1
|
Lou J, He W, Cui B, Wu F, Liu W, Deng J, Huang Y, Zhang Z, Si Y. Gram-negative Bacteria are Associated With Sensorineural Hearing Loss in Chronic Otitis Media. Laryngoscope 2024; 134:3335-3341. [PMID: 38332523 DOI: 10.1002/lary.31322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/12/2024] [Accepted: 01/19/2024] [Indexed: 02/10/2024]
Abstract
OBJECT Chronic otitis media (COM) is an inflammatory disease that commonly presents with otorrhea and hearing loss. Bacteria-induced inflammation can cause inner ear damage, leading to sensorineural hearing loss (SNHL). This study aimed to compare the prevalence and severity of SNHL in patients with gram-negative versus gram-positive cultures and examine associations between the concentrations of circulating monocytes and neutrophils with bacteria species and SNHL. METHODS This was a retrospective study. Cholesteatoma or chronic suppurative otitis media patients with otorrhea were enrolled. Middle ear secretions were collected using sterile swabs under an otoscope, and sent for bacterial detection within 30 min. Pure tone audiometry and circulating leukocyte counts were recorded and analyzed in patients infected with different pathogens. Logistic regression analysis was used to identify the risk factors associated with SNHL. RESULTS A total of 137 patients were enrolled, including 45 patients infected with gram-negative bacteria, 41 with gram-positive bacteria, 20 with polymicrobial infection, and 31 with no bacterial growth. Logistic regression analysis showed that bacterial culture positive infections (OR = 7.265, 95% CI 2.219-23.786, p = 0.001) were an independent risk factor for SNHL. Patients with gram-negative bacteria had higher risks of SNHL (p < 0.0001) and more severe hearing loss (p = 0.005) than those with gram-positive bacteria. COM patients infected with gram-negative bacteria showed an increase in circulating monocytes, which correlated with the occurrence of SNHL (p = 0.0343). CONCLUSION Gram-negative bacteria are associated with elevated circulating monocyte counts and have a higher risk of severe SNHL. LEVEL OF EVIDENCE 4 Laryngoscope, 134:3335-3341, 2024.
Collapse
Affiliation(s)
- Jintao Lou
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China
| | - Wuhui He
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China
| | - Bozhen Cui
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China
| | - Fan Wu
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China
| | - Wei Liu
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China
| | - Jingman Deng
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China
| | - Yan Huang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China
| | - Zhigang Zhang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China
| | - Yu Si
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
2
|
Wang X, Gu J, Xu K, Xu B, Yu D, Wu H. Sound conditioning strategy promoting paracellular permeability of the blood-labyrinth-barrier benefits inner ear drug delivery. Bioeng Transl Med 2024; 9:e10596. [PMID: 38193122 PMCID: PMC10771554 DOI: 10.1002/btm2.10596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/06/2023] [Accepted: 08/16/2023] [Indexed: 01/10/2024] Open
Abstract
The therapeutic effects of pharmaceuticals depend on their drug concentrations in the cochlea. Efficient drug delivery from the systemic circulation into the inner ear is limited by the blood-labyrinth-barrier (BLB). This study investigated a novel noninvasive sound conditioning (SC) strategy (90 dB SPL, 8-16 kHz, 2 h sound exposure) to temporally enhance BLB permeability in a controllable way, contributing to maximizing the penetration of pharmaceuticals from blood circulation into the cochlea. Trafficking of Fluorescein Isothiocyanate conjugated dextran and bovine serum albumin (FITC-dextran and FITC-BSA) demonstrated that paracellular leakage of BLB sustained for 6 h after SC, providing a controllable time window for systemic administration. Cochlear concentrations of dexamethasone (DEX) and dexamethasone phosphate (DEX-P), respectively transported by transcellular and paracellular pathways, showed a higher content of the latter one after SC, further confirming the key role of paracellular pathway in the SC-induced hyperpermeability. Results of high-throughput RNA-sequencing identified a series of tight junction (TJ)-associated genes after SC. The expressions of TJ (ZO-1) were reduced and irregular rearrangements of the junction were observed by transmission electron microscopy after SC. We further determined the inhibiting role of Rab13 in the recruitment of ZO-1 and later in the regulation of cellular permeability. Meanwhile, no significant change in the quantifications of endothelial caveolae vesicles after SC indicated that cellular transcytosis accounted little for the temporary hyperpermeability after SC. Based on these results, SC enhances the BLB permeability within 6 h and allows systemically applied drugs which tend to be transported by paracellular pathway to readily enter the inner ear, contributing to guiding the clinical medications on hearing loss.
