1
|
Yepes MF, Hoffer ME, Chiossone JA, Soejima N, King CS, Rajguru SM. Noninvasive Targeted Temperature Management of the Inner Ear: Numerical Simulations and Experimental Measurements in a Human Cadaver Model. Otol Neurotol 2025:00129492-990000000-00751. [PMID: 40014301 DOI: 10.1097/mao.0000000000004476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
HYPOTHESIS Mild therapeutic hypothermia (MTH) could be delivered to the human inner ear using a localized, noninvasive approach to achieve protective temperature reductions without systemic side effects. BACKGROUND MTH has demonstrated protective effects in the cochlea following injuries such as device implantation, ototoxicity, and noise overexposure. It targets key cellular mechanisms, including proinflammatory pathways, oxidative stress, pyroptosis, and apoptosis. However, systemic and invasive methods for MTH carry risks and are less practical for broader clinical applications. Developing a localized, noninvasive approach could offer a safer, more accessible solution for hearing preservation after cochlear injury. METHODS Cadaveric middle and inner ear structures, maintained near physiological conditions, were used to test a custom-designed cooling gel pack (ReBound) placed externally on the temporal bone. Temperature changes were recorded over 60 or 30 minutes. To complement experimental findings, three-dimensional geometrical models were created from imaging data, and finite element heat transfer analysis simulated temperature changes across inner ear structures. RESULTS With external gel pack application, inner ear temperatures dropped by 2.9°C within 30 minutes and 4.6°C within 60 minutes. Cooling persisted for 10 minutes post-device removal. Numerical modeling corroborated these findings, indicating average temperature reductions of 2°C to 4°C. Biological sex differences were observed in cooling efficiency and overall temperature drop. CONCLUSION This study demonstrates that localized, noninvasive MTH can effectively reduce inner ear temperatures to therapeutically relevant levels. These findings support a promising, clinically translatable approach for protecting cochlear structure and function after injury, with minimal systemic risks.
Collapse
Affiliation(s)
| | - Michael E Hoffer
- Department of Otolaryngology, University of Miami-Miller School of Medicine, Miami, Florida
| | - Juan Armando Chiossone
- Department of Otolaryngology, University of Miami-Miller School of Medicine, Miami, Florida
| | | | | | | |
Collapse
|
2
|
Abstract
OBJECTIVE To determine temperature and duration of cooling necessary for achieving cochlear mild therapeutic hypothermia (MTH) via ear canal cooling using cool water and earmold attached to a Peltier device. STUDY DESIGN AND SETTING Human temporal bone lab study performed at the University of Mississippi Medical Center. INTERVENTIONS Cochlear cooling via the ear canal using water irrigation and an earmold attached to a Peltier device. Temperature analysis through implanted thermal probes within the cochlea. MAIN OUTCOME MEASURES Temperature changes in the cochlea. RESULTS Irrigation of the ear canal with water resulted in achieving MTH in approximately 4 minutes using cool water (30°C) and in approximately 2 minutes using ice-chilled water. After 20 minutes, irrigation of the ear canal using cool water plateaued at a ∆2°C while cooling with ice-chilled water results in an average ∆4.5°C. We observed MTH using a medium-length earmold attached to a Peltier device after approximately 22 minutes of cooling and achieved a maximal average ∆ of 2.3°C after 60 minutes of cooling. Finally, we observed that a longer earmold (C2L) with greater proximity to the eardrum resulted in more efficient intracochlear temperature change, achieving MTH in approximately 16 minutes. CONCLUSIONS MTH of the cochlea can be achieved with water-based ear canal irrigation and via a Peltier device connected to an aluminum earmold.
