1
|
Sun J, Tan H, Chen J, Guo J, Zhang C, Wang Z, Wu H, Jia H. Feasibility of Round Window Exposure via External Auditory Canal: Classification and Predictive Landmarks. Laryngoscope Investig Otolaryngol 2025; 10:e70127. [PMID: 40130168 PMCID: PMC11931666 DOI: 10.1002/lio2.70127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/09/2025] [Indexed: 03/26/2025] Open
Abstract
Objective To clarify the feasibility and the anatomical characteristics related to round window exposure via the external auditory canal (EAC) without bony removal. Methods Surgical videos and radiological data from 50 adult patients who underwent endoscopic tympanoplasty type I were collected. According to surgical videos, round window niche (RWN) exposure was classified as "Certainly," "Possibly," and "None," and round window membrane (RWM) exposure was classified as "Clear visualization," "Incomplete visualization," "Just perceptible" and "Invisible." Basing on CT reconstruction, distances among RWM, RWN, tympanic annulus (TA), width, and orientation of scala tympani (ST) were measured under the Coordinate System of Cochlea, and anatomic features of EAC under the Coordinate System of EAC. Results 60% of RWNs were "Certainly," 24% "Possibly," and 16% "None" exposed. RWM exposure was 32% "Clear visualization," 22% "Incomplete visualization," 14% "Just perceptible," and 32% "Invisible." Longer distances between RWM and TA (RWM-TA), and the Width of ST in x and z sections were related to RWM exposure (RWM-TA: Spearman-r = 0.663, p < 0.001, ST in x: Spearman-r = -0.337, p = 0.017, z: Spearman-r = -0.586, p < 0.001). RWM-TA longer than 7.06 mm indicated a possibility of RWM exposure (AUC = 0.784, p = 0.011). Widths of ST in x and z sections shorter than 1.85 mm and 1.84 mm, respectively, indicated better RWM exposure (AUC = 0.887, p < 0.001). The size of EAC in axial and coronal sections could significantly predict RWM exposure (axial: AUC = 0.726, p = 0.011, coronal: AUC = 0.798, p = 0.001). Conclusion In adults, 54% of RWM could be partially visualized via EAC without bony removal. There are reliable pre-operative predictors for RWM exposure, which are helpful for future inner ear therapy. Level of Evidence 3.
Collapse
Affiliation(s)
- Jiayu Sun
- Department of Otolaryngology Head and Neck SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Ear Institute, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghaiChina
| | - Haoyue Tan
- Department of Otolaryngology Head and Neck SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Ear Institute, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghaiChina
| | - Jianqing Chen
- Department of Otolaryngology Head and Neck SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Ear Institute, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghaiChina
| | - Jia Guo
- Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Chengyu Zhang
- Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zhaoyan Wang
- Department of Otolaryngology Head and Neck SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Ear Institute, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghaiChina
| | - Hao Wu
- Department of Otolaryngology Head and Neck SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Ear Institute, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghaiChina
| | - Huan Jia
- Department of Otolaryngology Head and Neck SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Ear Institute, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghaiChina
| |
Collapse
|
2
|
Zhou C, Feng SJ, Leong S, Breil E, Voruz F, Valentini C, Hammer DR, Aksit A, Olson ES, Guo J, Kysar JW, Lalwani AK. Contrast Enhancement of Cochlea after Direct Microneedle Intracochlear Injection of Gadodiamide through the Round Window Membrane with Minimal Dosage. Acad Radiol 2025; 32:2152-2162. [PMID: 39500641 DOI: 10.1016/j.acra.2024.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 04/11/2025]
Abstract
RATIONALE AND OBJECTIVES The potential of contrast-enhanced MRI for diagnosing endolymphatic hydrops is limited by long wait times following intravenous (IV) or intratympanic (IT) delivery, high contrast dosages, and inconsistent signal intensity enhancements. This study investigates microneedle-mediated intracochlear (IC) gadodiamide injection for consistent and efficient contrast delivery with minimal contrast dosage. MATERIALS AND METHODS A 100 µm diameter microneedle with 35 µm lumen was used to inject 1 µL of diluted gadodiamide (17.4 mM) into a guinea pig cochlea via the round window membrane. Serial MRI imaging was performed in a post-mortem animal using a 9.4 T small-animal MRI. Maximum intensity projections of MRI scans were generated to visualize diffusion of contrast within cochlea over time; mean intensities in defined regions of interest (ROIs) were calculated. Contrast diffusion time and intensity enhancements were determined. RESULTS Contrast was observed in the basal turn of scala tympani (ST) and scala vestibuli (SV) in the first MRI scan for all subjects which was acquired as early as 35 min after injection. Two-tailed paired t-tests confirmed that contrast reached the first two turns of ST and SV within 60 min, and the second half of third turns and apical turns of ST and SV within 90 min (p < 0.05). Intensity enhancements, defined as the percentage increase of the ROI mean intensity in the injection side compared to the contralateral side, exceeded 100% in the first turn and ranged from 12% to 32% in the third and apical turns of ST and SV at 90 min after injection. CONCLUSIONS IC gadodiamide enables controllable and efficient contrast delivery with significantly lower contrast dosage, making it a viable alternative for contrast-enhanced cochlear MRI.
Collapse
Affiliation(s)
- Chaoqun Zhou
- Department of Mechanical Engineering, Columbia University, New York, NY
| | - Sharon J Feng
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY; Department of Otolaryngology - Head and Neck Surgery, Columbia University, New York, NY
| | - Stephen Leong
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY; Department of Otolaryngology - Head and Neck Surgery, Columbia University, New York, NY; Department of Otolaryngology - Head & Neck Surgery, University of Washington, Seattle, WA
| | - Eugénie Breil
- Department of Otolaryngology - Head and Neck Surgery, Columbia University, New York, NY
| | - François Voruz
- Department of Otolaryngology - Head and Neck Surgery, Columbia University, New York, NY
| | - Chris Valentini
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY; Department of Otolaryngology - Head & Neck Surgery, Thomas Jefferson University, Philadelphia, PA
| | - Daniella R Hammer
- Department of Mechanical Engineering, Columbia University, New York, NY
| | - Aykut Aksit
- Department of Mechanical Engineering, Columbia University, New York, NY
| | - Elizabeth S Olson
- Department of Otolaryngology - Head and Neck Surgery, Columbia University, New York, NY; Department of Biomedical Engineering, Columbia University, New York, NY
| | - Jia Guo
- Department of Psychiatry & The Zuckerman Institute, Columbia University, New York, NY.
