1
|
Chabuz CA, Hartl RMB, Rodriguez K, Gonzalez J, Cass SP, Greene NT. Characterization of Tip Fold-Over Using Fluoroscopy and Intracochlear Pressure in Cadaver Specimens. Laryngoscope 2025; 135:1795-1802. [PMID: 39719824 PMCID: PMC11981849 DOI: 10.1002/lary.31977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 12/26/2024]
Abstract
OBJECTIVES Cochlear implant array malpositioning is associated with impaired speech perception, vertigo, and facial nerve stimulation. Tip fold-over is a subset of malpositioning that occurs more often with perimodiolar electrodes, but historically it has not been characterized due to lack of knowledge regarding electrode movements of the electrode within the cochlea. The aim of this study was to characterize the mechanics of tip fold-over events and their associated insertion pressure profiles. METHODS Cadaveric human heads were surgically prepared with a mastoidectomy and facial recess. Fiberoptic pressure sensors were inserted into the scala vestibuli and tympani to measure intracochlear pressures. Perimodiolar CI electrodes (Cochlear Slim-Modiolar, CI532) were inserted via round window under fluoroscopy. RESULTS Three types of tip fold-over events were observed: anterior-posterior C-shaped, medial-lateral C-shaped, and S-shaped roll-overs. The largest transient pressures occurred with anterior-posterior and S-type roll-over, and were associated with rotation or twisting inside the cochlea. CONCLUSIONS Results demonstrate at least three subtypes of tip fold-overs. Elevated pressure transients were noted before and during the tip fold-over event related to electrode twisting. The characterization of tip fold-over into subtypes is novel and may aid identification of tip fold-over events intraoperatively in the future. It remains important to identify tip fold-over events, and they should be recognized early using a multimodal verification system. Further investigation is still required to determine the significance of these changes and other possible patterns of intracochlear electrode movement. LEVEL OF EVIDENCE NA: Cadaver study Laryngoscope, 135:1795-1802, 2025.
Collapse
Affiliation(s)
- Carolyn A Chabuz
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado
| | - Renee M Banakis Hartl
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI
| | - Kenny Rodriguez
- Cedar Valley Center for ENT Sinus & Allergy - Waterloo Clinic, Waterloo, IA
| | | | - Stephen P Cass
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado
| | - Nathaniel T Greene
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
2
|
Torres R, Daoudi H, Gu W, Breil E, Ferrary E, Sterkers O, Nguyen Y, Mosnier I. Exploring Trauma Patterns and Contributing Factors With Slim Straight Electrode Array After Cochlear Implantation. Otolaryngol Head Neck Surg 2024; 171:521-529. [PMID: 38532540 DOI: 10.1002/ohn.737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/09/2024] [Accepted: 02/29/2024] [Indexed: 03/28/2024]
Abstract
OBJECTIVE To assess trauma patterns associated with the insertion of lateral wall electrode arrays. The study focused on 3 categories-scala tympani (ST), intermediate, and scala vestibuli (SV)-to identify traumatic patterns and contributing factors. STUDY DESIGN Retrospective study. SETTING Data from 106 cochlear implant recipients at a tertiary otologic center. METHODS Demographic and surgical data were collected from recipients who underwent cochlear implantation manually and with RobOtol®. Measurements included cochlear dimensions, angular depth of insertion, and position of the first electrode. Three-dimensional reconstructions were used to analyze the electrode array location relative to the basilar membrane, categorized into ST, intermediate, and SV electrodes. Nontraumatic insertion was defined as all electrodes in the ST, while traumatic insertions had 1 or more electrodes in intermediate or SV locations. RESULTS Out of 106 cases, 44% had nontraumatic and 56% had traumatic insertions. Demographic and surgical characteristics showed no association with traumatic insertions. A deeper position of the first electrode, relative to the round window, was associated with traumatic insertions (P = .03). Three trauma patterns were observed: distal (facing the apical electrodes), proximal (facing the middle electrodes around 180°), and distal/proximal. CONCLUSION This study considers the intermediate position which could be associated with basilar membrane lesions. Risk zones for intracochlear trauma with lateral wall arrays were identified distally and proximally. Traumatic insertions were independently linked to deeper array placement. Future studies should explore whether gentler insertion, without insisting on further electrode array insertion depth, could reduce the trauma during cochlear implantation.