Collapse
|
3
|
Sangaletti R, Tamames I, Yahn SL, Choi JS, Lee JK, King C, Rajguru SM. Mild therapeutic hypothermia protects against inflammatory and proapoptotic processes in the rat model of cochlear implant trauma. Hear Res 2023; 428:108680. [PMID: 36586170 PMCID: PMC9840707 DOI: 10.1016/j.heares.2022.108680] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 12/13/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Mild therapeutic hypothermia (MTH) has been demonstrated to prevent residual hearing loss from surgical trauma associated with cochlear implant (CI) insertion. Here, we aimed to characterize the mechanisms of MTH-induced hearing preservation in CI in a well-established preclinical rodent model. APPROACH Rats were divided into four experimental conditions: MTH-treated and implanted cochleae, cochleae implanted under normothermic conditions, MTH only cochleae and un-operated cochleae (controls). Auditory brainstem responses (ABRs) were recorded at different time points (up to 84 days) to confirm long-term protection and safety of MTH locally applied to the cochlea for 20 min before and after implantation. Transcriptome sequencing profiling was performed on cochleae harvested 24 h post CI and MTH treatment to investigate the potential beneficial effects and underlying active gene expression pathways targeted by the temperature management. RESULTS MTH treatment preserved residual hearing up to 3 months following CI when compared to the normothermic CI group. In addition, MTH applied locally to the cochleae using our surgical approach was safe and did not affect hearing in the long-term. Results of RNA sequencing analysis highlight positive modulation of signaling pathways and gene expression associated with an activation of cellular inflammatory and immune responses against the mechanical damage caused by electrode insertion. SIGNIFICANCE These data suggest that multiple and possibly independent molecular pathways play a role in the protection of residual hearing provided by MTH against the trauma of cochlear implantation.
Collapse
Affiliation(s)
- Rachele Sangaletti
- Department of Otolaryngology, University of Miami, Miami, FL, 33136, USA
| | - Ilmar Tamames
- Department of Biomedical Engineering, University of Miami, Miami, FL, 33136, USA
| | - Stephanie Lynn Yahn
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL, 33136, USA
| | - James Seungyeon Choi
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL, 33136, USA
| | - Jae K Lee
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL, 33136, USA
| | | | - Suhrud M Rajguru
- Department of Otolaryngology, University of Miami, Miami, FL, 33136, USA; Department of Biomedical Engineering, University of Miami, Miami, FL, 33136, USA.
| |
Collapse
|
4
|
Rau TS, Ehmann T, Zuniga MG, Plaskonka K, Keck A, Majdani O, Lenarz T. Toward a cochlear implant electrode array with shape memory effect for post-insertion perimodiolar positioning. J Biomed Mater Res B Appl Biomater 2022; 110:2494-2505. [PMID: 35678249 DOI: 10.1002/jbm.b.35107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 11/08/2022]
Abstract
For cochlear implants (CI) a final position of the electrode array (EA) along the inner wall of the spirally shaped cochlea is considered to be beneficial because it results in a closer proximity to the auditory nerve fibers. A shape memory effect (SME) could facilitate such shift of the EA toward the cochlear inner wall, but its implementation remains to be solved. The current study presents an EA prototype featuring the SME with minute adjustments of the material properties of Nitinol, a shape memory alloy, in combination with a suitable cooling strategy to prevent premature curling. Ten samples were successfully inserted by a CI surgeon into an artificial cochlear model submerged into a temperature-controllable water bath to simulate temporary hypothermia of the inner ear (31°C). Gentle insertions were possible, with an average insertion speed of 0.81 ± 0.14 mm/s. After recovery of body temperature, the desired position shift toward the modiolus was observed in all trials. Angular insertion depth increased by approximately 81.8° ± 23.4°. We demonstrate for the first time that using the body temperature responsive SME for perimodiolar EA positioning is feasible and does not impede a gentle surgical insertion.
