1
|
Toure M, Amalou G, Raise IA, Mobio NMA, Malki A, Barakat A. First report of an Ivorian family with nonsyndromic hearing loss caused by GJB2 compound heterozygous variants. Ann Hum Genet 2024. [PMID: 39092543 DOI: 10.1111/ahg.12574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
The primary etiology of congenital hearing loss is attributed to genetic factors, with GJB2 identified as a pivotal gene across diverse ethnic groups. Additionally, nonsyndromic hearing loss is predominantly inherited in an autosomal recessive manner. We used Sanger sequencing to analyze GJB2 in 17 deaf children from 13 unrelated Ivory Coast families. One family had two children born with severe congenital deafness and exhibited pathogenic compound heterozygous variants. These variants included a nonsense substitution (c.132G > A or p.Trp44Ter) and a newly discovered duplication of 7 base pairs (c.205_211dupTTCCCCA or p.Ser72ProfsTer32). Segregation testing confirmed these variants, marking the first identification of GJB2 in an Ivorian family with congenital hearing loss.
Collapse
Affiliation(s)
- Madoussou Toure
- Genomics and Human Genetics Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
- Ben M'Sik Faculty of science, Hassan II University of Casablanca, Casablanca, Morocco
| | - Ghita Amalou
- Genomics and Human Genetics Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Imane Ait Raise
- Genomics and Human Genetics Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - N'kan Max Ange Mobio
- ENT department at the University Hospital Medical Center of Treichville, Abidjan, Ivory Coast
| | - Abderrahim Malki
- Ben M'Sik Faculty of science, Hassan II University of Casablanca, Casablanca, Morocco
| | - Abdelhamid Barakat
- Genomics and Human Genetics Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| |
Collapse
|
2
|
Wang L, Liu G, Ma D, Zeng H, Wang Y, Luo C, Zhang J, Xu Z. Next-generation sequencing for genetic testing of hearing loss populations. Clin Chim Acta 2024; 552:117693. [PMID: 38056549 DOI: 10.1016/j.cca.2023.117693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/03/2023] [Accepted: 12/03/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND AND AIMS Hearing loss is a common sensorineural disease with genetic heterogeneity. More than 140 genes are known to cause hereditary hearing loss. We aim to uncover the etiologies of hearing loss and provide patients with reasonable reproductive choices. MATERIALS AND METHODS Total 825 participants were recruited, including 74 individuals, 47 couples, and 219 families, to identify the molecular etiologies of hearing loss using next-generation sequencing (NGS). Novel mutations were verified with a minigene splicing assay and the construction of three-dimensional protein models. RESULTS A positive molecular diagnosis was obtained for 244 patients, a rate of 63.05 %. Total 470 mutations were identified in 18 causative genes in positive patients. The most common genes mutated were GJB2 and SLC26A4. 47 novel mutations were identified. Further analysis predicted that two splicing mutations would cause abnormal mRNA splicing and three missense mutations would affect the protein structure. The results of prenatal diagnosis showed that the genotypes of 15 fetuses were the same as the probands. CONCLUSION Our findings expand the mutation spectrum of hearing loss and highlight the importance of genetic diagnosis and prenatal diagnosis to allow accurate and personalized guidance for those at high risk of deafness.
Collapse
Affiliation(s)
- Lulu Wang
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, Jiangsu, China
| | - Gang Liu
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, Jiangsu, China
| | - Dingyuan Ma
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, Jiangsu, China
| | - Huasha Zeng
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, Jiangsu, China
| | - Yuguo Wang
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, Jiangsu, China
| | - Chunyu Luo
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, Jiangsu, China
| | - Jingjing Zhang
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, Jiangsu, China.
| | - Zhengfeng Xu
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, Jiangsu, China.