| | - Jeffrey W Kysar
- Department of Mechanical Engineering, Columbia University, New York, NY; Department of Otolaryngology - Head and Neck Surgery, Columbia University, New York, NY
| | - Anil K Lalwani
- Department of Mechanical Engineering, Columbia University, New York, NY; Columbia University Vagelos College of Physicians and Surgeons, New York, NY; Department of Otolaryngology - Head and Neck Surgery, Columbia University, New York, NY
| |
Collapse
|
3
|
Voruz F, Feng SJ, Breil E, Yu M, Hammer DR, Aksit A, Zandkarimi F, Olson ES, Kysar JW, Lalwani AK. Microneedle-mediated intracochlear injection safely achieves higher perilymphatic dexamethasone concentration than intratympanic delivery in guinea pig. Drug Deliv Transl Res 2025:10.1007/s13346-025-01821-z. [PMID: 40009130 DOI: 10.1007/s13346-025-01821-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2025] [Indexed: 02/27/2025]
Abstract
Intracochlear injection through the round window membrane (RWM) has been proposed to overcome imprecise drug delivery into the inner ear. Using a novel ultrasharp microneedle, we compared the perilymphatic dexamethasone (DEX) concentration achieved after intratympanic vs. intracochlear injection at two different time points and assessed its safety in guinea pigs. For this purpose, DEX sodium phosphate (10 mg/mL) was administered either in the right middle ear space via continuous intratympanic injection or in the right scala tympani of the cochlea with microneedle-mediated injection (1 µL at 1 µL/min) across the RWM. Both groups were evaluated at 1-hour or 3-hour time points. Perilymph from both cochleae was sampled for liquid chromatography-mass spectrometry, and bilateral cochleae were harvested for immunofluorescence. Eighteen guinea pigs were included. The mean DEX concentration was higher in the intracochlear delivery group than in the intratympanic delivery group at 1-hour time point (mean difference 67,863 ng/mL, 95% CI (8,352-127,374 ng/mL), p = 0.03). No difference was found at 3-hour time point. In every animal on both cochleae, no disruption in hair and supportive cells of the organ of Corti and utricle was observed. Significant middle ear inflammation was observed with the intratympanic delivery method compared to intracochlear. In conclusion, microneedle-mediated intracochlear injection achieves higher perilymphatic DEX concentration than the intratympanic route by a factor of 7 while preserving the cochlear architecture and inducing significantly less middle ear inflammation. In this new era of inner ear therapeutics, the potential for translational application is tangible and promising.
Collapse
Affiliation(s)
- François Voruz
- Department of Mechanical Engineering, Columbia University, New York City, USA
- Department of Otolaryngology-Head and Neck Surgery, New York-Presbyterian / Columbia University Irving Medical Center, New York City, USA
| | - Sharon J Feng
- Department of Mechanical Engineering, Columbia University, New York City, USA
- Columbia University Vagelos College of Physicians and Surgeons, New York City, USA
| | - Eugénie Breil
- Department of Mechanical Engineering, Columbia University, New York City, USA
- Department of Otolaryngology-Head and Neck Surgery, New York-Presbyterian / Columbia University Irving Medical Center, New York City, USA
| | - Michelle Yu
- Department of Otolaryngology-Head and Neck Surgery, New York-Presbyterian / Columbia University Irving Medical Center, New York City, USA
| | - Daniella R Hammer
- Department of Mechanical Engineering, Columbia University, New York City, USA
| | - Aykut Aksit
- Department of Mechanical Engineering, Columbia University, New York City, USA
| | - Fereshteh Zandkarimi
- Mass Spectrometry Core Facility, Department of Chemistry, Columbia University, New York City, USA
| | - Elizabeth S Olson
- Department of Otolaryngology-Head and Neck Surgery, New York-Presbyterian / Columbia University Irving Medical Center, New York City, USA
- Department of Biomedical Engineering, Columbia University, New York City, USA
| | - Jeffrey W Kysar
- Department of Mechanical Engineering, Columbia University, New York City, USA
- Department of Otolaryngology-Head and Neck Surgery, New York-Presbyterian / Columbia University Irving Medical Center, New York City, USA
| | - Anil K Lalwani
- Department of Mechanical Engineering, Columbia University, New York City, USA.
- Department of Otolaryngology-Head and Neck Surgery, New York-Presbyterian / Columbia University Irving Medical Center, New York City, USA.
- Department of Otolaryngology-Head & Neck Surgery, New York-Presbyterian / Columbia University Irving Medical Center, Associate Dean for Student Research, Columbia University Vagelos College of Physicians & Surgeons, 180 Fort Washington Avenue, HP8, New York, NY, 10032, USA.
| |
Collapse
|
4
|
Amir M, Kuznetsova N, Kraft M, Taurino I. Progression of photoresin-based microneedles: From established drug delivery to emerging biosensing technologies. Biosens Bioelectron 2025; 274:117150. [PMID: 39874922 DOI: 10.1016/j.bios.2025.117150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 12/16/2024] [Accepted: 01/09/2025] [Indexed: 01/30/2025]
Abstract
Microneedles have emerged as a highly promising technology for advancing chemical biosensing and drug delivery applications, offering a minimally invasive, efficient, and versatile approach to healthcare innovation. This review provides a comprehensive analysis of photoresin-based microneedles, with a particular focus on SU-8 photoresin due to its favorable mechanical properties, biocompatibility, and ease of fabrication. Advanced techniques for surface modification are discussed to enhance the functionality of microneedles, enabling their application in precise biochemical diagnostics and effective drug therapy. Additionally, a concise overview of the two-photon polymerization technology is presented, emphasizing its remarkable potential in the production of microneedle arrays. By examining the various types of resins employed in the production of microneedles and their integration with nanostructures, this review offers valuable insights into the development and optimization of microneedle-based systems for diverse healthcare purposes.
Collapse
Affiliation(s)
- Momina Amir
- Department of Electrical Engineering (ESAT-MNS), Catholic University of Leuven (KU Leuven), 3001, Leuven, Belgium.
| | - Nadezda Kuznetsova
- Department of Electrical Engineering (ESAT-MNS), Catholic University of Leuven (KU Leuven), 3001, Leuven, Belgium
| | - Michael Kraft
- Department of Electrical Engineering (ESAT-MNS), Catholic University of Leuven (KU Leuven), 3001, Leuven, Belgium
| | - Irene Taurino
- Department of Electrical Engineering (ESAT-MNS), Catholic University of Leuven (KU Leuven), 3001, Leuven, Belgium; KU Leuven, Department of Physics and Astronomy (HF), Celestij€nenlaan 300D, 3001, Leuven, Belgium; Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnology, Arnesano, Italy
| |
Collapse
|
5
|
Feng SJ, Voruz F, Leong S, Hammer DR, Breil E, Aksit A, Yu M, Chiriboga L, Olson ES, Kysar JW, Lalwani AK. Microneedle-Mediated Delivery of siRNA via Liposomal-Based Transfection for Inner Ear Gene Therapy. Otol Neurotol 2024; 45:1068-1077. [PMID: 39165134 DOI: 10.1097/mao.0000000000004297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
HYPOTHESIS Microneedle-mediated intracochlear injection of siRNA-Lipofectamine through the round window membrane (RWM) can be used to transfect cells within the cochlea. BACKGROUND Our laboratory has developed 100-μm diameter hollow microneedles for intracochlear injection through the guinea pig RWM. In this study, we test the feasibility of microneedle-mediated injection of siRNA and Lipofectamine, a commonly used reagent with known cellular toxicity, through the RWM for cochlear transfection. METHODS Fluorescently labeled scramble siRNA was diluted into Lipofectamine RNAiMax and OptiMEM. One microliter of 5 μM siRNA was injected through the RWM of Hartley guinea pigs at a rate of 1 μl/min (n = 22). In a control group, 1.0 μl of Lipofectamine, with no siRNA, was diluted into OptiMEM and injected in a similar fashion (n = 5). Hearing tests were performed before and either at 24 hours, 48 hours, or 5 days after injection. Afterward, animals were euthanized, and cochleae were harvested for imaging. Control cochleae were processed in parallel to untreated guinea pigs. RESULTS Fluorescence, indicating successful transfection, was observed within the basal and middle turns of the cochlea with limited distribution in the apex at 24 and 48 hours. Signal was most intense in the organ of Corti, spiral ligament, and spiral ganglion. Little to no fluorescence was observed at 5 days post-injection. No significant changes in auditory brainstem response (ABR) were noted post-perforation at 5 days, suggesting that siRNA-Lipofectamine at low doses does not cause cochlear toxicity. CONCLUSIONS Small volumes of siRNA and Lipofectamine can be effectively delivered to cochlear structures using microneedles, paving the way for atraumatic cochlear gene therapy.
