattern of the insertion force against insertion depth, thus indicating the different phases of the insertion. Results demonstrated that lower insertion speeds, friction coefficients and tip stiffness, led to a reduction on the contact pressures and insertion force. It is expected that these improved configurations will allow to preserve the residual hearing while reducing surgical complications.
Collapse
Affiliation(s)
- B Areias
- INEGI, Institute of Science and Innovation in Mechanical and Industrial Engineering, Porto, Portugal.
| | - M P L Parente
- INEGI, Institute of Science and Innovation in Mechanical and Industrial Engineering, Porto, Portugal; FEUP, Faculty of Engineering, University of Porto, Porto, Portugal.
| | - F Gentil
- Escola Superior de Saúde - Politécnico do Porto, Porto, Portugal; Clínica ORL - Dr. Eurico de Almeida, Porto, Portugal; WIDEX, Porto, Portugal.
| | - R M Natal Jorge
- INEGI, Institute of Science and Innovation in Mechanical and Industrial Engineering, Porto, Portugal; FEUP, Faculty of Engineering, University of Porto, Porto, Portugal.
| |
Collapse
|
16
|
Torres R, Daoudi H, Lahlou G, Sterkers O, Ferrary E, Mosnier I, Nguyen Y. Restoration of High Frequency Auditory Perception After Robot-Assisted or Manual Cochlear Implantation in Profoundly Deaf Adults Improves Speech Recognition. Front Surg 2021; 8:729736. [PMID: 34568420 PMCID: PMC8461256 DOI: 10.3389/fsurg.2021.729736] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/17/2021] [Indexed: 11/13/2022] Open
Abstract
Background and Purpose: Robot-assisted cochlear implantation has recently been implemented in clinical practice; however, its effect on hearing outcomes is unknown. The aim of this preliminary study was to evaluate hearing performance 1 year post-implantation whether the electrode array was inserted manually or assisted by a robot. Methods: Forty-two profoundly deaf adults were implanted either manually (n = 21) or assisted by a robot (RobOtol®, Collin, Bagneux, France) with three different electrode array types. Participants were paired by age, and electrode array type. The scalar position of the electrode array in the cochlea was assessed by 3D reconstruction from the pre- and post-implantation computed tomography. Pure-tone audiometry and speech perception in silence (percentage of disyllabic words at 60 dB) were tested on the implanted ear 1 year post-implantation in free-field conditions. The pure-tone average was calculated at 250–500–750 Hz, 500–1,000–2,000–3,000 Hz, and 3,000–4,000–8,000 Hz for low, mid, and high frequencies, respectively. Results: One year after cochlear implantation, restoration of the high-frequency thresholds was associated with better speech perception in silence, but not with low or mid frequencies (p < 0.0001; Adjusted R2 = 0.64, polynomial non-linear regression). Although array translocation was similar using either technique, the number of translocated electrodes was lower when the electrode arrays had been inserted with the assistance of the robot compared with manual insertion (p = 0.018; Fisher's exact test). Conclusion: The restoration of high-frequency thresholds (3,000–4,000–8,000 Hz) by cochlear implantation was associated with good speech perception in silence. The numbers of translocated electrodes were reduced after a robot-assisted insertion.
Collapse
Affiliation(s)
- Renato Torres
- Unité Fonctionnelle Implants Auditifs, Service Oto-Rhino-Laryngologie, AP-HP/Sorbonne Université, Paris, France.,Centre de Recherche en Audiologie Adulte, GHU Pitié-Salpêtrière/Fondation Pour l'Audition, AP-HP, Paris, France.,Technologies et Thérapie Génique Pour la Surdité, Institut de l'Audition, Institut Pasteur, INSERM, Paris, France.,Departamento de Ciencias Fisiológicas, Facultad de Medicina, Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru
| | - Hannah Daoudi
- Unité Fonctionnelle Implants Auditifs, Service Oto-Rhino-Laryngologie, AP-HP/Sorbonne Université, Paris, France.,Centre de Recherche en Audiologie Adulte, GHU Pitié-Salpêtrière/Fondation Pour l'Audition, AP-HP, Paris, France.,Technologies et Thérapie Génique Pour la Surdité, Institut de l'Audition, Institut Pasteur, INSERM, Paris, France
| | - Ghizlene Lahlou
- Unité Fonctionnelle Implants Auditifs, Service Oto-Rhino-Laryngologie, AP-HP/Sorbonne Université, Paris, France.,Centre de Recherche en Audiologie Adulte, GHU Pitié-Salpêtrière/Fondation Pour l'Audition, AP-HP, Paris, France.,Technologies et Thérapie Génique Pour la Surdité, Institut de l'Audition, Institut Pasteur, INSERM, Paris, France
| | - Olivier Sterkers
- Unité Fonctionnelle Implants Auditifs, Service Oto-Rhino-Laryngologie, AP-HP/Sorbonne Université, Paris, France.,Centre de Recherche en Audiologie Adulte, GHU Pitié-Salpêtrière/Fondation Pour l'Audition, AP-HP, Paris, France.,Technologies et Thérapie Génique Pour la Surdité, Institut de l'Audition, Institut Pasteur, INSERM, Paris, France
| | - Evelyne Ferrary
- Unité Fonctionnelle Implants Auditifs, Service Oto-Rhino-Laryngologie, AP-HP/Sorbonne Université, Paris, France.,Centre de Recherche en Audiologie Adulte, GHU Pitié-Salpêtrière/Fondation Pour l'Audition, AP-HP, Paris, France.,Technologies et Thérapie Génique Pour la Surdité, Institut de l'Audition, Institut Pasteur, INSERM, Paris, France
| | - Isabelle Mosnier