| |
Collapse
|
3
|
Yamamoto N, Balciuniene J, Hartman T, Diaz-Miranda MA, Bedoukian E, Devkota B, Lawrence A, Golenberg N, Patel M, Tare A, Chen R, Schindler E, Choi J, Kaur M, Charles S, Chen J, Fanning EA, Dechene E, Cao K, Jill MR, Rajagopalan R, Bayram Y, Dulik MC, Germiller J, Conlin LK, Krantz ID, Luo M. Comprehensive Gene Panel Testing for Hearing Loss in Children: Understanding Factors Influencing Diagnostic Yield. J Pediatr 2023; 262:113620. [PMID: 37473993 DOI: 10.1016/j.jpeds.2023.113620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/17/2023] [Accepted: 07/12/2023] [Indexed: 07/22/2023]
Abstract
OBJECTIVE To evaluate factors influencing the diagnostic yield of comprehensive gene panel testing (CGPT) for hearing loss (HL) in children and to understand the characteristics of undiagnosed probands. STUDY DESIGN This was a retrospective cohort study of 474 probands with childhood-onset HL who underwent CGPT between 2016 and 2020 at a single center. Main outcomes and measures included the association between clinical variables and diagnostic yield and the genetic and clinical characteristics of undiagnosed probands. RESULTS The overall diagnostic yield was 44% (209/474) with causative variants involving 41 genes. While the diagnostic yield was high in the probands with congenital, bilateral, and severe HL, it was low in those with unilateral, noncongenital, or mild HL; cochlear nerve deficiency; preterm birth; neonatal intensive care unit admittance; certain ancestry; and developmental delay. Follow-up studies on 49 probands with initially inconclusive CGPT results changed the diagnostic status to likely positive or negative outcomes in 39 of them (80%). Reflex to exome sequencing on 128 undiagnosed probands by CGPT revealed diagnostic findings in 8 individuals, 5 of whom had developmental delays. The remaining 255 probands were undiagnosed, with 173 (173/255) having only a single variant in the gene(s) associated with autosomal recessive HL and 28% (48/173) having a matched phenotype. CONCLUSION CGPT efficiently identifies the genetic etiologies of HL in children. CGPT-undiagnosed probands may benefit from follow-up studies or expanded testing.
Collapse
Affiliation(s)
- Nobuko Yamamoto
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Roberts Individualized Medical Genetics Center (RIMGC), Children's Hospital of Philadelphia, Philadelphia, PA; Division of Otolaryngology, Department of Surgical Specialties, National Center for Children's Health and Development, Tokyo, Japan; Division of Hearing and Balance Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Jorune Balciuniene
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA; PerkinElmer Genomics, Pittsburgh, PA
| | - Tiffiney Hartman
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Roberts Individualized Medical Genetics Center (RIMGC), Children's Hospital of Philadelphia, Philadelphia, PA
| | - Maria Alejandra Diaz-Miranda
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Emma Bedoukian
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Roberts Individualized Medical Genetics Center (RIMGC), Children's Hospital of Philadelphia, Philadelphia, PA
| | - Batsal Devkota
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Roberts Individualized Medical Genetics Center (RIMGC), Children's Hospital of Philadelphia, Philadelphia, PA
| | - Audrey Lawrence
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Roberts Individualized Medical Genetics Center (RIMGC), Children's Hospital of Philadelphia, Philadelphia, PA
| | - Netta Golenberg
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Maha Patel
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Archana Tare
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Robert Chen
- Department of Pathology and Laboratory Medicine, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Emma Schindler
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Roberts Individualized Medical Genetics Center (RIMGC), Children's Hospital of Philadelphia, Philadelphia, PA
| | - Jiwon Choi
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Roberts Individualized Medical Genetics Center (RIMGC), Children's Hospital of Philadelphia, Philadelphia, PA
| | - Maninder Kaur
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Roberts Individualized Medical Genetics Center (RIMGC), Children's Hospital of Philadelphia, Philadelphia, PA
| | - Sarah Charles
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Jiani Chen
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Elizabeth A Fanning
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Elizabeth Dechene
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Kajia Cao
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Murrell R Jill
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pathology and Laboratory Medicine, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Ramakrishnan Rajagopalan
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pathology and Laboratory Medicine, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Yavuz Bayram
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pathology and Laboratory Medicine, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Matthew C Dulik
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pathology and Laboratory Medicine, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - John Germiller
- Division of Pediatric Otolaryngology, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Otorhinolaryngology, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Laura K Conlin
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pathology and Laboratory Medicine, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Ian D Krantz
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Roberts Individualized Medical Genetics Center (RIMGC), Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pediatrics, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Minjie Luo
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pathology and Laboratory Medicine, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA.