Collapse
Affiliation(s)
| | - François Voruz
- Department of Otolaryngology-Head and Neck Surgery, Columbia University, New York, New York
| | | | - Daniella R Hammer
- Department of Mechanical Engineering, Columbia University, New York, New York
| | - Eugénie Breil
- Department of Otolaryngology-Head and Neck Surgery, Columbia University, New York, New York
| | - Aykut Aksit
- Department of Mechanical Engineering, Columbia University, New York, New York
| | - Michelle Yu
- Department of Otolaryngology-Head and Neck Surgery, Columbia University, New York, New York
| | - Lauren Chiriboga
- Department of Biomedical Engineering, Columbia University, New York, New York
| | | | - Jeffrey W Kysar
- Department of Mechanical Engineering, Columbia University, New York, New York
| | | |
Collapse
|
6
|
Biswas AA, Dhondale MR, Agrawal AK, Serrano DR, Mishra B, Kumar D. Advancements in microneedle fabrication techniques: artificial intelligence assisted 3D-printing technology. Drug Deliv Transl Res 2024; 14:1458-1479. [PMID: 38218999 DOI: 10.1007/s13346-023-01510-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2023] [Indexed: 01/15/2024]
Abstract
Microneedles (MNs) are micron-scale needles that are a painless alternative to injections for delivering drugs through the skin. MNs find applications as biosensing devices and could serve as real-time diagnosis tools. There have been numerous fabrication techniques employed for producing quality MN-based systems, prominent among them is the three-dimensional (3D) printing. 3D printing enables the production of quality MNs of tuneable characteristics using a variety of materials. Further, the possible integration of artificial intelligence (AI) tools such as machine learning (ML) and deep learning (DL) with 3D printing makes it an indispensable tool for fabricating microneedles. Provided that these AI tools can be trained and act with minimal human intervention to control the quality of products produced, there is also a possibility of mass production of MNs using these tools in the future. This work reviews the specific role of AI in the 3D printing of MN-based devices discussing the use of AI in predicting drug release patterns, its role as a quality control tool, and in predicting the biomarker levels. Additionally, the autonomous 3D printing of microneedles using an integrated system of the internet of things (IoT) and machine learning (ML) is discussed in brief. Different categories of machine learning including supervised learning, semi-supervised learning, unsupervised learning, and reinforced learning have been discussed in brief. Lastly, a brief section is dedicated to the biosensing applications of MN-based devices.
Collapse
Affiliation(s)
- Anuj A Biswas
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Uttar Pradesh, Varanasi, India
| | - Madhukiran R Dhondale
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Uttar Pradesh, Varanasi, India
| | - Ashish K Agrawal
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Uttar Pradesh, Varanasi, India
| | | | - Brahmeshwar Mishra
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Uttar Pradesh, Varanasi, India.
| | - Dinesh Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Uttar Pradesh, Varanasi, India.
| |
Collapse
|
7
|
Chan AKC, Ranjitham Gopalakrishnan N, Traore YL, Ho EA. Formulating biopharmaceuticals using three-dimensional printing. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2024; 27:12797. [PMID: 38558867 PMCID: PMC10979422 DOI: 10.3389/jpps.2024.12797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 02/28/2024] [Indexed: 04/04/2024]
Abstract
Additive manufacturing, commonly referred to as three-dimensional (3D) printing, has the potential to initiate a paradigm shift in the field of medicine and drug delivery. Ever since the advent of the first-ever United States Food and Drug Administration (US FDA)-approved 3D printed tablet, there has been an increased interest in the application of this technology in drug delivery and biomedical applications. 3D printing brings us one step closer to personalized medicine, hence rendering the "one size fits all" concept in drug dosing obsolete. In this review article, we focus on the recent developments in the field of modified drug delivery systems in which various types of additive manufacturing technologies are applied.
Collapse
Affiliation(s)
- Alistair K. C. Chan
- School of Pharmacy, University of Waterloo, Kitchener, ON, Canada
- Waterloo Institute for Nanotechnology, Waterloo, ON, Canada
| | - Nehil Ranjitham Gopalakrishnan
- School of Pharmacy, University of Waterloo, Kitchener, ON, Canada
- Waterloo Institute for Nanotechnology, Waterloo, ON, Canada
| | - Yannick Leandre Traore
- School of Pharmacy, University of Waterloo, Kitchener, ON, Canada
- Waterloo Institute for Nanotechnology, Waterloo, ON, Canada
| | - Emmanuel A. Ho
- School of Pharmacy, University of Waterloo, Kitchener, ON, Canada
- Waterloo Institute for Nanotechnology, Waterloo, ON, Canada
| |
Collapse
|
8
|
Tavazzani E, Spaiardi P, Contini D, Sancini G, Russo G, Masetto S. Precision medicine: a new era for inner ear diseases. Front Pharmacol 2024; 15:1328460. [PMID: 38327988 PMCID: PMC10848152 DOI: 10.3389/fphar.2024.1328460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024] Open
Abstract
The inner ear is the organ responsible for hearing and balance. Inner ear dysfunction can be the result of infection, trauma, ototoxic drugs, genetic mutation or predisposition. Often, like for Ménière disease, the cause is unknown. Due to the complex access to the inner ear as a fluid-filled cavity within the temporal bone of the skull, effective diagnosis of inner ear pathologies and targeted drug delivery pose significant challenges. Samples of inner ear fluids can only be collected during surgery because the available procedures damage the tiny and fragile structures of the inner ear. Concerning drug administration, the final dose, kinetics, and targets cannot be controlled. Overcoming these limitations is crucial for successful inner ear precision medicine. Recently, notable advancements in microneedle technologies offer the potential for safe sampling of inner ear fluids and local treatment. Ultrasharp microneedles can reach the inner ear fluids with minimal damage to the organ, collect μl amounts of perilymph, and deliver therapeutic agents in loco. This review highlights the potential of ultrasharp microneedles, combined with nano vectors and gene therapy, to effectively treat inner ear diseases of different etiology on an individual basis. Though further research is necessary to translate these innovative approaches into clinical practice, these technologies may represent a true breakthrough in the clinical approach to inner ear diseases, ushering in a new era of personalized medicine.