- Unité Fonctionnelle Implants Auditifs, Service Oto-Rhino-Laryngologie, AP-HP/Sorbonne Université, Paris, France.,Centre de Recherche en Audiologie Adulte, GHU Pitié-Salpêtrière/Fondation Pour l'Audition, AP-HP, Paris, France.,Technologies et Thérapie Génique Pour la Surdité, Institut de l'Audition, Institut Pasteur, INSERM, Paris, France
| | - Yann Nguyen
- Unité Fonctionnelle Implants Auditifs, Service Oto-Rhino-Laryngologie, AP-HP/Sorbonne Université, Paris, France.,Centre de Recherche en Audiologie Adulte, GHU Pitié-Salpêtrière/Fondation Pour l'Audition, AP-HP, Paris, France.,Technologies et Thérapie Génique Pour la Surdité, Institut de l'Audition, Institut Pasteur, INSERM, Paris, France
| |
Collapse
|
17
|
Hendricks CM, Cavilla MS, Usevitch DE, Bruns TL, Riojas KE, Leon L, Webster RJ, Warren FM, Abbott JJ. Magnetic Steering of Robotically Inserted Lateral-wall Cochlear-implant Electrode Arrays Reduces Forces on the Basilar Membrane In Vitro. Otol Neurotol 2021; 42:1022-1030. [PMID: 33859137 PMCID: PMC8282696 DOI: 10.1097/mao.0000000000003129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
HYPOTHESIS Undesirable forces applied to the basilar membrane during surgical insertion of lateral-wall cochlear-implant electrode arrays (EAs) can be reduced via robotic insertion with magnetic steering of the EA tip. BACKGROUND Robotic insertion of magnetically steered lateral-wall EAs has been shown to reduce insertion forces in vitro and in cadavers. No previous study of robot-assisted insertion has considered force on the basilar membrane. METHODS Insertions were executed in an open-channel scala-tympani phantom. A force plate, representing the basilar membrane, covered the channel to measure forces in the direction of the basilar membrane. An electromagnetic source generated a magnetic field to steer investigational EAs with permanent magnets at their tips, while a robot performed the insertion. RESULTS When magnetic steering was sufficient to pull the tip of the EA off of the lateral wall of the channel, it resulted in at least a 62% reduction of force on the phantom basilar membrane at insertion depths beyond 14.4 mm (p < 0.05), and these beneficial effects were maintained beyond approximately the same depth, even with 10 degrees of error in the estimation of the modiolar axis of the cochlea. When magnetic steering was not sufficient to pull the EA tip off of the lateral wall, a significant difference from the no-magnetic-steering case was not found. CONCLUSIONS This in vitro study suggests that magnetic steering of robotically inserted lateral-wall cochlear-implant EAs, given sufficient steering magnitude, can reduce forces on the basilar membrane in the first basilar turn compared with robotic insertion without magnetic steering.
Collapse
Affiliation(s)
- Cameron M Hendricks
- Department of Mechanical Engineering, University of Utah, Salt Lake City, Utah
| | - Matt S Cavilla
- Department of Mechanical Engineering, University of Utah, Salt Lake City, Utah
| | - David E Usevitch
- Department of Mechanical Engineering, University of Utah, Salt Lake City, Utah
| | - Trevor L Bruns
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Katherine E Riojas
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee
| | | | - Robert J Webster
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee
| | | | - Jake J Abbott
- Department of Mechanical Engineering, University of Utah, Salt Lake City, Utah
| |
Collapse
|
18
|
Toulemonde P, Risoud M, Lemesre PE, Beck C, Wattelet J, Tardivel M, Siepmann J, Vincent C. Evaluation of the Efficacy of Dexamethasone-Eluting Electrode Array on the Post-Implant Cochlear Fibrotic Reaction by Three-Dimensional Immunofluorescence Analysis in Mongolian Gerbil Cochlea. J Clin Med 2021; 10:jcm10153315. [PMID: 34362099 PMCID: PMC8347204 DOI: 10.3390/jcm10153315] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 11/16/2022] Open
Abstract
Cochlear implant is the method of choice for the rehabilitation of severe to profound sensorineural hearing loss. The study of the tissue response to cochlear implantation and the prevention of post-cochlear-implant damages are areas of interest in hearing protection research. The objective was to assess the efficacy of dexamethasone-eluting electrode array on endo canal fibrosis formation by three-dimensional immunofluorescence analysis in implanted Mongolian gerbil cochlea. Two trials were conducted after surgery using Mongolian gerbil implanted with dexamethasone-eluting or non-eluting intracochlear electrode arrays. The animals were then euthanised 10 weeks after implantation. The cochleae were prepared (electrode array in place) according to a 29-day protocol with immunofluorescent labelling and tissue clearing. The acquisition was carried out using light-sheet microscopy. Imaris software was then used for three-dimensional analysis of the cochleae and quantification of the fibrotic volume. The analysis of 12 cochleae showed a significantly different mean volume of fibrosis (2.16 × 108 μm3 ± 0.15 in the dexamethasone eluting group versus 3.17 × 108 μm3 ± 0.54 in the non-eluting group) (p = 0.004). The cochlear implant used as a corticosteroid delivery system appears to be an encouraging device for the protection of the inner ear against fibrosis induced by implantation. Three-dimensional analysis of the cochlea by light-sheet microscopy was suitable for studying post-implantation tissue damage.