| |
Collapse
|
4
|
Perry J, Redfield S, Oza A, Rouse S, Stewart C, Khela H, Srinivasan T, Albano V, Shearer E, Kenna M. Exome Sequencing Expands the Genetic Diagnostic Spectrum for Pediatric Hearing Loss. Laryngoscope 2023; 133:2417-2424. [PMID: 36515421 DOI: 10.1002/lary.30507] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/29/2022] [Accepted: 11/07/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Genetic testing is the standard-of-care for diagnostic evaluation of bilateral, symmetric, sensorineural hearing loss (HL). We sought to determine the efficacy of a comprehensive genetic testing method, exome sequencing (ES), in a heterogeneous pediatric patient population with bilateral symmetric, bilateral asymmetric, and unilateral HL. METHODS Trio-based ES was performed for pediatric patients with confirmed HL including those with symmetric, asymmetric, and unilateral HL. RESULTS ES was completed for 218 probands. A genetic cause was identified for 31.2% of probands (n = 68). The diagnostic rate was 40.7% for bilateral HL, 23.1% for asymmetric HL, and 18.3% for unilateral HL, with syndromic diagnoses made in 20.8%, 33.3%, and 54.5% of cases in each group, respectively. Secondary or incidental findings were identified in 10 families (5.52%). CONCLUSION ES is an effective method for genetic diagnosis for HL including phenotypically diverse patients and allows the identification of secondary findings, discovery of deafness-causing genes, and the potential for efficient data re-analysis. LEVEL OF EVIDENCE 4 Laryngoscope, 133:2417-2424, 2023.
Collapse
Affiliation(s)
- Julia Perry
- Department of Otolaryngology and Communication Enhancement, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Shelby Redfield
- Department of Otolaryngology and Communication Enhancement, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Andrea Oza
- Department of Otolaryngology and Communication Enhancement, Boston Children's Hospital, Boston, Massachusetts, USA
- Clinical Genomics, Invitae, San Francisco, California, USA
| | - Stephanie Rouse
- Department of Otolaryngology and Communication Enhancement, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Candace Stewart
- Department of Otolaryngology and Communication Enhancement, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Harmon Khela
- Department of Otolaryngology and Communication Enhancement, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Tarika Srinivasan
- Department of Otolaryngology and Communication Enhancement, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Victoria Albano
- Department of Otolaryngology and Communication Enhancement, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Eliot Shearer
- Department of Otolaryngology and Communication Enhancement, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Margaret Kenna
- Department of Otolaryngology and Communication Enhancement, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Riza AL, Alkhzouz C, Farcaș M, Pîrvu A, Miclea D, Mihuț G, Pleșea RM, Ștefan D, Drodar M, Lazăr C, Study OBOTHINT, Study OBOTFUSE, Ioana M, Popp R. Non-Syndromic Hearing Loss in a Romanian Population: Carrier Status and Frequent Variants in the GJB2 Gene. Genes (Basel) 2022; 14:69. [PMID: 36672810 PMCID: PMC9858611 DOI: 10.3390/genes14010069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The genetic causes of autosomal recessive nonsyndromic hearing loss (ARNSHL) are heterogeneous and highly ethnic-specific. We describe GJB2 (connexin 26) variants and carrier frequencies as part of our study and summarize previously reported ones for the Romanian population. In total, 284 unrelated children with bilateral congenital NSHL were enrolled between 2009 and 2018 in northwestern Romania. A tiered diagnostic approach was used: all subjects were tested for c.35delG, c.71G>A and deletions in GJB6 (connexin 30) using PCR-based methods. Furthermore, 124 cases undiagnosed at this stage were analyzed by multiplex-ligation-dependent probe amplifications (MLPA), probe mix P163, and sequencing of GJB2 exon 2. Targeted allele-specific PCR/restriction fragment length polymorphism (RFLP) established definite ethio-pathogenical diagnosis for 72/284 (25.35%) of the cohort. Out of the 124 further analyzed, in 12 cases (9.67%), we found compound heterozygous point mutations in GJB2. We identified one case of deletion of exon 1 of the WFS1 (wolframin) gene. Carrier status evaluation used Illumina Infinium Global Screening Array (GSA) genotyping: the HINT cohort-416 individuals in northwest Romania, and the FUSE cohort-472 individuals in southwest Romania. GSA variants yielded a cumulated risk allele presence of 0.0284. A tiered diagnostic approach may be efficient in diagnosing ARNSHL. The summarized contributions to Romanian descriptive epidemiology of ARNSHL shows that pathogenic variants in the GJB2 gene are frequent among NSHL cases and have high carrier rates, especially for c.35delG and c.71G>A. These findings may serve in health strategy development.