Collapse
Affiliation(s)
- Xueling Wang
- Department of Otolaryngology‐Head and Neck Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Ear InstituteShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300)ShanghaiChina
| | - Jiayi Gu
- Department of Otolaryngology‐Head and Neck Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Ear InstituteShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300)ShanghaiChina
| | - Ke Xu
- Department of Otolaryngology‐Head and Neck Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Ear InstituteShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300)ShanghaiChina
| | - Baoying Xu
- Materdicine Lab, School of Life SciencesShanghai UniversityShanghaiChina
| | - Dehong Yu
- Materdicine Lab, School of Life SciencesShanghai UniversityShanghaiChina
| | - Hao Wu
- Department of Otolaryngology‐Head and Neck Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Ear InstituteShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300)ShanghaiChina
| |
Collapse
|
3
|
Khan I, Gril B, Paranjape AN, Robinson CM, Difilippantonio S, Biernat W, Bieńkowski M, Pęksa R, Duchnowska R, Jassem J, Brastianos PK, Metellus P, Bialecki E, Woodroofe CC, Wu H, Swenson RE, Steeg PS. Comparison of Three Transcytotic Pathways for Distribution to Brain Metastases of Breast Cancer. Mol Cancer Ther 2023; 22:646-658. [PMID: 36912773 PMCID: PMC10164055 DOI: 10.1158/1535-7163.mct-22-0815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/07/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
Advances in drug treatments for brain metastases of breast cancer have improved progression-free survival but new, more efficacious strategies are needed. Most chemotherapeutic drugs infiltrate brain metastases by moving between brain capillary endothelial cells, paracellular distribution, resulting in heterogeneous distribution, lower than that of systemic metastases. Herein, we tested three well-known transcytotic pathways through brain capillary endothelial cells as potential avenues for drug access: transferrin receptor (TfR) peptide, low-density lipoprotein receptor 1 (LRP1) peptide, albumin. Each was far-red labeled, injected into two hematogenous models of brain metastases, circulated for two different times, and their uptake quantified in metastases and uninvolved (nonmetastatic) brain. Surprisingly, all three pathways demonstrated distinct distribution patterns in vivo. Two were suboptimal: TfR distributed to uninvolved brain but poorly in metastases, while LRP1 was poorly distributed. Albumin distributed to virtually all metastases in both model systems, significantly greater than in uninvolved brain (P < 0.0001). Further experiments revealed that albumin entered both macrometastases and micrometastases, the targets of treatment and prevention translational strategies. Albumin uptake into brain metastases was not correlated with the uptake of a paracellular probe (biocytin). We identified a novel mechanism of albumin endocytosis through the endothelia of brain metastases consistent with clathrin-independent endocytosis (CIE), involving the neonatal Fc receptor, galectin-3, and glycosphingolipids. Components of the CIE process were found on metastatic endothelial cells in human craniotomies. The data suggest a reconsideration of albumin as a translational mechanism for improved drug delivery to brain metastases and possibly other central nervous system (CNS) cancers.In conclusion, drug therapy for brain metastasis needs improvement. We surveyed three transcytotic pathways as potential delivery systems in brain-tropic models and found that albumin has optimal properties. Albumin used a novel endocytic mechanism.