Collapse
Affiliation(s)
- Elisa Tavazzani
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- ICS-Maugeri IRCCS, Pavia, Italy
| | - Paolo Spaiardi
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, Pavia, Italy
| | - Donatella Contini
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Giulio Sancini
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
- Nanomedicine Center, Neuroscience Center, School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Giancarlo Russo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Sergio Masetto
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
9
|
Feng SJ, Leong S, Aksit A, Hébert D, Olson ES, Kysar JW, Lalwani AK. Physiologic Effects of Microneedle-Mediated Intracochlear Dexamethasone Injection in the Guinea Pig. Laryngoscope 2024; 134:388-392. [PMID: 37318112 DOI: 10.1002/lary.30811] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/01/2023] [Accepted: 05/29/2023] [Indexed: 06/16/2023]
Abstract
OBJECTIVES Oral or intratympanic corticosteroids are commonly used to treat sudden sensorineural hearing loss (SSHL), tinnitus, and Meniere disease. Direct intracochlear delivery has been proposed to overcome the variability in bioavailability and efficacy of systemic or middle ear delivery. In this study, we aim to characterize the physiologic consequences of microneedle-mediated direct intracochlear injection of dexamethasone through the round window membrane (RWM). METHODS In Hartley guinea pigs (n = 5), a post-auricular incision followed by bullostomy was made to access the round window membrane. Using 100 μm diameter hollow microneedles, 1.0 μl of 10 mg/ml dexamethasone was injected through the RWM over 1 min. Compound action potential (CAP) and distortion product otoacoustic action emissions (DPOAE) were measured before perforation, at 1 h, and at 5 h following injection. CAP hearing thresholds were measured from 0.5 to 40 kHz, and DPOAE f2 frequencies ranged from 1.0 and 32 kHz. Repeated measures ANOVA followed by pairwise t-tests were used for statistical analysis. RESULTS ANOVA identified significant CAP threshold shifts at four frequencies (4, 16, 36, and 40 kHz) and differences in DPOAE at 1 frequency (6 kHz). Paired t-tests revealed differences between the pre-perforation and 1 h time point. By 5 h post injection, both CAP hearing thresholds and DPOAE recover and are not significantly different from baseline thresholds. CONCLUSION Direct intracochlear delivery of dexamethasone via microneedles results in temporary shifts in hearing thresholds that resolve by 5 hours, thus supporting microneedle technology for the treatment of inner ear disorders. LEVEL OF EVIDENCE NA Laryngoscope, 134:388-392, 2024.
Collapse
Affiliation(s)
- Sharon J Feng
- Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, U.S.A
- Department of Otolaryngology-Head and Neck Surgery, NewYork-Presbyterian/Columbia University Irving Medical Center, New York, New York, U.S.A
| | - Stephen Leong
- Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, U.S.A
- Department of Otolaryngology-Head and Neck Surgery, NewYork-Presbyterian/Columbia University Irving Medical Center, New York, New York, U.S.A
| | - Aykut Aksit
- Department of Mechanical Engineering, Columbia University, New York, New York, U.S.A
| | - Daniella Hébert
- Department of Mechanical Engineering, Columbia University, New York, New York, U.S.A
| | - Elizabeth S Olson
- Department of Otolaryngology-Head and Neck Surgery, NewYork-Presbyterian/Columbia University Irving Medical Center, New York, New York, U.S.A
- Department of Biomedical Engineering, Columbia University, New York, New York, U.S.A
| | - Jeffrey W Kysar
- Department of Mechanical Engineering, Columbia University, New York, New York, U.S.A
| | - Anil K Lalwani
- Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, U.S.A
- Department of Otolaryngology-Head and Neck Surgery, NewYork-Presbyterian/Columbia University Irving Medical Center, New York, New York, U.S.A
| |
Collapse
|
10
|
Aggarwal K, Nagpal K. Three-Dimensional Printing as a Progressive Innovative Tool for Customized and Precise Drug Delivery. Crit Rev Ther Drug Carrier Syst 2024; 41:95-130. [PMID: 38037821 DOI: 10.1615/critrevtherdrugcarriersyst.2023046832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
While using three-dimensional printing, materials are deposited layer by layer in accordance with the digital model created by computer-aided design software. Numerous research teams have shown interest in this technology throughout the last few decades to produce various dosage forms in the pharmaceutical industry. The number of publications has increased since the first printed medicine was approved in 2015 by Food and Drug Administration. Considering this, the idea of creating complex, custom-made structures that are loaded with pharmaceuticals for tissue engineering and dose optimization is particularly intriguing. New approaches and techniques for creating unique medication delivery systems are made possible by the development of additive manufacturing keeping in mind the comparative advantages it has over conventional methods of manufacturing medicaments. This review focuses on three-dimensional printed formulations grouped in orally disintegrated tablets, buccal films, implants, suppositories, and microneedles. The various types of techniques that are involved in it are summarized. Additionally, challenges and applications related to three-dimensional printing of pharmaceuticals are also being discussed.
Collapse
Affiliation(s)
- Kirti Aggarwal
- Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Noida, AUUP
| | - Kalpana Nagpal
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, UP-201303, India
| |
Collapse
|
11
|
Al-Nimry SS, Daghmash RM. Three Dimensional Printing and Its Applications Focusing on Microneedles for Drug Delivery. Pharmaceutics 2023; 15:1597. [PMID: 37376046 DOI: 10.3390/pharmaceutics15061597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/08/2023] [Accepted: 05/16/2023] [Indexed: 06/29/2023] Open
Abstract
Microneedles (MNs) are considered to be a novel smart injection system that causes significantly low skin invasion upon puncturing, due to the micron-sized dimensions that pierce into the skin painlessly. This allows transdermal delivery of numerous therapeutic molecules, such as insulin and vaccines. The fabrication of MNs is carried out through conventional old methods such as molding, as well as through newer and more sophisticated technologies, such as three-dimensional (3D) printing, which is considered to be a superior, more accurate, and more time- and production-efficient method than conventional methods. Three-dimensional printing is becoming an innovative method that is used in education through building intricate models, as well as being employed in the synthesis of fabrics, medical devices, medical implants, and orthoses/prostheses. Moreover, it has revolutionary applications in the pharmaceutical, cosmeceutical, and medical fields. Having the capacity to design patient-tailored devices according to their dimensions, along with specified dosage forms, has allowed 3D printing to stand out in the medical field. The different techniques of 3D printing allow for the production of many types of needles with different materials, such as hollow MNs and solid MNs. This review covers the benefits and drawbacks of 3D printing, methods used in 3D printing, types of 3D-printed MNs, characterization of 3D-printed MNs, general applications of 3D printing, and transdermal delivery using 3D-printed MNs.