Collapse
Affiliation(s)
- Philippine Toulemonde
- Department of Otology and Neurotology, CHU Lille, University of Lille 2 Henri Warembourg, F-59000 Lille, France; (M.R.); (P.E.L.); (C.B.); (J.W.); (J.S.); (C.V.)
- INSERM U1008—Controlled Drug Delivery Systems and Biomaterials, F-59000 Lille, France
- Correspondence: ; Tel.: +33-6851-91052
| | - Michaël Risoud
- Department of Otology and Neurotology, CHU Lille, University of Lille 2 Henri Warembourg, F-59000 Lille, France; (M.R.); (P.E.L.); (C.B.); (J.W.); (J.S.); (C.V.)
- INSERM U1008—Controlled Drug Delivery Systems and Biomaterials, F-59000 Lille, France
| | - Pierre Emmanuel Lemesre
- Department of Otology and Neurotology, CHU Lille, University of Lille 2 Henri Warembourg, F-59000 Lille, France; (M.R.); (P.E.L.); (C.B.); (J.W.); (J.S.); (C.V.)
- INSERM U1008—Controlled Drug Delivery Systems and Biomaterials, F-59000 Lille, France
| | - Cyril Beck
- Department of Otology and Neurotology, CHU Lille, University of Lille 2 Henri Warembourg, F-59000 Lille, France; (M.R.); (P.E.L.); (C.B.); (J.W.); (J.S.); (C.V.)
- INSERM U1008—Controlled Drug Delivery Systems and Biomaterials, F-59000 Lille, France
| | - Jean Wattelet
- Department of Otology and Neurotology, CHU Lille, University of Lille 2 Henri Warembourg, F-59000 Lille, France; (M.R.); (P.E.L.); (C.B.); (J.W.); (J.S.); (C.V.)
- INSERM U1008—Controlled Drug Delivery Systems and Biomaterials, F-59000 Lille, France
| | - Meryem Tardivel
- BioImaging Center Lille-Nord de France (BICeL), University of Lille 2 Henri Warembourg, F-59000 Lille, France;
| | - Juergen Siepmann
- Department of Otology and Neurotology, CHU Lille, University of Lille 2 Henri Warembourg, F-59000 Lille, France; (M.R.); (P.E.L.); (C.B.); (J.W.); (J.S.); (C.V.)
- INSERM U1008—Controlled Drug Delivery Systems and Biomaterials, F-59000 Lille, France
| | - Christophe Vincent
- Department of Otology and Neurotology, CHU Lille, University of Lille 2 Henri Warembourg, F-59000 Lille, France; (M.R.); (P.E.L.); (C.B.); (J.W.); (J.S.); (C.V.)
- INSERM U1008—Controlled Drug Delivery Systems and Biomaterials, F-59000 Lille, France
| |
Collapse
|
19
|
Torres R, Hochet B, Daoudi H, Carré F, Mosnier I, Sterkers O, Ferrary E, Nguyen Y. Atraumatic Insertion of a Cochlear Implant Pre-Curved Electrode Array by a Robot-Automated Alignment with the Coiling Direction of the Scala Tympani. Audiol Neurootol 2021; 27:148-155. [PMID: 34284383 DOI: 10.1159/000517398] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/24/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Electrode array translocation is an unpredictable event with all types of arrays, even using a teleoperated robot in a clinical scenario. We aimed to compare the intracochlear trauma produced by the HiFocus™ Mid-Scala (MS) electrode array (Advanced Bionics, Valencia, CA, USA) using a teleoperated robot, with an automated robot connected to a navigation system to align the pre-curved tip of the electrode array with the coiling direction of the scala tympani (ST). METHODS Fifteen freshly frozen temporal bones were implanted with the MS array using the RobOtol® (Collin, Bagneux, France). In the first group (n = 10), the robot was teleoperated to insert the electrode array into the basal turn of the ST under stereomicroscopic vision, and then the array was driven by a slow-speed hydraulic insertion technique with an estimated placement of the pre-curved electrode tip. In the second group (n = 5), 3 points were obtained from the preoperative cone-beam computed tomography: the 2 first defining the ST insertion axis of the basal turn and a third one at the center of the ST at 270°. They provided the information to the automated system (RobOtol® connected with a navigation system) to automatically align the electrode array with the ST insertion axis and to aim the pre-curved tip toward the subsequent coiling of the ST. After this, the electrode array was manually advanced. Finally, the cochleae were obtained and fixed in a crystal resin, and the position of each electrode was determined by a micro-grinding technique. RESULTS In all cases, the electrode array was fully inserted into the cochlea and the depth of insertion was similar using both techniques. With the teleoperated robotic technique, translocations of the array were observed in 7/10 insertions (70%), but neither trauma nor array translocation occurred with automated robotic insertion. CONCLUSION We have successfully tested an automated insertion system (robot + navigation) that could accurately align a pre-curved electrode array to the axis of the basal turn of the ST and its subsequent coiling, which reduced intracochlear insertion trauma and translocation.