Collapse
Affiliation(s)
- Imran Khan
- Women’s Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Brunilde Gril
- Women’s Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Anurag N. Paranjape
- Women’s Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Christina M. Robinson
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research (FNLCR), Frederick, MD
| | - Simone Difilippantonio
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research (FNLCR), Frederick, MD
| | | | | | - Rafał Pęksa
- Department of Pathology, Medical University of Gdańsk, Poland
| | - Renata Duchnowska
- Department of Oncology, Military Institute of Medicine, Warsaw, Poland
| | - Jacek Jassem
- Department of Oncology and Radiotherapy, Medical University of Gdańsk, Poland
| | - Priscilla K. Brastianos
- Division of Neuro-Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA
| | - Philippe Metellus
- Ramsay Général de Santé, Hôpital Privé Clairval, Département de Neurochirurgie and Aix-Marseille Université, Institut de Neurophysiopathologie – UMR 7051, Marseille, France
| | - Emilie Bialecki
- Ramsay Général de Santé, Hôpital Privé Clairval, Département de Neurochirurgie and Aix-Marseille Université, Institut de Neurophysiopathologie – UMR 7051, Marseille, France
| | - Carolyn C. Woodroofe
- Chemistry and Synthesis Center, National Heart, Lung and Blood Institute, NIH, Bethesda, MD
| | - Haitao Wu
- Chemistry and Synthesis Center, National Heart, Lung and Blood Institute, NIH, Bethesda, MD
| | - Rolf E. Swenson
- Chemistry and Synthesis Center, National Heart, Lung and Blood Institute, NIH, Bethesda, MD
| | - Patricia S. Steeg
- Women’s Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| |
Collapse
|
4
|
Dang W, Meng C, Wang J, Zhou D, Chen G, Li N. Exploration of the Binding Modes of Toll-Like Receptor 4 Competitive Inhibitors: A Combined Ligand-Based and Target-Based Approach. ChemMedChem 2023; 18:e202200690. [PMID: 36651317 DOI: 10.1002/cmdc.202200690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/19/2023]
Abstract
The interactions of Toll-like receptor 4 (TLR4) with competitive inhibitors were investigated by a combined ligand-based and target-based approach. Firstly, the ligand-based pharmacophore model of the reported TLR4 inhibitors was constructed by utilizing the common feature method, which included three hydrophobic groups and a hydrogen bond receptor. The Schrödinger software suite glide module was used to dock inhibitors with proteins and verify the importance of these four interaction points from the target level. Then, molecular dynamics, alanine scanning mutagenesis, and binding free energy calculation were used to identify the key amino acids in the binding mode. In addition, blind docking proved that the TLR4 inhibitor does not bind to TLR4 itself like other TLR family proteins. Based on this, we also screened a class of sesquiterpene coumarins which possibly have TLR4 inhibitory activity and will conduct a detailed study later. Together, this study revealed the interactions between TLR4 protein and its competitive inhibitors, which shed light on better access for developing its novel inhibitors.