Collapse
Affiliation(s)
- Suhair S Al-Nimry
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Rawand M Daghmash
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| |
Collapse
|
12
|
Leong S, Aksit A, Szeto B, Feng SJ, Ji X, Soni RK, Olson ES, Kysar JW, Lalwani AK. Anatomic, Physiologic, and Proteomic Consequences of Repeated Microneedle-Mediated Perforations of the Round Window Membrane. Hear Res 2023; 432:108739. [PMID: 36966687 DOI: 10.1016/j.heares.2023.108739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 02/20/2023] [Accepted: 03/12/2023] [Indexed: 03/14/2023]
Abstract
BACKGROUND We have developed 3D-printed microneedle technology for diagnostic aspiration of perilymph and intracochlear delivery of therapeutic agents. Single microneedle-mediated round window membrane (RWM) perforation does not cause hearing loss, heals within 48-72 h, and yields sufficient perilymph for proteomic analysis. In this study, we investigate the anatomic, physiologic, and proteomic consequences of repeated microneedle-mediated perforations of the same RWM at different timepoints. METHODS 100-μm-diameter hollow microneedles were fabricated using two-photon polymerization (2PP) lithography. The tympanic bullae of Hartley guinea pigs (n = 8) were opened with adequate exposure of the RWM. Distortion product otoacoustic emissions (DPOAE) and compound action potential (CAP) were recorded to assess hearing. The hollow microneedle was introduced into the bulla and the RWM was perforated; 1 μL of perilymph was aspirated from the cochlea over the course of 45 s. 72 h later, the above procedure was repeated with aspiration of an additional 1 μL of perilymph. 72 h after the second perforation, RWMs were harvested for confocal imaging. Perilymph proteomic analysis was completed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS Two perforations and aspirations were performed in 8 guinea pigs. In six, CAP, DPOAE, and proteomic analysis were obtained; in one, only CAP and DPOAE results were obtained; and in one, only proteomics results were obtained. Hearing tests demonstrated mild hearing loss at 1-4 kHz and 28 kHz, most consistent with conductive hearing loss. Confocal microscopy demonstrated complete healing of all perforations with full reconstitution of the RWM. Perilymph proteomic analysis identified 1855 proteins across 14 samples. The inner ear protein cochlin was observed in all samples, indicating successful aspiration of perilymph. Non-adjusted paired t-tests with p < 0.01 revealed significant changes in 13 of 1855 identified proteins (0.7%) between the first and second aspirations. CONCLUSIONS We demonstrate that repeated microneedle perforation of the RWM is feasible, allows for complete healing of the RWM, and minimally changes the proteomic expression profile. Thus, microneedle-mediated repeated aspirations in a single animal can be used to monitor the response to inner ear treatments over time.
Collapse
|
13
|
Human cochlear microstructures at risk of electrode insertion trauma, elucidated in 3D with contrast-enhanced microCT. Sci Rep 2023; 13:2191. [PMID: 36750646 PMCID: PMC9905077 DOI: 10.1038/s41598-023-29401-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Cochlear implant restores hearing loss through electrical stimulation of the hearing nerve from within the cochlea. Unfortunately, surgical implantation of this neuroprosthesis often traumatizes delicate intracochlear structures, resulting in loss of residual hearing and compromising hearing in noisy environments and appreciation of music. To avoid cochlear trauma, insertion techniques and devices have to be adjusted to the cochlear microanatomy. However, existing techniques were unable to achieve a representative visualization of the human cochlea: classical histology damages the tissues and lacks 3D perspective; standard microCT fails to resolve the cochlear soft tissues; and previously used X-ray contrast-enhancing staining agents are destructive. In this study, we overcame these limitations by performing contrast-enhanced microCT imaging (CECT) with a novel polyoxometalate staining agent Hf-WD POM. With Hf-WD POM-based CECT, we achieved nondestructive, high-resolution, simultaneous, 3D visualization of the mineralized and soft microstructures in fresh-frozen human cochleae. This enabled quantitative analysis of the true intracochlear dimensions and led to anatomical discoveries, concerning surgically-relevant microstructures: the round window membrane, the Rosenthal's canal and the secondary spiral lamina. Furthermore, we demonstrated that Hf-WD POM-based CECT enables quantitative assessment of these structures as well as their trauma.
Collapse
|
14
|
Starovoyt A, Quirk BC, Putzeys T, Kerckhofs G, Nuyts J, Wouters J, McLaughlin RA, Verhaert N. An optically-guided cochlear implant sheath for real-time monitoring of electrode insertion into the human cochlea. Sci Rep 2022; 12:19234. [PMID: 36357503 PMCID: PMC9649659 DOI: 10.1038/s41598-022-23653-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/03/2022] [Indexed: 11/12/2022] Open
Abstract
In cochlear implant surgery, insertion of perimodiolar electrode arrays into the scala tympani can be complicated by trauma or even accidental translocation of the electrode array within the cochlea. In patients with partial hearing loss, cochlear trauma can not only negatively affect implant performance, but also reduce residual hearing function. These events have been related to suboptimal positioning of the cochlear implant electrode array with respect to critical cochlear walls of the scala tympani (modiolar wall, osseous spiral lamina and basilar membrane). Currently, the position of the electrode array in relation to these walls cannot be assessed during the insertion and the surgeon depends on tactile feedback, which is unreliable and often comes too late. This study presents an image-guided cochlear implant device with an integrated, fiber-optic imaging probe that provides real-time feedback using optical coherence tomography during insertion into the human cochlea. This novel device enables the surgeon to accurately detect and identify the cochlear walls ahead and to adjust the insertion trajectory, avoiding collision and trauma. The functionality of this prototype has been demonstrated in a series of insertion experiments, conducted by experienced cochlear implant surgeons on fresh-frozen human cadaveric cochleae.