Collapse
Affiliation(s)
- Renato Torres
- Technologies et thérapie génique pour la surdité, Institut de l'Audition, Institut Pasteur/Inserm, Paris, France.,Departamento de Ciencias Fisiológicas, Facultad de Medicina, Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru
| | - Baptiste Hochet
- Technologies et thérapie génique pour la surdité, Institut de l'Audition, Institut Pasteur/Inserm, Paris, France.,Unité fonctionnelle Implants auditifs et explorations fonctionnelles, Service ORL, GH Pitié-Salpêtrière, AP-HP Sorbonne Université, Paris, France
| | - Hannah Daoudi
- Technologies et thérapie génique pour la surdité, Institut de l'Audition, Institut Pasteur/Inserm, Paris, France.,Unité fonctionnelle Implants auditifs et explorations fonctionnelles, Service ORL, GH Pitié-Salpêtrière, AP-HP Sorbonne Université, Paris, France
| | - Fabienne Carré
- Technologies et thérapie génique pour la surdité, Institut de l'Audition, Institut Pasteur/Inserm, Paris, France.,Unité fonctionnelle Implants auditifs et explorations fonctionnelles, Service ORL, GH Pitié-Salpêtrière, AP-HP Sorbonne Université, Paris, France
| | - Isabelle Mosnier
- Technologies et thérapie génique pour la surdité, Institut de l'Audition, Institut Pasteur/Inserm, Paris, France.,Unité fonctionnelle Implants auditifs et explorations fonctionnelles, Service ORL, GH Pitié-Salpêtrière, AP-HP Sorbonne Université, Paris, France
| | - Olivier Sterkers
- Technologies et thérapie génique pour la surdité, Institut de l'Audition, Institut Pasteur/Inserm, Paris, France.,Unité fonctionnelle Implants auditifs et explorations fonctionnelles, Service ORL, GH Pitié-Salpêtrière, AP-HP Sorbonne Université, Paris, France
| | - Evelyne Ferrary
- Technologies et thérapie génique pour la surdité, Institut de l'Audition, Institut Pasteur/Inserm, Paris, France.,Unité fonctionnelle Implants auditifs et explorations fonctionnelles, Service ORL, GH Pitié-Salpêtrière, AP-HP Sorbonne Université, Paris, France
| | - Yann Nguyen
- Technologies et thérapie génique pour la surdité, Institut de l'Audition, Institut Pasteur/Inserm, Paris, France.,Unité fonctionnelle Implants auditifs et explorations fonctionnelles, Service ORL, GH Pitié-Salpêtrière, AP-HP Sorbonne Université, Paris, France
| |
Collapse
|
20
|
Jia H, Pan J, Gu W, Tan H, Chen Y, Zhang Z, Jiang M, Li Y, Sterkers O, Wu H. Robot-Assisted Electrode Array Insertion Becomes Available in Pediatric Cochlear Implant Recipients: First Report and an Intra-Individual Study. Front Surg 2021; 8:695728. [PMID: 34307444 PMCID: PMC8294934 DOI: 10.3389/fsurg.2021.695728] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/02/2021] [Indexed: 11/28/2022] Open
Abstract
Background: As an advanced surgical technique to reduce trauma to the inner ear, robot-assisted electrode array (EA) insertion has been applied in adult cochlear implantation (CI) and was approved as a safe surgical procedure that could result in better outcomes. As the mastoid and temporal bones are generally smaller in children, which would increase the difficulty for robot-assisted manipulation, the clinical application of these systems for CI in children has not been reported. Given that the pediatric candidate is the main population, we aim to investigate the safety and reliability of robot-assisted techniques in pediatric cochlear implantation. Methods: Retrospective cohort study at a referral center in Shanghai including all patients of simultaneous bilateral CI with robotic assistance on one side (RobOtol® system, Collin ORL, Bagneux, France), and manual insertion on the other (same brand of EA and CI in both side), from December 2019 to June 2020. The surgical outcomes, radiological measurements (EA positioning, EA insertion depth, mastoidectomy size), and audiological outcomes (Behavior pure-tone audiometry) were evaluated. Results: Five infants (17.8 ± 13.5 months, ranging from 10 to 42 months) and an adult (39 years old) were enrolled in this study. Both perimodiolar and lateral wall EAs were included. The robot-assisted EA insertion was successfully performed in all cases, although the surgical zone in infants was about half the size in adults, and no difference was observed in mastoidectomy size between robot-assisted and manual insertion sides (p = 0.219). The insertion depths of EA with two techniques were similar (P = 0.583). The robot-assisted technique showed no scalar deviation, but scalar deviation occurred for one manually inserted pre-curved EA (16%). Early auditory performance was similar to both techniques. Conclusion: Robot-assisted technique for EA insertion is approved to be used safely and reliably in children, which is possible and potential for better scalar positioning and might improve long-term auditory outcome. Standard mastoidectomy size was enough for robot-assisted technique. This first study marks the arrival of the era of robotic CI for all ages.
Collapse
Affiliation(s)
- Huan Jia
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Jinxi Pan
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Wenxi Gu
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Haoyue Tan
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Ying Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Zhihua Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Mengda Jiang
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun Li
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Olivier Sterkers
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,APHP, Groupe hospitalo-Universitaire Pitié Salpêtrière, Otorhinolaryngology Department, Unit of Otology, Auditory Implants and Skull Base Surgery, Paris, France
| | - Hao Wu
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| |
Collapse
|
21
|
Aebischer P, Mantokoudis G, Weder S, Anschuetz L, Caversaccio M, Wimmer W. In-Vitro Study of Speed and Alignment Angle in Cochlear Implant Electrode Array Insertions. IEEE Trans Biomed Eng 2021; 69:129-137. [PMID: 34110987 DOI: 10.1109/tbme.2021.3088232] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE The insertion of the electrode array is a critical step in cochlear implantation. Herein we comprehensively investigate the impact of the alignment angle and feed-forward speed on deep insertions in artificial scala tympani models with accurate macro-anatomy and controlled frictional properties. METHODS Motorized insertions (n=1033) were performed in six scala tympani models with varying speeds and alignment angles. We evaluated reaction forces and micrographs of the insertion process and developed a mathematical model to estimate the normal force distribution along the electrode arrays. RESULTS Insertions parallel to the cochlear base significantly reduce insertion energies and lead to smoother array movement. Non-constant insertion speeds allow to reduce insertion forces for a fixed total insertion time compared to a constant feed rate. CONCLUSION In cochlear implantation, smoothness and peak forces can be reduced with alignment angles parallel to the scala tympani centerline and with non-constant feed-forward speed profiles. SIGNIFICANCE Our results may help to provide clinical guidelines and improve surgical tools for manual and automated cochlear implantation.