Collapse
Affiliation(s)
- Wen Dang
- School of Traditional Chinese Materia Medica, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China
| | - Churen Meng
- School of Traditional Chinese Materia Medica, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China
| | - Jian Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Di Zhou
- School of Traditional Chinese Materia Medica, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China
| | - Gang Chen
- School of Traditional Chinese Materia Medica, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China
| | - Ning Li
- School of Traditional Chinese Materia Medica, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China
| |
Collapse
|
5
|
Elevated G-CSF, IL8, and HGF in patients with definite Meniere's disease may indicate the role of NET formation in triggering autoimmunity and autoinflammation. Sci Rep 2022; 12:16309. [PMID: 36175465 PMCID: PMC9522806 DOI: 10.1038/s41598-022-20774-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/19/2022] [Indexed: 11/08/2022] Open
Abstract
The etiology and mechanism causing Meniere’s disease (MD) are not understood. The present study investigated the possible molecular mechanism of autoimmunity and autoinflammation associated with MD. Thirty-eight patients with definite MD and 39 normal volunteers were recruited, and 48 human cytokines/chemokines were quantified. In patients with MD pure tone audiograms, tympanograms and standard blood tests were performed. The mean hearing loss in the worse ear was 44.1 dB nHL. Compared to the referents, the concentrations of TNFα, IL1α, IL8, CTACK, MIP1α, MIP1β, G-CSF, and HGF in the sera of patients with MD were significantly elevated, while those of TRAIL and PDGFBB were significantly decreased. The area under the receiver operating characteristic curve (AUC) showed that G-CSF, MIP1α, and IL8 were above 0.8 and could be used to diagnose MD (p < 0.01), and the AUCs of CTACK and HGF were above 0.7 and acceptable to discriminate the MD group from the control group (p < 0.01). The revised AUCs (1 − AUC) of TRAIL and PDGFBB were above 0.7 and could also be used in the diagnosis of MD (p < 0.01). The linear regression showed significant correlations between MIP1α and GCSF, between IL2Rα and GCSF, between IL8 and HGF, between MIP1α and IL8, and between SCF and CTACK; there was a marginal linear association between IP10 and MIP1α. Linear regression also showed that there were significant age-related correlations of CTACK and MIG expression in the MD group (p < 0.01, ANOVA) but not in the control group. We hypothesize that G-CSF, IL8, and HGF, which are involved in the development of neutrophil extracellular traps (NETs) and through various mechanisms influence the functions of macrophages, lymphocytes, and dendritic cells, among others, are key players in the development of EH and MD and could be useful in elucidating the pathophysiological mechanisms leading to MD. Biomarkers identified in the present study may suggest that both autoimmune and autoinflammatory mechanisms are involved in MD. In the future, it will be valuable to develop a cost-effective method to detect G-CSF, IL8, HGF, CTACK, MIP1α, TRAIL, and PDGFBB in the serum of patient that have diagnostic relevance.
Collapse
|
6
|
Denton AJ, Godur DA, Mittal J, Bencie NB, Mittal R, Eshraghi AA. Recent Advancements in Understanding the Gut Microbiome and the Inner Ear Axis. Otolaryngol Clin North Am 2022; 55:1125-1137. [PMID: 36088154 DOI: 10.1016/j.otc.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The gut microbiome and its dynamic association with organ systems beyond the gastrointestinal tract, such as the nervous and cardiovascular systems, is an emerging area of research. Although the role of the gut microbiome has been extensively characterized in the gut-brain axis, the implications of gut dysbiosis in inner ear inflammation and hearing deficits have still not been explored. With some similarities outlined between the blood-brain barrier (BBB) and the blood labyrinth barrier (BLB) of the inner ear, this review aims to explore the axis between the gut microbiome and the inner ear as it pertains to their bidirectional communication.
Collapse
Affiliation(s)
- Alexa J Denton
- Department of Otolaryngology, Hearing Research and Cochlear Implant Laboratory, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Dimitri A Godur
- Department of Otolaryngology, Hearing Research and Cochlear Implant Laboratory, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jeenu Mittal
- Department of Otolaryngology, Hearing Research and Cochlear Implant Laboratory, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Nathalie B Bencie
- Department of Otolaryngology, Hearing Research and Cochlear Implant Laboratory, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Rahul Mittal