Collapse
Affiliation(s)
- Renato Torres
- Unité Fonctionnelle Implants Auditifs et Explorations Fonctionnelles, Service ORL, GHU Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (AP-HP)/Sorbonne Université, Paris, France
- Technologies et Thérapie Génique Pour la Surdité, Institut de l'Audition, Institut Pasteur/Inserm/Université Paris Cité, Paris, France
| | - Hannah Daoudi
- Unité Fonctionnelle Implants Auditifs et Explorations Fonctionnelles, Service ORL, GHU Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (AP-HP)/Sorbonne Université, Paris, France
- Technologies et Thérapie Génique Pour la Surdité, Institut de l'Audition, Institut Pasteur/Inserm/Université Paris Cité, Paris, France
| | - Wenxi Gu
- Unité Fonctionnelle Implants Auditifs et Explorations Fonctionnelles, Service ORL, GHU Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (AP-HP)/Sorbonne Université, Paris, France
- Technologies et Thérapie Génique Pour la Surdité, Institut de l'Audition, Institut Pasteur/Inserm/Université Paris Cité, Paris, France
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300), Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Eugénie Breil
- Unité Fonctionnelle Implants Auditifs et Explorations Fonctionnelles, Service ORL, GHU Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (AP-HP)/Sorbonne Université, Paris, France
| | - Evelyne Ferrary
- Unité Fonctionnelle Implants Auditifs et Explorations Fonctionnelles, Service ORL, GHU Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (AP-HP)/Sorbonne Université, Paris, France
- Technologies et Thérapie Génique Pour la Surdité, Institut de l'Audition, Institut Pasteur/Inserm/Université Paris Cité, Paris, France
| | - Olivier Sterkers
- Unité Fonctionnelle Implants Auditifs et Explorations Fonctionnelles, Service ORL, GHU Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (AP-HP)/Sorbonne Université, Paris, France
- Technologies et Thérapie Génique Pour la Surdité, Institut de l'Audition, Institut Pasteur/Inserm/Université Paris Cité, Paris, France
| | - Yann Nguyen
- Unité Fonctionnelle Implants Auditifs et Explorations Fonctionnelles, Service ORL, GHU Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (AP-HP)/Sorbonne Université, Paris, France
- Technologies et Thérapie Génique Pour la Surdité, Institut de l'Audition, Institut Pasteur/Inserm/Université Paris Cité, Paris, France
| | - Isabelle Mosnier
- Unité Fonctionnelle Implants Auditifs et Explorations Fonctionnelles, Service ORL, GHU Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (AP-HP)/Sorbonne Université, Paris, France
- Technologies et Thérapie Génique Pour la Surdité, Institut de l'Audition, Institut Pasteur/Inserm/Université Paris Cité, Paris, France
| |
Collapse
|
3
|
Boscoe EF, Banakis Hartl RM, Gubbels SP, Greene NT. Effects of Varying Laser Parameters During Laser Stapedotomy on Intracochlear Pressures. Otolaryngol Head Neck Surg 2023; 168:462-468. [PMID: 35671134 PMCID: PMC10097413 DOI: 10.1177/01945998221104658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Sensorineural hearing loss is a known complication of stapes surgery. We previously showed that laser stapedotomy can result in intracochlear pressures that are comparable to high sound pressure levels. Optimizing laser settings to those that correspond with the lowest pressure changes may mitigate risk for postoperative hearing loss. Here we quantify the effects of various laser parameters on intracochlear pressures and test the hypothesis that intracochlear pressure changes are proportional to the laser energy delivered. STUDY DESIGN Basic and translational science. SETTING Cadaveric dissection and basic science laboratory. METHODS Cadaveric human heads underwent mastoidectomies. Intracochlear pressures were measured via fiber-optic pressure probes placed in scala vestibuli and tympani. Pulses of varied stimulus power and duration from a 980-nm diode laser were applied to the stapes footplate. RESULTS Sustained high-intensity pressures were observed in the cochlea during all laser applications. Observed pressure magnitudes increased monotonically with laser energy and rose linearly for lower stimulus durations and powers, but there was increased variability for laser applications of longer duration (200-300 ms) and/or higher power (8 W). CONCLUSIONS Results confirm that significant pressure changes occur during laser stapedotomy, which we hypothesize may cause injury. Overall energy delivered depends predictably on duration and power, but surgeons should use caution at the highest stimulus levels and longest pulse durations due to the increasing variability in intracochlear pressure under these stimulus conditions. While the risk to hearing from increased intracochlear pressures from laser stapedotomy remains unclear, these results affirm the need to optimize laser settings to avoid unintended injury.