Collapse
Affiliation(s)
- Anca-Lelia Riza
- Regional Centre of Medical Genetics Dolj, Emergency County Hospital Craiova, 200642 Craiova, Romania
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
| | - Camelia Alkhzouz
- First Pediatric Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Clinical Emergency Hospital for Children, 400394 Cluj-Napoca, Romania
| | - Marius Farcaș
- Molecular Sciences Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Andrei Pîrvu
- Regional Centre of Medical Genetics Dolj, Emergency County Hospital Craiova, 200642 Craiova, Romania
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
| | - Diana Miclea
- First Pediatric Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Clinical Emergency Hospital for Children, 400394 Cluj-Napoca, Romania
| | - Gheorghe Mihuț
- ENT Department, Clinical Emergency Hospital for Children, 400394 Cluj-Napoca, Romania
| | - Răzvan-Mihail Pleșea
- Regional Centre of Medical Genetics Dolj, Emergency County Hospital Craiova, 200642 Craiova, Romania
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
| | - Delia Ștefan
- Molecular Sciences Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Mihaela Drodar
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
| | - Călin Lazăr
- First Pediatric Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Clinical Emergency Hospital for Children, 400394 Cluj-Napoca, Romania
| | | | | | - Mihai Ioana
- Regional Centre of Medical Genetics Dolj, Emergency County Hospital Craiova, 200642 Craiova, Romania
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
| | - Radu Popp
- Molecular Sciences Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
6
|
Kenna MA. Genetic testing for pediatric hearing loss: no time to waste. Hum Genet 2022; 141:315-317. [PMID: 35353226 DOI: 10.1007/s00439-021-02333-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 08/04/2021] [Indexed: 11/24/2022]
Abstract
Since the discovery of the first human deafness gene a quarter of a century ago, our approach to clinical evaluation of children with hearing loss has changed dramatically. What was once a low-yield scattershot approach has changed to a clearly definable pathway involving genetic testing, imaging, and congenital cytomegalovirus testing. There still however is a great deal of work to be done to expand the correct use of this testing, particularly genetic testing.
Collapse
Affiliation(s)
- Margaret A Kenna
- Sarah Fuller Chair for Hearing Loss and Hearing Restoration, Department of Otolaryngology and Communication Enhancement, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave. BCH 3129, Boston, MA, 02115, USA.
| |
Collapse
|
7
|
Zhu QW, Li MT, Zhuang X, Chen K, Xu WQ, Jiang YH, Qin G. Assessment of Hearing Screening Combined With Limited and Expanded Genetic Screening for Newborns in Nantong, China. JAMA Netw Open 2021; 4:e2125544. [PMID: 34533568 PMCID: PMC8449278 DOI: 10.1001/jamanetworkopen.2021.25544] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
IMPORTANCE Early identification and intervention for newborns with hearing loss (HL) may lead to improved physiological and social-emotional outcomes. The current newborn hearing screening is generally beneficial but improvements can be made. OBJECTIVE To assess feasibility and evaluate utility of a modified genetic and hearing screening program for newborn infants. DESIGN, SETTING, AND PARTICIPANTS This population-based cohort study used a 4-stage genetic and hearing screening program at 6 local hospitals in Nantong city, China. Participants were newborn infants born between January 2016 and June 2020 from the Han population. Statistical analysis was performed from April 1 to May 1, 2021. EXPOSURES Limited genetic screening for 15 variants in 4 common HL-associated genes and newborn hearing screening (NHS) were offered concurrently to all newborns. Hearing rescreening and/or diagnostic tests were provided for infants with evidence of HL on NHS or genetic variants on screening. Expanded genetic tests for a broader range of genes were targeted to infants with HL with negative results of limited genetic tests. MAIN OUTCOMES AND MEASURES The detection capability for infants with hearing impairment who passed conventional hearing screening, as well as infants with normal hearing at risk of late-onset HL due to genetic susceptibility. RESULTS Among a total of 35 930 infants, 32 512 infants completed the follow-up and were included for analysis. Among the infants included in the analysis, all were from the Han population in China and 52.3% (16 988) were male. The modified genetic and hearing screening program revealed 142 cases of HL and 1299 cases of genetic variation. The limited genetic screening helped identify 31 infants who passed newborn hearing screening, reducing time for diagnosis and intervention; 425 infants with normal hearing with pathogenic SLC26A4 variation and 92 infants with MT-RNR1 variation were at risk for enlarged vestibular aqueduct and aminoglycoside-induced ototoxicity respectively, indicating early aversive or preventive management. CONCLUSIONS AND RELEVANCE This study found that performing modified genetic and hearing screening in newborns was feasible and provides evidence that the program could identify additional subgroups of infants who need early intervention. These findings suggest an advantage for universal adoption of such a practice.