Collapse
Affiliation(s)
- Anastasiya Starovoyt
- grid.5596.f0000 0001 0668 7884Department of Neurosciences, ExpORL, KU Leuven, 3000 Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Department of Neurosciences, Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Bryden C. Quirk
- grid.1010.00000 0004 1936 7304Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5005 Australia ,grid.1010.00000 0004 1936 7304Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, SA 5005 Australia
| | - Tristan Putzeys
- grid.5596.f0000 0001 0668 7884Department of Neurosciences, ExpORL, KU Leuven, 3000 Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Department of Neurosciences, Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Laboratory for Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, 3000 Leuven, Belgium
| | - Greet Kerckhofs
- grid.7942.80000 0001 2294 713XBiomechanics Laboratory, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, 1348 Louvain-La-Neuve, Belgium ,grid.5596.f0000 0001 0668 7884Department of Materials Science and Engineering, KU Leuven, 3000 Leuven, Belgium ,grid.7942.80000 0001 2294 713XInstitute of Experimental and Clinical Research, UCLouvain, 1200 Woluwé-Saint-Lambert, Belgium ,grid.5596.f0000 0001 0668 7884Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, 3000 Leuven, Belgium
| | - Johan Nuyts
- grid.5596.f0000 0001 0668 7884Department of Imaging and Pathology, Division of Nuclear Medicine, KU Leuven, 3000 Leuven, Belgium ,Nuclear Medicine and Molecular Imaging, Medical Imaging Research Center, 3000 Leuven, Belgium
| | - Jan Wouters
- grid.5596.f0000 0001 0668 7884Department of Neurosciences, ExpORL, KU Leuven, 3000 Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Department of Neurosciences, Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Robert A. McLaughlin
- grid.1010.00000 0004 1936 7304Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5005 Australia ,grid.1010.00000 0004 1936 7304Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, SA 5005 Australia ,grid.1012.20000 0004 1936 7910School of Engineering, University of Western Australia, Perth, WA 6009 Australia
| | - Nicolas Verhaert
- grid.5596.f0000 0001 0668 7884Department of Neurosciences, ExpORL, KU Leuven, 3000 Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Department of Neurosciences, Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium ,grid.410569.f0000 0004 0626 3338Department of Otorhinolaryngology, Head and Neck Surgery, University Hospitals of Leuven, 3000 Leuven, Belgium
| |
Collapse
|
15
|
Zhou C, Aksit A, Szeto B, Li RL, Lalwani AK, Kysar JW. Pyrolyzed Ultrasharp Glassy Carbon Microneedles. ADVANCED ENGINEERING MATERIALS 2022; 24:2270046. [PMID: 36686328 PMCID: PMC9858104 DOI: 10.1002/adem.202270046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Polymeric microneedles fabricated via two-photon polymerization (2PP) lithography enable safe medical access to the inner ear. Herein, the material class for 2PP-lithography-based microneedles is expanded by pyrolyzing 2PP-fabricated polymeric microneedles, resulting in glassy carbon microneedles. During pyrolysis the microneedles shrink up to 81% while maintaining their complex shape when the exposed surface-area-to-volume ratio (SVR) is 0.025 < SVR < 0.04, for the temperature history protocol used herein. The derived glassy carbon is confirmed with energy-dispersive X-ray spectroscopy and Raman spectroscopy. The pyrolyzed glassy carbon has Young's modulus 9.0 GPa. As a brittle material, the strength is stochastic. Using the two-parameter Weibull distribution, the glassy carbon has Weibull modulus of 3.1 and characteristic strength of 710 MPa. The viscoelastic response has characteristic time scale of about 10000 s. In vitro experiments demonstrate that the glassy carbon microneedles introduce controlled perforations across the guinea pig round window membrane (RWM) from the middle ear space into the inner ear, without damaging the microneedle. The resultant controlled perforation of RWM is known to enhance diffusion of therapeutics across the RWM in a predictable fashion. Hence, the glassy carbon microneedles can be deployed for mediating inner ear delivery.
Collapse
Affiliation(s)
- Chaoqun Zhou
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA
| | - Aykut Aksit
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA
| | - Betsy Szeto
- Department of Otolaryngology - Head & Neck Surgery, Columbia University, New York, NY 10032, USA
| | - Richard L Li
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA
| | - Anil K Lalwani
- Department of Otolaryngology - Head & Neck Surgery, Columbia University, New York, NY 10032, USA
| | - Jeffrey W Kysar
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA; Department of Otolaryngology - Head & Neck Surgery, Columbia University, New York, NY 10032, USA
| |
Collapse
|
16
|
Li R, Zhang L, Jiang X, Li L, Wu S, Yuan X, Cheng H, Jiang X, Gou M. 3D-printed microneedle arrays for drug delivery. J Control Release 2022; 350:933-948. [PMID: 35977583 DOI: 10.1016/j.jconrel.2022.08.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/28/2022]
Abstract
Microneedle arrays provide an efficient tool for transdermal drug delivery in a minimally invasive and painless manner, showing great potential applications in medicine. However, it remains challenging to fabricate the desired microneedle arrays, because of their micron-scale size and fine structure. Novel manufacturing technologies are very wanted for the development of microneedle arrays, which would solidly advance the clinical translation of microneedle arrays. 3D printing technology is a powerful manufacturing technology with superiority in fabricating personalized and complex structures. Currently, 3D printing technology has been employed to fabricate microneedle arrays, which could push more microneedle arrays into clinic and inspire the development of future microneedle arrays. This work reviews the art of 3D printing microneedle arrays, the benefits of fabricating microneedle arrays with 3D printing, and the considerations for clinical translation of 3D-printed microneedle arrays. This work provides an overview of the current 3D-printed microneedle arrays in drug delivery.
Collapse
Affiliation(s)
- Rong Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Li Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xuebing Jiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Li Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shanshan Wu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xin Yuan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hao Cheng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China; Huahang Microcreate Technology Co., Ltd, Chengdu, 610042, China
| | - Xian Jiang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Maling Gou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
17
|
Leong S, Aksit A, Feng SJ, Kysar JW, Lalwani AK. Inner Ear Diagnostics and Drug Delivery via Microneedles. J Clin Med 2022; 11:jcm11185474. [PMID: 36143121 PMCID: PMC9500619 DOI: 10.3390/jcm11185474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Objectives: Precision medicine for inner ear disorders has seen significant advances in recent years. However, unreliable access to the inner ear has impeded diagnostics and therapeutic delivery. The purpose of this review is to describe the development, production, and utility of novel microneedles for intracochlear access. Methods: We summarize the current work on microneedles developed using two-photon polymerization (2PP) lithography for perforation of the round window membrane (RWM). We contextualize our findings with the existing literature in intracochlear diagnostics and delivery. Results: Two-photon polymerization lithography produces microneedles capable of perforating human and guinea pig RWMs without structural or functional damage. Solid microneedles may be used to perforate guinea pig RWMs in vivo with full reconstitution of the membrane in 48–72 h, and hollow microneedles may be used to aspirate perilymph or inject therapeutics into the inner ear. Microneedles produced with two-photon templated electrodeposition (2PTE) have greater strength and biocompatibility and may be used to perforate human RWMs. Conclusions: Microneedles produced with 2PP lithography and 2PTE can safely and reliably perforate the RWM for intracochlear access. This technology is groundbreaking and enabling in the field of inner ear precision medicine.
Collapse
Affiliation(s)
- Stephen Leong
- Vagelos College of Physicians & Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Aykut Aksit
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA
| | - Sharon J. Feng
- Vagelos College of Physicians & Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jeffrey W. Kysar
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA
- Department of Otolaryngology—Head & Neck Surgery, New-York Presbyterian/Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Anil K. Lalwani
- Vagelos College of Physicians & Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA
- Department of Otolaryngology—Head & Neck Surgery, New-York Presbyterian/Columbia University Irving Medical Center, New York, NY 10032, USA
- Correspondence: ; Tel.: +1-212-305-3319
| |
Collapse
|
18
|
Peter MS, Warnecke A, Staecker H. A Window of Opportunity: Perilymph Sampling from the Round Window Membrane Can Advance Inner Ear Diagnostics and Therapeutics. J Clin Med 2022; 11:jcm11020316. [PMID: 35054010 PMCID: PMC8781055 DOI: 10.3390/jcm11020316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/29/2021] [Accepted: 01/06/2022] [Indexed: 12/12/2022] Open
Abstract
In the clinical setting, the pathophysiology of sensorineural hearing loss is poorly defined and there are currently no diagnostic tests available to differentiate between subtypes. This often leaves patients with generalized treatment options such as steroids, hearing aids, or cochlear implantation. The gold standard for localizing disease is direct biopsy or imaging of the affected tissue; however, the inaccessibility and fragility of the cochlea make these techniques difficult. Thus, the establishment of an indirect biopsy, a sampling of inner fluids, is needed to advance inner ear diagnostics and allow for the development of novel therapeutics for inner ear disease. A promising source is perilymph, an inner ear liquid that bathes multiple structures critical to sound transduction. Intraoperative perilymph sampling via the round window membrane of the cochlea has been successfully used to profile the proteome, metabolome, and transcriptome of the inner ear and is a potential source of biomarker discovery. Despite its potential to provide insight into inner ear pathologies, human perilymph sampling continues to be controversial and is currently performed only in conjunction with a planned procedure where the inner ear is opened. Here, we review the safety of procedures in which the inner ear is opened, highlight studies where perilymph analysis has advanced our knowledge of inner ear diseases, and finally propose that perilymph sampling could be done as a stand-alone procedure, thereby advancing our ability to accurately classify sensorineural hearing loss.