- Department of Otolaryngology, Hearing Research and Cochlear Implant Laboratory, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Adrien A Eshraghi
- Department of Otolaryngology, Hearing Research and Cochlear Implant Laboratory, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA; Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
7
|
Zou J, Zhao Z, Zhang G, Zhang Q, Pyykkö I. MEFV, IRF8, ADA, PEPD, and NBAS gene variants and elevated serum cytokines in a patient with unilateral sporadic Meniere's disease and vascular congestion over the endolymphatic sac. J Otol 2022; 17:175-181. [PMID: 35847575 PMCID: PMC9270563 DOI: 10.1016/j.joto.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/05/2022] [Accepted: 03/09/2022] [Indexed: 10/25/2022] Open
Abstract
The etiology and underlying mechanism of Meniere's disease (MD) development are still unknown, although inflammation and autoimmunity have been implicated as underlying mechanisms. The human endolymphatic sac (ES) has been reported to have innate and adaptive immune capacity in local immune reactions. In vivo demonstration of inflammation of the ES in patients with MD is missing in the literature. We report the case of a 47-year-old female patient diagnosed with unilateral MD with genetic variants and cytokine markers indicating inflammation and vascular congestion of the ES. Endolymphatic hydrops in the right cochlea (grade 2) and vestibulum (grade 3) were detected using MRI. She carried heterozygous variants in MEFV (c.442G > C), IRF8 (c.1157G > T), ADA (c.445C > T), PEPD (c.151G > A), NBAS (c.4049T > C), CSF2RB (c.2222C > T), HPS6 (c.277G > T), IL2RB (c.1109C > T), IL12RB1 (c.1384G > T), IL17RC (c.260_271del GCAAGAGC TGGG), LIG1 (c.746G > A), RAG1 (c.650C > A), and SLX4 (c.1258G > C, c.5072A > G). In the serum, the levels of granulocyte colony-stimulating factor (G-CSF), macrophage inflammatory protein 1α, and IL7 were significantly elevated, and the level of IL2Rα was reduced. Intratympanic administration of dexamethasone temporarily alleviated her hearing loss. Her vertigo was significantly relieved but remained slight after ES administration of corticosteroids.
Collapse
Affiliation(s)
- Jing Zou
- Department of Otolaryngology-Head and Neck Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
- Faculty of Information Technology and Communication Sciences, Tampere University, Tampere, Finland
| | - Zikai Zhao
- Department of Otolaryngology-Head and Neck Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Guoping Zhang
- Department of Otolaryngology-Head and Neck Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Qing Zhang
- Department of Otolaryngology-Head and Neck Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Ilmari Pyykkö
- Hearing and Balance Research Unit, Field of Otolaryngology, School of Medicine, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
8
|
Zhang J, Fan W, Neng L, Chen B, Wang Y, Zuo B, Lu W. Adenosine improves LPS-induced ROS expression and increasing in monolayer permeability of endothelial cell via acting on A2AR. Microvasc Res 2022; 143:104403. [PMID: 35753505 DOI: 10.1016/j.mvr.2022.104403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/23/2022] [Accepted: 06/20/2022] [Indexed: 11/19/2022]
Abstract
Blood-labyrinth barrier (BLB) disruption plays a crucial role in the development of otitis media. The aims of our study was to explore the role and action mechanism of adenosine in LPS-induced endothelial cells (ECs) damage, which are one of the major principal cell type for blood-labyrinth barrier (BLB), and so as to assess the potential of adenosine to be used in the treatment of BLB disruption in animal experiment. In our study, ECs were treated with LPS to mimic BLB damage in vitro. Our data showed that adenosine at dosage of 1, 10, and 20 μM had no influence on the cell viability of ECs. LPS treatment obviously suppressed the expression of Occludin and Zonula occludens-1 (ZO-1) in ECs, which was partly recused by adenosine treatment. Meantime, LPS-induced increasing in reactive oxygen species (ROS) production and ECs permeability also was rescued by adenosine treatment. However, inhibition the A2A receptor (A2AR) could attenuate the influence of adenosine on LPS-treated ECs, indicating that adenosine alleviated LPS-induced BLB damage by activating A2AR. Moreover, the inhibition of adenosine to LPS-induced inactivation of AMPK/AKT signaling pathway was partly recused by A2AR suppression. In addition, Compound C (an AMPK inhibitor) decreased the expression of Occludin and ZO-1 in ECs following LPS combined with adenosine treatment. In conclusion, adenosine alleviates LPS-induced BLB damage via AMPK/AKT pathway through activation of A2AR. This work suggests that adenosine may be a candidate drug for the treatment of BLB dysfunction-related diseases.