Collapse
|
22
|
Abstract
OBJECTIVE To study the surgical results, intracochlear position of the electrode array (EA) and auditory performance of the LISTENT LCI-20PI cochlear implant device, and daily use status at 3 years. STUDY DESIGN A retrospective study. SETTING A single-tertiary referral center. PATIENTS Between January and December 2016, 20 patients underwent cochlear implantation using the LISTENT LCI-20PI (lateral wall EA). INTERVENTION Cochlear implantation. MAIN OUTCOME MEASURES Measurement of cochlear size, extent of posterior tympanotomy, and insertion depth. Scalar position of the EA evaluated by 3D reconstruction. Auditory outcomes 1 year after implantation and daily use status at 3 years. RESULTS EAs were completely inserted in all cases with an insertion depth of 288 ± 36.8 degrees. One year later, the average sentence recognition score (SRS) was 90 ± 21.7%. EA scalar location was analyzed in 18 patients. Thirteen EAs (72.2%) were fully inserted into the scala tympani (ST) and 5 (27.8%) had shifted from the ST to the scala vestibuli (SV). There was no statistically significant difference in cochlear size, extent of posterior tympanotomy, or insertion depth between these two groups. EAs inserted by cochleostomy had a higher chance of scalar shift than those inserted via the round window (60% vs 15.4%, p = 0.099). SRS at 1 year with full ST insertion was significantly better than in those with scalar shift (99 ± 1.3% vs 83 ± 16.5%, p = 0.002). Three years after implantation, 92% of patients were daily users and 46% were telephone users. CONCLUSIONS The LISTENT LCI-20PI provided accredited hearing rehabilitation with a short insertion depth. Full insertion into the ST was associated with better cochlear implantation outcomes.
Collapse
|
23
|
Robot-assisted Cochlear Implant Electrode Array Insertion in Adults: A Comparative Study With Manual Insertion. Otol Neurotol 2021; 42:e438-e444. [PMID: 33306661 DOI: 10.1097/mao.0000000000003002] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To describe the first cochlear array insertions using a robot-assisted technique, with different types of straight or precurved electrode arrays, compared with arrays manually inserted into the cochlea. STUDY DESIGN Retrospective review. SETTING Tertiary otologic center. PATIENTS Twenty cochlear implantations in the robot-assisted group and 40 in the manually inserted group. INTERVENTIONS Cochlear implantations using a robot-assisted technique (RobOtol) with straight (eight Cochlear CI522/622, and eight Advanced Bionics Hifocus Slim J) or precurved (four Advanced Bionics Hifocus Mid-Scala) matched to manual cochlear implantations. Three-dimensional reconstruction images of the basilar membrane and the electrode array were obtained from pre- and postimplantation computed tomography. MAIN OUTCOME MEASURES Rate and localization of scalar translocations. RESULTS For straight electrode arrays, scalar translocations occurred in 19% (3/16) of the robot-assisted group and 31% (10/32) of the manually inserted group. Considering the number of translocated electrodes, this was lower in the robot-assisted group (7%) than in the manually inserted group (16%) (p < 0.0001, χ2 test). For precurved electrode arrays, scalar translocations occurred in 50% (2/4) of the robot-assisted group and 38% (3/8) of the manually inserted group. CONCLUSION This study showed a safe and reliable insertion of different electrode array types with a robot-assisted technique, with a less traumatic robotic insertion of straight electrode arrays when compared with manual insertion.
Collapse
|
24
|
A New CT Parameter for Predicting Residual Hearing Preservation in Cochlear Implantation: The "Basal Turn-Facial Ridge Angle". Otol Neurotol 2021; 42:e161-e167. [PMID: 33278244 DOI: 10.1097/mao.0000000000002918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES We suggest a simple measurement, called the "basal turn-facial ridge (BT-FR) angle," for determining the electrode insertion axis using preoperative temporal bone computed tomography (CT) to predict hearing preservation (HP) in cochlear implantation (CI). STUDY DESIGN Retrospective chart review. SETTING Tertiary referral center. PATIENTS Eighty-two ears that underwent CI between 2010 and 2018 were included. Ears with preoperative thresholds less than or equal to 80 dB HL at 125, 250, and 500 Hz were enrolled and grouped using the criteria of Skarżyński et al.: Group 1, complete or partial HP; Group 2, minimal HP or complete hearing loss. INTERVENTION All subjects underwent CI with soft surgery techniques through the round window approach. MAIN OUTCOME MEASURES The BT-FR angle is the angle between the basal turn line (BT-line), which is a straight line passing through the center of the longitudinal axis of the BT, and the facial ridge line, which is a straight line running from the endpoint of the BT-line to a point just above the facial ridge. RESULTS The BT-FR angle was 2.5 ± 2.9 degrees in Group 1 and -0.3 ± 2.7 degrees in Group 2 (p = 0.003). The angle and hearing loss showed a significant negative correlation (r = -0.401, p = 0.002). In multiple linear regression, "age at operation" (β coefficient 0.260; p = 0.001) and the "BT-FR angle" (-1.967; p = 0.001) were significant variables affecting the degree of residual hearing loss. CONCLUSIONS The BT-FR angle, which can be measured simply, may be useful to predict residual HP after CI.