Collapse
Affiliation(s)
- Elizabeth F. Boscoe
- Department of Otolaryngology–Head and Neck Surgery, University of Colorado, Aurora, Colorado
| | - Renee M. Banakis Hartl
- Department of Otolaryngology–Head and Neck Surgery, University of Colorado, Aurora, Colorado
- Department of Otolaryngology–Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan
| | - Samuel P. Gubbels
- Department of Otolaryngology–Head and Neck Surgery, University of Colorado, Aurora, Colorado
| | - Nathaniel T. Greene
- Department of Otolaryngology–Head and Neck Surgery, University of Colorado, Aurora, Colorado
| |
Collapse
|
4
|
Jwair S, Ramekers D, Thomeer HGXM, Versnel H. Acute effects of cochleostomy and electrode-array insertion on compound action potentials in normal-hearing guinea pigs. Front Neurosci 2023; 17:978230. [PMID: 36845413 PMCID: PMC9945226 DOI: 10.3389/fnins.2023.978230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 01/09/2023] [Indexed: 02/11/2023] Open
Abstract
Introduction Electrocochleography (ECochG) is increasingly used in cochlear implant (CI) surgery, in order to monitor the effect of insertion of the electrode array aiming to preserve residual hearing. However, obtained results are often difficult to interpret. Here we aim to relate changes in ECochG responses to acute trauma induced by different stages of cochlear implantation by performing ECochG at multiple time points during the procedure in normal-hearing guinea pigs. Materials and methods Eleven normal-hearing guinea pigs received a gold-ball electrode that was fixed in the round-window niche. ECochG recordings were performed during the four steps of cochlear implantation using the gold-ball electrode: (1) Bullostomy to expose the round window, (2) hand-drilling of 0.5-0.6 mm cochleostomy in the basal turn near the round window, (3) insertion of a short flexible electrode array, and (4) withdrawal of electrode array. Acoustical stimuli were tones varying in frequency (0.25-16 kHz) and sound level. The ECochG signal was primarily analyzed in terms of threshold, amplitude, and latency of the compound action potential (CAP). Midmodiolar sections of the implanted cochleas were analyzed in terms of trauma to hair cells, modiolar wall, osseous spiral lamina (OSL) and lateral wall. Results Animals were assigned to cochlear trauma categories: minimal (n = 3), moderate (n = 5), or severe (n = 3). After cochleostomy and array insertion, CAP threshold shifts increased with trauma severity. At each stage a threshold shift at high frequencies (4-16 kHz) was accompanied with a threshold shift at low frequencies (0.25-2 kHz) that was 10-20 dB smaller. Withdrawal of the array led to a further worsening of responses, which probably indicates that insertion and removal trauma affected the responses rather than the mere presence of the array. In two instances, CAP threshold shifts were considerably larger than threshold shifts of cochlear microphonics, which could be explained by neural damage due to OSL fracture. A change in amplitudes at high sound levels was strongly correlated with threshold shifts, which is relevant for clinical ECochG performed at one sound level. Conclusion Basal trauma caused by cochleostomy and/or array insertion should be minimized in order to preserve the low-frequency residual hearing of CI recipients.