Collapse
Affiliation(s)
- Madeleine St. Peter
- Department of Otolaryngology-Head & Neck Surgery, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| | - Athanasia Warnecke
- Department of Otolaryngology Head and Neck Surgery, Hannover Medical School, D-30625 Hanover, Germany;
| | - Hinrich Staecker
- Department of Otolaryngology-Head & Neck Surgery, University of Kansas Medical Center, Kansas City, KS 66160, USA;
- Correspondence:
| |
Collapse
|
19
|
Membrane curvature and connective fiber alignment in guinea pig round window membrane. Acta Biomater 2021; 136:343-362. [PMID: 34563725 DOI: 10.1016/j.actbio.2021.09.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 11/23/2022]
Abstract
The round window membrane (RWM) covers an opening between the perilymph fluid-filled inner ear space and the air-filled middle ear space. As the only non-osseous barrier between these two spaces, the RWM is an ideal candidate for aspiration of perilymph for diagnostics purposes and delivery of medication for treatment of inner ear disorders. Routine access across the RWM requires the development of new surgical tools whose design can only be optimized with a thorough understanding of the RWM's structure and properties. The RWM possesses a layer of collagen and elastic fibers so characterization of the distribution and orientation of these fibers is essential. Confocal and two-photon microscopy were conducted on intact RWMs in a guinea pig model to characterize the distribution of collagen and elastic fibers. The fibers were imaged via second-harmonic-generation, autofluorescence, and Rhodamine B staining. Quantitative analyses of both fiber orientation and geometrical properties of the RWM uncovered a significant correlation between mean fiber orientations and directions of zero curvature in some portions of the RWM, with an even more significant correlation between the mean fiber orientations and linear distance along the RWM in a direction approximately parallel to the cochlear axis. The measured mean fiber directions and dispersions can be incorporated into a generalized structure tensor for use in the development of continuum anisotropic mechanical constitutive models that in turn will enable optimization of surgical tools to access the cochlea. STATEMENT OF SIGNIFICANCE: The Round Window Membrane (RWM) is the only non-osseous barrier separating the middle and inner ear spaces, and thus is an ideal portal for medical access to the cochlea. An understanding of RWM structure and mechanical response is necessary to optimize the design of surgical tools for this purpose. The RWM geometry and the connective fiber orientation and dispersion are measured via confocal and 2-photon microscopy. A region of the RWM geometry is characterized as a hyperbolic paraboloid and another region as a tapered parabolic cylinder. Predominant fiber directions correlate well with directions of zero curvature in the hyperbolic paraboloid region. Overall fiber directions correlate well with position along a line approximately parallel to the central axis of the cochlea's spiral.
Collapse
|
20
|
Aich K, Singh T, Dang S. Advances in microneedle-based transdermal delivery for drugs and peptides. Drug Deliv Transl Res 2021; 12:1556-1568. [PMID: 34564827 DOI: 10.1007/s13346-021-01056-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2021] [Indexed: 12/15/2022]
Abstract
Transdermal drug delivery is a viable and clinically proven route of administration. This route specifically requires overcoming the mechanical barrier provided by the Stratum Corneum of epidermis and vascular and nervous networks within the dermis. First-generation Transdermal patches and second-generation iontophoretic patches have been translated into commercial clinical products successfully. The current review reports different studies that aim to enhance the transdermal delivery of biopharmaceutical using microneedles and their effect on drug delivery. Microneedles (MN) are the micron-scale hybrid between transdermal patches and hypodermic syringes. Microneedles are tested and proven to show better delivery of the drugs, overcoming the drawbacks of hypodermic syringes. Multiple microneedles designs have been fabricated i.e. solid, coated, hollow, and polymer microneedles. Hollow microneedles are shorter in length but similar to hypodermic needles and have pore for infusion of liquid formulation of the drug. Solid microneedles a patch is applied after creating a hole in the skin; Drugs are coated on the surface of Coated microneedles; Polymer microneedles can be of different types like dissolving, non-dissolving or hydrogel-forming made up of polymers. Various advantages and limitations associated with the use of these techniques are discussed. Delivery of peptide and protein molecules with microneedles represents a significant opportunity for a better clinical outcome and hence value creation compared to standard injectable routes of administration. The advancement in various formulation and microfabrication techniques are currently being focused to aid the delivery of protein drugs via microneedles. The most recent advances and limitations in Microneedles -mediated protein and peptide delivery were discussed.
Collapse
Affiliation(s)
- Krishanu Aich
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India
| | - Tanya Singh
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India
| | - Shweta Dang
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India.
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW Treatment of auditory dysfunction is dependent on inner ear drug delivery, with microtechnologies playing an increasingly important role in cochlear access and pharmacokinetic profile control. This review examines recent developments in the field for clinical and animal research environments. RECENT FINDINGS Micropump technologies are being developed for dynamic control of flow rates with refillable reservoirs enabling timed delivery of multiple agents for protection or regeneration therapies. These micropumps can be combined with cochlear implants with integral catheters or used independently with cochleostomy or round window membrane (RWM) delivery modalities for therapy development in animal models. Sustained release of steroids with coated cochlear implants remains an active research area with first-time-in-human demonstration of reduced electrode impedances. Advanced coatings containing neurotrophin producing cells have enhanced spiral ganglion neuron survival in animal models, and have proven safe in a human study. Microneedles have emerged for controlled microperforation of the RWM for significant enhancement in permeability, combinable with emerging matrix formulations that optimize biological interaction and drug release kinetics. SUMMARY Microsystem technologies are providing enhanced and more controlled access to the inner ear for advanced drug delivery approaches, alone and in conjunction with cochlear implants.