Collapse
|
25
|
Abstract
OBJECTIVE The intracochlear position of an electrode array may influence the outcome after cochlear implantation. The design of the electrode array can increase the risk of trauma causing penetration of the basilar membrane or shift of the electrode array into the scala vestibuli. The aim of the present study was to identify a scalar shift after implantation of two different electrode arrays developed by one manufacturer. STUDY DESIGN Retrospective analysis. SETTING Tertiary referral center. PATIENTS AND INTERVENTION Cochlear implant recipients implanted between 2010 and 2014 and receiving either a mid-scala (n = 30) or a perimodiolar (n = 30) electrode array. MAIN OUTCOME MEASURE Occurrence of scalar shift in association with the electrode type. RESULTS Scalar shift occurred in 26.7% (8 of 30) of the patients implanted with a perimodiolar electrode array and in 6.7% (2 of 30) of the patients implanted with the mid-scala electrode array. The mean insertion depth in the patients experiencing scalar shift after implantation of the mid-scala electrode was much deeper (21.59 ± 0.34 mm) when compared with the mean insertion depth of the patients with scalar shift after implantation with a perimodiolar electrode array (17.85 ± 2.19 mm). There tends to be a correlation between the cochlear length and the occurrence of a scalar shift. However, the number of patients with scalar shift in the mid-scala group is rather small. CONCLUSION Based on the presented data, more patients implanted with a perimodiolar electrode array have a scalar shift when compared with the midscalar electrode array.
Collapse
|
26
|
Copson B, Wijewickrema S, Ma X, Zhou Y, Gerard JM, O'Leary S. Surgical approach to the facial recess influences the acceptable trajectory of cochlear implantation electrodes. Eur Arch Otorhinolaryngol 2021; 279:137-147. [PMID: 33547488 DOI: 10.1007/s00405-021-06633-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/20/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE To provide practical guidance to the operative surgeon by mapping the location, where acceptable straight-line virtual cochlear implant electrode trajectories intersect the facial recess. In addition, to investigate the influence of facial recess preparation, virtual electrode width and surgical approach to the cochlea on these available trajectories. METHODS The study was performed on imaging data from eight cadaveric temporal bones within the University of Melbourne Virtual Reality (VR) Temporal Bone Surgery Simulator. The facial recess was opened to varying degrees, and acceptable trajectory vectors with varying diameters were calculated for electrode insertions via cochleostomy or round window membrane (RWM). The percentage of acceptable insertion vectors through each location of the facial recess was visually represented using heatmaps. RESULTS Seven of the eight bones allowed for acceptable vector trajectories via both cochleostomy and RWM approaches. These acceptable trajectories were more likely to lie superiorly within the facial recess for insertion via the round window, and inferiorly for insertion via cochleostomy. Cochleostomy insertions required a greater degree of preparation and skeletonisation of the junction of the facial nerve and chorda tympani within the facial recess. The width of the virtual electrode had only marginal impact on the availability of acceptable trajectories. Heatmaps emphasised the intimate relationship the acceptable trajectories have with the facial nerve and chorda tympani. CONCLUSION These findings highlight the differences in the acceptable straight-line trajectories for electrodes when implanted via the round window or cochleostomy. There were notable exceptions to both surgical approaches, likely explained by the variation of hook region anatomy. The methodology used in this study holds promise for translation to patient specific surgical planning.
Collapse
Affiliation(s)
- Bridget Copson
- Department of Surgery (Otolaryngology), University of Melbourne, Level 5, Royal Victorian Eye and Ear Hospital, 32, Gisborne Street, East Melbourne, VIC, 3002, Australia.