Collapse
Affiliation(s)
- Jinhui Zhang
- Department of otorhinolaryngology, Head and Neck surgery, The First Affiliated Hospital of Zhengzhou University, No 1 Jianshe Road, Zhengzhou 450052, Henan, China.
| | - Wenya Fan
- Department of otorhinolaryngology, Head and Neck surgery, The First Affiliated Hospital of Zhengzhou University, No 1 Jianshe Road, Zhengzhou 450052, Henan, China
| | - Lingling Neng
- Department of otorhinolaryngology, Head and Neck surgery, The First Affiliated Hospital of Zhengzhou University, No 1 Jianshe Road, Zhengzhou 450052, Henan, China
| | - Bei Chen
- Department of otorhinolaryngology, Head and Neck surgery, The First Affiliated Hospital of Zhengzhou University, No 1 Jianshe Road, Zhengzhou 450052, Henan, China
| | - Yanting Wang
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, No 16, Jiangsu Road, Qingdao, Shandong, China
| | - Bin Zuo
- Department of otorhinolaryngology, Head and Neck surgery, The First Affiliated Hospital of Zhengzhou University, No 1 Jianshe Road, Zhengzhou 450052, Henan, China
| | - Wei Lu
- Department of otorhinolaryngology, Head and Neck surgery, The First Affiliated Hospital of Zhengzhou University, No 1 Jianshe Road, Zhengzhou 450052, Henan, China.
| |
Collapse
|
9
|
Lee SY, Kim S, Han K, Woong Choi J, Byung Chae H, Yeon Choi D, Min Lee S, Kyun Park M, Mun S, Koo JW. Microarray analysis of lipopolysaccharide-induced endotoxemia in the cochlea. Gene 2022; 823:146347. [PMID: 35227853 DOI: 10.1016/j.gene.2022.146347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/06/2022] [Accepted: 02/15/2022] [Indexed: 11/24/2022]
Abstract
Lipopolysaccharide (LPS)-induced endotoxemia alters intracochlear homeostasis and potentiates aminoglycoside-induced ototoxicity. However, the pathological mechanisms in the cochlea following systemic LPS-induced inflammation are unclear. In this study, three groups of mice received intraperitoneal injections [group A, saline control (n = 10); group B, 1 mg/kg LPS (n = 10); group C, 10 mg/kg LPS (n = 10)]. After 24 h, gene expression in cochlea samples was analyzed using DNA microarrays covering 28,853 genes in a duplicate manner. A total of 505 differentially expressed genes (DEGs) (≥2.0-fold change; p < 0.05) were identified. Interferon- and chemotaxis-related genes, including gbp2, gbp5, cxcl10, and Rnf125, were dose-dependently upregulated by LPS-induced endotoxemia. These results were verified by RT-qPCR. Upregulated DEGs were associated with inflammation, positive regulation of immune responses, and regulation of cell adhesion, while downregulated ones were associated with chemical synaptic transmission and the synaptic vesicle cycle. Protein-protein interaction included four functional clusters associated with interleukin-4, -10, and -13 and G protein-coupled receptor (GPCR) ligand binding; activation of matrix metalloproteinases and collagen degradation; recruitment of amyloid A proteins; and neutrophil degranulation. The findings of this study provide an additional basis on changes in the expression of genes in the cochlea in response to LPS-induced endotoxemia.
Collapse
Affiliation(s)
- Sang-Yeon Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea; Sensory Organ Research Institute, Seoul National University Medical Research Center, South Korea
| | - Songmi Kim
- Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan 31116, South Korea; Department of Microbiology, College of Science and Technology, Dankook University, Cheonan 31116, South Korea
| | - Kyudong Han
- Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan 31116, South Korea; Department of Microbiology, College of Science and Technology, Dankook University, Cheonan 31116, South Korea
| | - Jin Woong Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Chungnam National University, College of Medicine, Daejeon, South Korea
| | - Ho Byung Chae
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea
| | - Da Yeon Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - So Min Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Moo Kyun Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Seyoung Mun
- Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan 31116, South Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, South Korea.
| | - Ja-Won Koo
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea; Sensory Organ Research Institute, Seoul National University Medical Research Center, South Korea.