Collapse
Affiliation(s)
- Thomas S Rau
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence EXC 2177/1 "Hearing4all", Hannover Medical School, Hannover, Germany
| | - Tim Ehmann
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - M Geraldine Zuniga
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence EXC 2177/1 "Hearing4all", Hannover Medical School, Hannover, Germany
| | | | | | - Omid Majdani
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence EXC 2177/1 "Hearing4all", Hannover Medical School, Hannover, Germany
| | - Thomas Lenarz
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence EXC 2177/1 "Hearing4all", Hannover Medical School, Hannover, Germany
| |
Collapse
|
5
|
Biological Response Dynamics to Cochlear Implantation: Modeling and Modulating the Electrode–Tissue Interface. Ear Hear 2022; 43:1687-1697. [DOI: 10.1097/aud.0000000000001236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Blebea CM, Ujvary LP, Necula V, Dindelegan MG, Perde-Schrepler M, Stamate MC, Cosgarea M, Maniu AA. Current Concepts and Future Trends in Increasing the Benefits of Cochlear Implantation: A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:747. [PMID: 35744010 PMCID: PMC9229893 DOI: 10.3390/medicina58060747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/25/2022] [Accepted: 05/29/2022] [Indexed: 01/29/2023]
Abstract
Hearing loss is the most common neurosensory disorder, and with the constant increase in etiological factors, combined with early detection protocols, numbers will continue to rise. Cochlear implantation has become the gold standard for patients with severe hearing loss, and interest has shifted from implantation principles to the preservation of residual hearing following the procedure itself. As the audiological criteria for cochlear implant eligibility have expanded to include patients with good residual hearing, more attention is focused on complementary development of otoprotective agents, electrode design, and surgical approaches. The focus of this review is current aspects of preserving residual hearing through a summary of recent trends regarding surgical and pharmacological fundamentals. Subsequently, the assessment of new pharmacological options, novel bioactive molecules (neurotrophins, growth factors, etc.), nanoparticles, stem cells, and gene therapy are discussed.
Collapse
Affiliation(s)
- Cristina Maria Blebea
- Department of Otorhinolaryngology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj Napoca, Romania; (C.M.B.); (V.N.); (M.G.D.); (M.C.S.); (M.C.); (A.A.M.)
| | - Laszlo Peter Ujvary
- Department of Otorhinolaryngology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj Napoca, Romania; (C.M.B.); (V.N.); (M.G.D.); (M.C.S.); (M.C.); (A.A.M.)
| | - Violeta Necula
- Department of Otorhinolaryngology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj Napoca, Romania; (C.M.B.); (V.N.); (M.G.D.); (M.C.S.); (M.C.); (A.A.M.)
- County Clinical Emergency Hospital Cluj, 400347 Cluj Napoca, Romania
| | - Maximilian George Dindelegan
- Department of Otorhinolaryngology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj Napoca, Romania; (C.M.B.); (V.N.); (M.G.D.); (M.C.S.); (M.C.); (A.A.M.)
| | | | - Mirela Cristina Stamate
- Department of Otorhinolaryngology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj Napoca, Romania; (C.M.B.); (V.N.); (M.G.D.); (M.C.S.); (M.C.); (A.A.M.)
| | - Marcel Cosgarea
- Department of Otorhinolaryngology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj Napoca, Romania; (C.M.B.); (V.N.); (M.G.D.); (M.C.S.); (M.C.); (A.A.M.)
| | - Alma Aurelia Maniu
- Department of Otorhinolaryngology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj Napoca, Romania; (C.M.B.); (V.N.); (M.G.D.); (M.C.S.); (M.C.); (A.A.M.)
- County Clinical Emergency Hospital Cluj, 400347 Cluj Napoca, Romania
| |
Collapse
|
7
|
Spankovich C, Walters BJ. Mild Therapeutic Hypothermia and Putative Mechanisms of Hair Cell Survival in the Cochlea. Antioxid Redox Signal 2021; 36:1203-1214. [PMID: 34619988 PMCID: PMC9221161 DOI: 10.1089/ars.2021.0184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 12/20/2022]
Abstract
Significance: Sensorineural hearing loss has significant implications for quality of life and risk for comorbidities such as cognitive decline. Noise and ototoxic drugs represent two common risk factors for acquired hearing loss that are potentially preventable. Recent Advances: Numerous otoprotection strategies have been postulated over the past four decades with primary targets of upstream redox pathways. More recently, the application of mild therapeutic hypothermia (TH) has shown promise for otoprotection for multiple forms of acquired hearing loss. Critical Issues: Systemic antioxidant therapy may have limited application for certain ototoxic drugs with a therapeutic effect on redox pathways and diminished efficacy of the primary drug's therapeutic function (e.g., cisplatin for tumors). Future Directions: Mild TH likely targets multiple mechanisms, contributing to otoprotection, including slowed metabolics, reduced oxidative stress, and involvement of cold shock proteins. Further work is needed to identify the mechanisms of mild TH at play for various forms of acquired hearing loss.