| | - Sudanthi Wijewickrema
- Department of Surgery (Otolaryngology), University of Melbourne, Level 5, Royal Victorian Eye and Ear Hospital, 32, Gisborne Street, East Melbourne, VIC, 3002, Australia
| | - Xingjun Ma
- Department of Surgery (Otolaryngology), University of Melbourne, Level 5, Royal Victorian Eye and Ear Hospital, 32, Gisborne Street, East Melbourne, VIC, 3002, Australia
| | - Yun Zhou
- Department of Surgery (Otolaryngology), University of Melbourne, Level 5, Royal Victorian Eye and Ear Hospital, 32, Gisborne Street, East Melbourne, VIC, 3002, Australia
| | - Jean-Marc Gerard
- Department of Surgery (Otolaryngology), University of Melbourne, Level 5, Royal Victorian Eye and Ear Hospital, 32, Gisborne Street, East Melbourne, VIC, 3002, Australia
| | - Stephen O'Leary
- Department of Surgery (Otolaryngology), University of Melbourne, Level 5, Royal Victorian Eye and Ear Hospital, 32, Gisborne Street, East Melbourne, VIC, 3002, Australia
| |
Collapse
|
27
|
Jwair S, Prins A, Wegner I, Stokroos RJ, Versnel H, Thomeer HGXM. Scalar Translocation Comparison Between Lateral Wall and Perimodiolar Cochlear Implant Arrays - A Meta-Analysis. Laryngoscope 2020; 131:1358-1368. [PMID: 33159469 PMCID: PMC8246990 DOI: 10.1002/lary.29224] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 12/15/2022]
Abstract
Objectives/Hypothesis Two types of electrode arrays for cochlear implants (CIs) are distinguished: lateral wall and perimodiolar. Scalar translocation of the array can lead to intracochlear trauma by penetrating from the scala tympani into the scala vestibuli or scala media, potentially negatively affecting hearing performance of CI users. This systematic review compares the lateral wall and perimodiolar arrays with respect to scalar translocation. Study Design Systematic review. Methods PubMed, Embase, and Cochrane databases were reviewed for studies published within the last 11 years. No other limitations were set. All studies with original data that evaluated the occurrence of scalar translocation or tip fold‐over (TF) with postoperative computed tomography (CT) following primary cochlear implantation in bilateral sensorineuronal hearing loss patients were considered to be eligible. Data were extracted independently by two reviewers. Results We included 33 studies, of which none were randomized controlled trials. Meta‐analysis of five cohort studies comparing scalar translocation between lateral wall and perimodiolar arrays showed that lateral wall arrays have significantly lower translocation rates (7% vs. 43%; pooled odds ratio = 0.12). Translocation was negatively associated with speech perception scores (weighted mean 41% vs. 55%). Tip fold‐over of the array was more frequent with perimodiolar arrays (X2 = 6.8, P < .01). Conclusions Scalar translocation and tip fold‐overs occurred more frequently with perimodiolar arrays than with lateral wall arrays. In addition, translocation of the array negatively affects hearing with the cochlear implant. Therefore, if one aims to minimize clinically relevant intracochlear trauma, lateral wall arrays would be the preferred option for cochlear implantation. Laryngoscope, 131:1358–1368, 2021
Collapse
Affiliation(s)
- Saad Jwair
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Adrianus Prins
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Inge Wegner
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Robert J Stokroos
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Huib Versnel
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Hans G X M Thomeer
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
28
|
Rau TS, Zuniga MG, Salcher R, Lenarz T. A simple tool to automate the insertion process in cochlear implant surgery. Int J Comput Assist Radiol Surg 2020; 15:1931-1939. [PMID: 32857248 PMCID: PMC7603473 DOI: 10.1007/s11548-020-02243-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 08/03/2020] [Indexed: 12/28/2022]
Abstract
Purpose Automated insertion of electrode arrays (EA) in cochlear implant surgery is presumed to be less traumatic than manual insertions, but no tool is widely available in the operating room. We sought (1) to design and create a simple tool able to automate the EA insertion process; and (2) to perform preliminary evaluations of the designed prototype. Methods A first prototype of a tool with maximum simplicity was designed and fabricated to take advantage of hydraulic actuation. The prototype facilitates automated forward motion using a syringe connected to an infusion pump. Initial prototype evaluation included: (1) testing of forward motion at different velocities (2) EA insertion trials into an artificial cochlear model with force recordings, and (3) evaluation of device handling, fixation and positioning using cadaver head specimens and a surgical retractor. Alignment of the tool was explored with CT imaging. Results In this initial phase, the prototype demonstrated easy assembly and ability to respond to hydraulic actuation driven by an infusion pump at different velocities. EA insertions at an ultra-slow velocity of 0.03 mm/s revealed smooth force profiles with mean maximum force of 0.060 N ± 0.007 N. Device positioning with an appropriate insertion axis into the cochlea was deemed feasible and easy to achieve. Conclusions Initial testing of our hydraulic insertion tool did not reveal any serious complications that contradict the initially defined design specifications. Further meticulous testing is needed to determine the safety of the device, its reliability and clinical applicability.
Collapse
Affiliation(s)
- Thomas S Rau
- Department of Otolaryngology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
- Cluster of Excellence EXC 2177/1 "Hearing4all", Hannover Medical School, Hannover, Germany.
| | - M Geraldine Zuniga
- Department of Otolaryngology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Cluster of Excellence EXC 2177/1 "Hearing4all", Hannover Medical School, Hannover, Germany
| | - Rolf Salcher
- Department of Otolaryngology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Cluster of Excellence EXC 2177/1 "Hearing4all", Hannover Medical School, Hannover, Germany
| | - Thomas Lenarz
- Department of Otolaryngology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Cluster of Excellence EXC 2177/1 "Hearing4all", Hannover Medical School, Hannover, Germany
| |
Collapse
|
29
|
Vadivelu AN, Liu Z, Gunawardena DS, Chen B, Tam HY, O'Leary S, Oetomo D. Integrated Force Sensor in a Cochlear Implant for Hearing Preservation Surgery. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:3819-3822s. [PMID: 31946706 DOI: 10.1109/embc.2019.8856549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Cochlear Implant is used for patients with severe hearing loss. It is a neural-prosthesis that stimulates the nerve endings within the cochlea, which is the organ of hearing. The surgical technique involves inserting the electrode array of the implant into a very small "snail-like" spiral structure. During this insertion process, the surgeon's finger tip is not able to perceive the resistance from the contact of the implant and the cochlea's internal structure, below the internal rupture threshold. This can potentially damage vital structures and result in the worsening of residual hearing and poor speech perception. Currently, there is no clinically and commercially available intra-operative force feedback system. A custom made sensor is therefore proposed, integrated within the implant to enable real-time force readings. The device will provide surgeons with the vital force feedback information related to the implants' position within the cochlea. This paper concentrates on demonstrating that the proposed sensor is capable of measuring the contact force below the rupture threshold of the cochlea's internal structure.