Collapse
Affiliation(s)
- Saad Jwair
- Department of Otorhinolaryngology and Head and Neck Surgery, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands,UMC Utrecht Brain Center, Utrecht University, Utrecht, Netherlands
| | - Dyan Ramekers
- Department of Otorhinolaryngology and Head and Neck Surgery, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands,UMC Utrecht Brain Center, Utrecht University, Utrecht, Netherlands
| | - Hans G. X. M. Thomeer
- Department of Otorhinolaryngology and Head and Neck Surgery, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands,UMC Utrecht Brain Center, Utrecht University, Utrecht, Netherlands
| | - Huib Versnel
- Department of Otorhinolaryngology and Head and Neck Surgery, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands,UMC Utrecht Brain Center, Utrecht University, Utrecht, Netherlands,*Correspondence: Huib Versnel,
| |
Collapse
|
5
|
Smetak MR, Riojas KE, Sharma RK, Labadie RF. Beyond the phantom: Unroofing the scala vestibuli in a fresh temporal bone as a model for cochlear implant insertion experiments. J Neurosci Methods 2022; 382:109710. [PMID: 36207005 DOI: 10.1016/j.jneumeth.2022.109710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Miriam R Smetak
- Department of Otolaryngology - Head and Neck Surgery, Vanderbilt University Medical Center, 1215 21st Ave S, Nashville, TN 37232, United States.
| | - Katherine E Riojas
- Department of Mechanical Engineering, Vanderbilt University, 2301 Vanderbilt Place PMB 401592, Nashville, TN 37240-1592, United States
| | - Rahul K Sharma
- Department of Otolaryngology - Head and Neck Surgery, Vanderbilt University Medical Center, 1215 21st Ave S, Nashville, TN 37232, United States
| | - Robert F Labadie
- Department of Otolaryngology - Head and Neck Surgery, Vanderbilt University Medical Center, 1215 21st Ave S, Nashville, TN 37232, United States; Department of Mechanical Engineering, Vanderbilt University, 2301 Vanderbilt Place PMB 401592, Nashville, TN 37240-1592, United States
| |
Collapse
|
6
|
Hartl RMB, Greene NT. Measurement and Mitigation of Intracochlear Pressure Transients During Cochlear Implant Electrode Insertion. Otol Neurotol 2022; 43:174-182. [PMID: 34753876 PMCID: PMC10260290 DOI: 10.1097/mao.0000000000003401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
HYPOTHESIS High intracochlear pressure transients associated with cochlear implant placement are reduced with smaller, non-styleted arrays, and longer insertion durations. BACKGROUND With increasing focus on hearing preservation during cochlear implant surgery, atraumatic technique is of the utmost importance. Previous studies revealed that high intensity pressure transients can be generated during the insertion of implant electrodes. Resulting acoustic trauma may be one contributing factor to postoperative loss of residual hearing. METHODS Thirty ears in cadaveric specimens were surgically prepared with placement of intracochlear pressure sensors. Sequential implant insertions were made over 10, 30, or 60 seconds using seven randomly ordered electrode styles. Pressures were also measured during common post-insertion electrode manipulations and removal. Measurements were compared between electrode styles and characteristics using analysis of variance (ANOVA) and Pearson correlation. RESULTS Implant insertion and post-insertion manipulations produced high-intensity pressure transients with all electrodes tested, with some measurements exceeding 170 dB peak SPL. Average peak pressures were significantly lower for straight, non-stylet electrodes (p << 0.001). The likelihood of generating transients was lowest with the slowest insertions (p << 0.001). CONCLUSIONS Cochlear implant insertion can generate transients in intralabyrinthine pressure levels equivalent to high intensity, impulsive acoustic stimuli known to cause hearing loss. Although transients were observed in all conditions, exposure may be mitigated by using non-styleted electrodes and slow insertion speeds. Additional surgical manipulations can also produce similar high-pressure events. Results from this investigation suggest that use of non-styleted electrodes, slow but steady insertion speeds, and avoidance of post-insertional manipulations are important to reduce cochlear trauma.
Collapse
Affiliation(s)
- Renee M. Banakis Hartl
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, CO
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI
| | - Nathaniel T. Greene
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, CO
| |
Collapse
|