Collapse
Affiliation(s)
- Christopher Spankovich
- Department of Otolaryngology-Head and Neck Surgery and University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Bradley J. Walters
- Department of Otolaryngology-Head and Neck Surgery and University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
8
|
Bader W, Gottfried T, Degenhart G, Johnson Chacko L, Sieber D, Riechelmann H, Fischer N, Hoermann R, Glueckert R, Schrott-Fischer A, Schmutzhard J. Measurement of the Intracochlear Hypothermia Distribution Utilizing Tympanic Cavity Hypothermic Rinsing Technique in a Cochlea Hypothermia Model. Front Neurol 2021; 11:620691. [PMID: 33505351 PMCID: PMC7830138 DOI: 10.3389/fneur.2020.620691] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/07/2020] [Indexed: 11/13/2022] Open
Abstract
Introduction: Cochlea implants can cause severe trauma leading to intracochlear apoptosis, fibrosis, and eventually to loss of residual hearing. Mild hypothermia has been shown to reduce toxic or mechanical noxious effects, which can result in inflammation and subsequent hearing loss. This paper evaluates the usability of standard surgical otologic rinsing as cooling medium during cochlea implantation as a potential hearing preservation technique. Material and Methods: Three human temporal bones were prepared following standard mastoidectomy and posterior tympanotomy. Applying a retrocochlear approach leaving the mastoidectomy side intact, temperature probes were placed into the basal turn (n = 4), the middle turn (n = 2), the helicotrema, and the modiolus. Temperature probe positions were visualized by microcomputed tomography (μCT) imaging and manually segmented using Amira® 7.6. Through the posterior tympanotomy, the tympanic cavity was rinsed at 37°C in the control group, at room temperature (in the range between 22 and 24°C), and at iced water conditions. Temperature changes were measured in the preheated temporal bone. In each temperature model, rinsing was done for 20 min at the pre-specified temperatures measured in 0.5-s intervals. At least five repetitions were performed. Data were statistically analyzed using pairwise t-tests with Bonferroni correction. Results: Steady-state conditions achieved in all three different temperature ranges were compared in periods between 150 and 300 s. Temperature in the inner ear started dropping within the initial 150 s. Temperature probes placed at basal turn, the helicotrema, and middle turn detected statistically significant fall in temperature levels following body temperature rinses. Irrigation at iced conditions lead to the most significant temperature drops. The curves during all measurements remained stable with 37°C rinses. Conclusion: Therapeutic hypothermia is achieved with standard surgical irrigation fluid, and temperature gradients are seen along the cochlea. Rinsing of 120 s duration results in a therapeutic local hypothermia throughout the cochlea. This otoprotective procedure can be easily realized in clinical practice.