| |
Collapse
|
10
|
Li XX, Zheng X, Liu Z, Xu Q, Tang H, Feng J, Yang S, Vong CT, Gao H, Wang Y. Cryptotanshinone from Salvia miltiorrhiza Bunge (Danshen) inhibited inflammatory responses via TLR4/MyD88 signaling pathway. Chin Med 2020; 15:20. [PMID: 32158495 PMCID: PMC7053069 DOI: 10.1186/s13020-020-00303-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/23/2020] [Indexed: 12/13/2022] Open
Abstract
Background Cryptotanshinone (CPT), as a major component of Salvia miltiorrhiza Bunge (Danshen), displays many pharmacological activities including anti-inflammatory effects. However, the exact cellular and molecular mechanisms of the anti-inflammatory activities of CPT remain to be elucidated. The present study was aimed to clarify its mechanisms on lipopolysaccharide (LPS)-induced inflammatory responses in mouse macrophages, RAW264.7 cells. Methods In the current study, the anti-inflammatory properties of CPT were evaluated using LPS-stimulated RAW264.7 cell model. MTT assay was used to determine the viability of RAW264.7 cells. The anti-inflammatory effects of CPT were measured based on the detection of nitric oxide (NO) production (Griess and flow cytometry assay), and tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) release (ELISA). Cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) enzyme expressions were also determined by western blotting. Besides, by using flow cytometry, we also evaluated the effect of CPT on LPS-induced calcium influx. Finally, the underlying anti-inflammatory mechanisms of CPT were investigated using western blotting to assess the protein levels of toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), phosphatidylinositol 3-kinase (PI3K)/AKT, nuclear factor erythroid 2 related factor 2 (Nrf2), mitogen-activated protein kinase (MAPK), and nuclear factor-kappa B (NF-κB) pathways. Results Our data showed that CPT inhibited LPS-induced pro-inflammatory cytokine release like IL-6, and TNF-α, as well as NO production. It displayed a significant inhibitory effect on the protein expressions such as iNOS, COX-2, NF-κB pathway like inhibitor of kappa B kinase (IKK)α/β, inhibitor of kappa B (IκB)-α and NF-κB/p65, PI3K/AKT pathway like PI3K and AKT, and MAPK pathway like c-Jun N-terminal kinase (JNK)1/2, extracellular signal-regulated kinase (ERK)1/2, and p38, in LPS-stimulated RAW264.7 macrophages. Moreover, the immunofluorescence results indicated that CPT suppressed NF-κB/p65 translocation from the cytoplasm into the nucleus. Further investigations showed that CPT treatment increased NAD(P)H quinone oxidoreductase-1 (NQO1) and heme oxygenase-1 (HO-1) expressions together with its upstream mediator, Nrf2. In addition, CPT inhibited LPS-induced toll-like receptor 4 (TLR4) and MyD88 expressions in RAW264.7 macrophages. Conclusions Collectively, we suggested that CPT exerted significant anti-inflammatory effects via modulating TLR4-MyD88/PI3K/Nrf2 and TLR4-MyD88/NF-κB/MAPK pathways.
Collapse
Affiliation(s)
- Xin-Xing Li
- 1College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000 China.,Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530020 China
| | - Xiaoting Zheng
- 3State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Room 1050, N22 Research Building, Macao, China
| | - Zhenjie Liu
- 1College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000 China.,Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530020 China
| | - Qiongming Xu
- 1College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000 China.,4College of Pharmaceutical Science, Soochow University, Suzhou, 215123 China
| | - Hongzhen Tang
- 1College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000 China.,Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530020 China
| | - Jianfang Feng
- 1College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000 China.,Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530020 China
| | - Shilin Yang
- 1College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000 China.,Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530020 China
| | - Chi Teng Vong
- 3State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Room 1050, N22 Research Building, Macao, China
| | - Hongwei Gao
- 1College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000 China.,Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530020 China
| | - Yitao Wang
- 3State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Room 1050, N22 Research Building, Macao, China
| |
Collapse
|