Collapse
Affiliation(s)
- Qing-Wen Zhu
- Clinical Medicine Research Center, Nantong Maternal and Child Health Hospital affiliated to Nantong University, Nantong, China
| | - Mu-Ting Li
- Department of Epidemiology and Biostatistics, Nantong University School of Public Health, Nantong, China
| | - Xun Zhuang
- Department of Epidemiology and Biostatistics, Nantong University School of Public Health, Nantong, China
| | - Kai Chen
- Department of Internal Medicine, Nantong University Medical School, Nantong, China
| | - Wan-Qing Xu
- Department of Internal Medicine, Nantong University Medical School, Nantong, China
| | - Yin-Hua Jiang
- Clinical Medicine Research Center, Nantong Maternal and Child Health Hospital affiliated to Nantong University, Nantong, China
| | - Gang Qin
- Department of Epidemiology and Biostatistics, Nantong University School of Public Health, Nantong, China
| |
Collapse
|
8
|
Bouzaher MH, Worden CP, Jeyakumar A. Systematic Review of Pathogenic GJB2 Variants in the Latino Population. Otol Neurotol 2020; 41:e182-e191. [PMID: 31834214 DOI: 10.1097/mao.0000000000002505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVES Define the extent to which GJB2-related hearing loss is responsible for non-syndromic hearing loss (NSHL) in the Latino population. METHODS Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines were followed. PubMed and MEDLINE were accessed from 1966 to 2019 using permutations of the MeSH terms: "Hearing Loss," "Hearing Impairment," "Deafness," "Latin American," "Latino," "GJB2," and "Genetic." Additionally, countries designated as Latino by the US Office of Management and Bureau were cross-referenced as key terms against the aforementioned search criteria. Exclusion criteria included non-English publications, a non-Latino study population, and literature not investigating GJB2. An allele frequency analysis of pathogenic GJB2 variants in the Latino population was performed and stratified by country of origin and reported ethnicity. RESULTS One hundred twenty two unique studies were identified of which 64 met our inclusion criteria. Forty three studies were included in the GJB2 systematic review. A total of 38 pathogenic GJB2 variants were identified across 20 countries in the Latino population. The prevalence of pathogenic GJB2 variants varied by country; however, were generally uncommon with the exception of c.35delG (p.Gly12Valfs*) which displayed an allele frequency of 3.1% in the combined Latino population; ranging from 21% in Colombia to 0% in Guatemala. CONCLUSION Variation in the prevalence of pathogenic GJB2 variants by country likely reflect the heterogeneous nature of ethnic ancestral contributions to the Latino population. Additional research utilizing next generation sequencing might aid in the development of assays for high throughput diagnosis of inherited hearing loss in the multitude of ethnic sub-groups that comprise this and other traditionally marginalized populations.
Collapse
Affiliation(s)
| | | | - Anita Jeyakumar
- Division of Otolaryngology, Department of Surgery, Akron Children's Hospital, Akron, Ohio
| |
Collapse
|