Collapse
Affiliation(s)
- Werner Bader
- Department of Otorhinolaryngology, Medical University Innsbruck, Innsbruck, Austria
| | - Timo Gottfried
- Department of Otorhinolaryngology, Medical University Innsbruck, Innsbruck, Austria
| | - Gerald Degenhart
- Department of Radiology, University Clinics Innsbruck, Innsbruck, Austria
| | - Lejo Johnson Chacko
- Department of Otorhinolaryngology, Medical University Innsbruck, Innsbruck, Austria
| | - Daniel Sieber
- MED-EL Medical Electronics GesmbH, Research and Development, Innsbruck, Austria
| | - Herbert Riechelmann
- Department of Otorhinolaryngology, Medical University Innsbruck, Innsbruck, Austria
| | - Natalie Fischer
- Department of Otorhinolaryngology, Medical University Innsbruck, Innsbruck, Austria
| | - Romed Hoermann
- Department of Anatomy, Histology, and Embryology, Medical University Innsbruck, Innsbruck, Austria
| | - Rudolf Glueckert
- Department of Otorhinolaryngology, Medical University Innsbruck, Innsbruck, Austria
| | | | - Joachim Schmutzhard
- Department of Otorhinolaryngology, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
9
|
Esmailie F, Francoeur M, Ameel T. Heat transfer analysis in an uncoiled model of the cochlea during magnetic cochlear implant surgery. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER 2020; 154:119683. [PMID: 32773843 PMCID: PMC7405954 DOI: 10.1016/j.ijheatmasstransfer.2020.119683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Magnetic cochlear implant surgery requires removal of a magnet via a heating process after implant insertion, which may cause thermal trauma within the ear. Intra-cochlear heat transfer analysis is required to ensure that the magnet removal phase is thermally safe. The objective of this work is to determine the safe range of input power density to detach the magnet without causing thermal trauma in the ear, and to analyze the effectiveness of natural convection with respect to conduction for removing the excess heat. A finite element model of an uncoiled cochlea, which is verified and validated, is applied to determine the range of maximum safe input power density to detach a 1-mm-long, 0.5-mm-diameter cylindrical magnet from the cochlear implant electrode array tip. It is shown that heat dissipation in the cochlea is primarily mediated by conduction through the electrode array. The electrode array simultaneously reduces natural convection due to the no-slip boundary condition on its surface and increases axial conduction in the cochlea. It is concluded that natural convection heat transfer in a cochlea during robotic cochlear implant surgery can be neglected. It is found that thermal trauma is avoided by applying a power density from 2.265 × 107 W/m3 for 114 s to 6.6×107 W/m3 for 9 s resulting in a maximum temperature increase of 6°C on the magnet boundary.
Collapse
|
10
|
Dugan EA, Bennett C, Tamames I, Dietrich WD, King CS, Prasad A, Rajguru SM. Therapeutic hypothermia reduces cortical inflammation associated with utah array implants. J Neural Eng 2020; 17:026035. [PMID: 32240985 DOI: 10.1088/1741-2552/ab85d2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Neuroprosthetics hold tremendous promise to restore function through brain-computer interfaced devices. However, clinical applications of implantable microelectrodes remain limited given the challenges of maintaining neuronal signals for extended periods of time and with multiple biological mechanisms negatively affecting electrode performance. Acute and chronic inflammation, oxidative stress, and blood brain barrier disruption contribute to inconsistent electrode performance. We hypothesized that therapeutic hypothermia (TH) applied at the microelectrode insertion site will positively modulate both inflammatory and apoptotic pathways, promoting neuroprotection and improved performance in the long-term. APPROACH A custom device and thermoelectric system were designed to deliver controlled TH locally to the cortical implant site at the time of microelectrode array insertion and immediately following surgery. The TH paradigm was derived from in vivo cortical temperature measurements and finite element modeling of temperature distribution profiles in the cortex. Male Sprague-Dawley rats were implanted with non-functional Utah microelectrodes arrays (UMEA) consisting of 4 × 4 grid of 1.5 mm long parylene-coated silicon shanks. In one group, TH was applied to the implant site for two hours following the UMEA implantation, while the other group was implanted under normothermic conditions without treatment. At 48 h, 72 h, 7 d and 14 d post-implantation, mRNA expression levels for genes associated with inflammation and apoptosis were compared between normothermic and hypothermia-treated groups. MAIN RESULTS The custom system delivered controlled TH to the cortical implant site and the numerical models confirmed that the temperature decrease was confined locally. Furthermore, a one-time application of TH post UMEA insertion significantly reduced the acute inflammatory response with a reduction in the expression of inflammatory regulating cytokines and chemokines. SIGNIFICANCE This work provides evidence that acutely applied hypothermia is effective in significantly reducing acute inflammation post intracortical electrode implantation.
Collapse
Affiliation(s)
- Elizabeth A Dugan
- Department of Biomedical Engineering, University of Miami, FL, United States of America
| | | | | | | | | | | | | |
Collapse
|