Collapse
|
30
|
Cochlear Implantation With a Novel Long Straight Electrode: the Insertion Results Evaluated by Imaging and Histology in Human Temporal Bones. Otol Neurotol 2019; 39:e784-e793. [PMID: 30199496 DOI: 10.1097/mao.0000000000001953] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
HYPOTHESIS To evaluate the insertion results of a novel straight array (EVO) by detailed imaging and subsequent histology in human temporal bones (TB). BACKGROUND The main focuses of modern cochlear implant surgery are to prevent damage to the intracochlear structures and to preserve residual hearing. This is often achievable with new atraumatic electrode arrays in combination with meticulous surgical techniques. METHODS Twenty fresh-frozen TBs were implanted with the EVO. Pre- and postoperative cone beam computed tomography scans were reconstructed and fused for an artifact-free representation of the electrode. The array's vertical position was quantified in relation to the basilar membrane on basis of which trauma was classified (Grades 0-4). The basilar membrane location was modeled from previous histologic data. The TBs underwent subsequent histologic examination. RESULTS The EVOs were successfully inserted in all TBs. Atraumatic insertion (Grades 0-1) were accomplished in 14 of 20 TBs (70%). There were three apical translocations, and two basal translocations due to electrode bulging. One TB had multiple translocations. The sensitivity and specificity of imaging for detecting insertion trauma (Grades 2-4) was 87.5% and 97.3.0%, respectively. CONCLUSION Comparable insertion results as reported for other arrays were also found for the EVO. Insertion trauma can be mostly avoided with meticulous insertion techniques to prevent bulging and by limiting the insertion depth angle to 360 degrees. The image fusion technique is a reliable tool for evaluating electrode placement and is feasible for trauma grading.
Collapse
|
31
|
Torres R, Jia H, Drouillard M, Bensimon JL, Sterkers O, Ferrary E, Nguyen Y. An Optimized Robot-Based Technique for Cochlear Implantation to Reduce Array Insertion Trauma. Otolaryngol Head Neck Surg 2018; 159:900-907. [PMID: 30084309 DOI: 10.1177/0194599818792232] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To compare the intracochlear trauma induced by optimized robot-based and manual techniques with a straight electrode array prototype inserted at different lengths. STUDY DESIGN Experimental study. SETTING Robot-based otologic surgery laboratory. SUBJECTS AND METHODS A prototype array was inserted at different insertion lengths (21 and 25 mm) in 20 temporal bones. The manual insertion was performed with a microforceps. The optimized approach consisted of an optimal axis insertion provided by a robot-based arm controlled by a tracking system, with a constant speed of insertion (0.25 mm/s) achieved by a motorized insertion tool. The electrode position was determined at the level of each electrode by stereomicroscopic cochlea section analysis. RESULTS A higher number of electrodes correctly located in the scala tympani was associated with the optimized approach ( P = .03, 2-way analysis of variance). Regardless of the insertion technique used, the array inserted at 25 mm allowed complete insertion of the active stimulating portion of the array in all cases. Insertion depth was greater when the array was inserted to 25 mm versus 21 mm ( P < .001, 2-way analysis of variance). The optimized insertion was associated with less trauma than that from manual insertion regardless the length of the inserted array ( P = .04, 2-way analysis of variance). CONCLUSION Compared with a manual insertion, intracochlear trauma could be reduced with array insertion performed on an optimal axis by using motorized insertion and by applying a constant insertion speed.
Collapse
Affiliation(s)
- Renato Torres
- 1 Sorbonne Université, Inserm, Unité "Réhabilitation chirurgicale mini-invasive et robotisée de l'audition," Paris, France.,2 AP-HP, GHU Pitié-Salpêtrière, Service ORL, Otologie, implants auditifs et chirurgie de la base du crâne, Paris, France
| | - Huan Jia
- 1 Sorbonne Université, Inserm, Unité "Réhabilitation chirurgicale mini-invasive et robotisée de l'audition," Paris, France.,3 Department of Otolaryngology Head and Neck Surgery, School of Medicine, Shanghai Jiaotong University Shanghai Ninth People's Hospital, Shanghai, China
| | - Mylène Drouillard
- 1 Sorbonne Université, Inserm, Unité "Réhabilitation chirurgicale mini-invasive et robotisée de l'audition," Paris, France.,2 AP-HP, GHU Pitié-Salpêtrière, Service ORL, Otologie, implants auditifs et chirurgie de la base du crâne, Paris, France
| | | | - Olivier Sterkers
- 1 Sorbonne Université, Inserm, Unité "Réhabilitation chirurgicale mini-invasive et robotisée de l'audition," Paris, France.,2 AP-HP, GHU Pitié-Salpêtrière, Service ORL, Otologie, implants auditifs et chirurgie de la base du crâne, Paris, France
| | - Evelyne Ferrary
- 1 Sorbonne Université, Inserm, Unité "Réhabilitation chirurgicale mini-invasive et robotisée de l'audition," Paris, France.,2 AP-HP, GHU Pitié-Salpêtrière, Service ORL, Otologie, implants auditifs et chirurgie de la base du crâne, Paris, France
| | - Yann Nguyen
- 1 Sorbonne Université, Inserm, Unité "Réhabilitation chirurgicale mini-invasive et robotisée de l'audition," Paris, France.,2 AP-HP, GHU Pitié-Salpêtrière, Service ORL, Otologie, implants auditifs et chirurgie de la base du crâne, Paris, France
| |
Collapse
|