Collapse
|
22
|
Pawley DC, Goncalves S, Bas E, Dikici E, Deo SK, Daunert S, Telischi F. Dexamethasone (DXM)‐Coated Poly(lactic‐
co
‐glycolic acid) (PLGA) Microneedles as an Improved Drug Delivery System for Intracochlear Biodegradable Devices. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Devon C. Pawley
- Department of Biochemistry and Molecular Biology University of Miami Miller School of Medicine Miami FL 33136 USA
- Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute of the University of Miami Miami FL 33136 USA
| | - Stefania Goncalves
- University of Miami Ear Institute Department of Otolaryngology University of Miami Miller School of Medicine Miami FL 33136 USA
| | - Esperanza Bas
- University of Miami Ear Institute Department of Otolaryngology University of Miami Miller School of Medicine Miami FL 33136 USA
| | - Emre Dikici
- Department of Biochemistry and Molecular Biology University of Miami Miller School of Medicine Miami FL 33136 USA
- Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute of the University of Miami Miami FL 33136 USA
| | - Sapna K. Deo
- Department of Biochemistry and Molecular Biology University of Miami Miller School of Medicine Miami FL 33136 USA
- Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute of the University of Miami Miami FL 33136 USA
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology University of Miami Miller School of Medicine Miami FL 33136 USA
- Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute of the University of Miami Miami FL 33136 USA
- University of Miami Clinical and Translational Science Institute University of Miami Miller School of Medicine Miami FL 33136 USA
| | - Fred Telischi
- University of Miami Ear Institute Department of Otolaryngology University of Miami Miller School of Medicine Miami FL 33136 USA
| |
Collapse
|
23
|
Yadav PR, Munni MN, Campbell L, Mostofa G, Dobson L, Shittu M, Pattanayek SK, Uddin MJ, Das DB. Translation of Polymeric Microneedles for Treatment of Human Diseases: Recent Trends, Progress, and Challenges. Pharmaceutics 2021; 13:1132. [PMID: 34452093 PMCID: PMC8401662 DOI: 10.3390/pharmaceutics13081132] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 12/14/2022] Open
Abstract
The ongoing search for biodegradable and biocompatible microneedles (MNs) that are strong enough to penetrate skin barriers, easy to prepare, and can be translated for clinical use continues. As such, this review paper is focused upon discussing the key points (e.g., choice polymeric MNs) for the translation of MNs from laboratory to clinical practice. The review reveals that polymers are most appropriately used for dissolvable and swellable MNs due to their wide range of tunable properties and that natural polymers are an ideal material choice as they structurally mimic native cellular environments. It has also been concluded that natural and synthetic polymer combinations are useful as polymers usually lack mechanical strength, stability, or other desired properties for the fabrication and insertion of MNs. This review evaluates fabrication methods and materials choice, disease and health conditions, clinical challenges, and the future of MNs in public healthcare services, focusing on literature from the last decade.
Collapse
Affiliation(s)
- Prateek Ranjan Yadav
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK; (P.R.Y.); (L.C.); (L.D.); (M.S.)
- Chemical Engineering Department, Indian Institute of Technology, Delhi 110016, India;
| | | | - Lauryn Campbell
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK; (P.R.Y.); (L.C.); (L.D.); (M.S.)
| | - Golam Mostofa
- Drug Delivery & Therapeutics Lab, Dhaka 1212, Bangladesh; (M.N.M.); (G.M.)
| | - Lewis Dobson
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK; (P.R.Y.); (L.C.); (L.D.); (M.S.)
| | - Morayo Shittu
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK; (P.R.Y.); (L.C.); (L.D.); (M.S.)
| | | | - Md. Jasim Uddin
- Drug Delivery & Therapeutics Lab, Dhaka 1212, Bangladesh; (M.N.M.); (G.M.)
- Department of Pharmacy, Brac University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | - Diganta Bhusan Das
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK; (P.R.Y.); (L.C.); (L.D.); (M.S.)
| |
Collapse
|
24
|
Szeto B, Valentini C, Aksit A, Werth EG, Goeta S, Brown LM, Olson ES, Kysar JW, Lalwani AK. Impact of Systemic versus Intratympanic Dexamethasone Administration on the Perilymph Proteome. J Proteome Res 2021; 20:4001-4009. [PMID: 34291951 DOI: 10.1021/acs.jproteome.1c00322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glucocorticoids are the first-line treatment for sensorineural hearing loss, but little is known about the mechanism of their protective effect or the impact of route of administration. The recent development of hollow microneedles enables safe and reliable sampling of perilymph for proteomic analysis. Using these microneedles, we investigate the effect of intratympanic (IT) versus intraperitoneal (IP) dexamethasone administration on guinea pig perilymph proteome. Guinea pigs were treated with IT dexamethasone (n = 6), IP dexamethasone (n = 8), or untreated for control (n = 8) 6 h prior to aspiration. The round window membrane (RWM) was accessed via a postauricular approach, and hollow microneedles were used to perforate the RWM and aspirate 1 μL of perilymph. Perilymph samples were analyzed by liquid chromatography-mass spectrometry-based label-free quantitative proteomics. Mass spectrometry raw data files have been deposited in an international public repository (MassIVE proteomics repository at https://massive.ucsd.edu/) under data set # MSV000086887. In the 22 samples of perilymph analyzed, 632 proteins were detected, including the inner ear protein cochlin, a perilymph marker. Of these, 14 proteins were modulated by IP, and three proteins were modulated by IT dexamethasone. In both IP and IT dexamethasone groups, VGF nerve growth factor inducible was significantly upregulated compared to control. The remaining adjusted proteins modulate neurons, inflammation, or protein synthesis. Proteome analysis facilitated by the use of hollow microneedles shows that route of dexamethasone administration impacts changes seen in perilymph proteome. Compared to IT administration, the IP route was associated with greater changes in protein expression, including proteins involved in neuroprotection, inflammatory pathway, and protein synthesis. Our findings show that microneedles can mediate safe and effective intracochlear sampling and hold promise for inner ear diagnostics.
Collapse
Affiliation(s)
- Betsy Szeto
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032, United States
| | - Chris Valentini
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032, United States
| | - Aykut Aksit
- Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
| | - Emily G Werth
- Quantitative Proteomics and Metabolomics Center, Department of Biological Sciences, Columbia University, New York, New York 10027, United States
| | - Shahar Goeta
- Quantitative Proteomics and Metabolomics Center, Department of Biological Sciences, Columbia University, New York, New York 10027, United States
| | - Lewis M Brown
- Quantitative Proteomics and Metabolomics Center, Department of Biological Sciences, Columbia University, New York, New York 10027, United States
| | - Elizabeth S Olson
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032, United States.,Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Jeffrey W Kysar
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032, United States.,Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
| | - Anil K Lalwani
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032, United States.,Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
25
|
Lin YC, Shih CP, Chen HC, Chou YL, Sytwu HK, Fang MC, Lin YY, Kuo CY, Su HH, Hung CL, Chen HK, Wang CH. Ultrasound Microbubble-Facilitated Inner Ear Delivery of Gold Nanoparticles Involves Transient Disruption of the Tight Junction Barrier in the Round Window Membrane. Front Pharmacol 2021; 12:689032. [PMID: 34262458 PMCID: PMC8273281 DOI: 10.3389/fphar.2021.689032] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/16/2021] [Indexed: 11/15/2022] Open
Abstract
The application of ultrasound microbubbles (USMBs) enhances the permeability of the round window membrane (RWM) and improves drug delivery to the inner ear. In this study, we investigated the efficiency of USMB-aided delivery of chitosan-coated gold nanoparticles (CS-AuNPs) and the mechanism of USMB-mediated enhancement of RMW permeability. We exposed mouse inner ears to USMBs at an intensity of 2 W/cm2 and then filled the tympanic bulla with CS-AuNPs or fluorescein isothiocyanate-decorated CS-AuNPs (FITC-CS-AuNPs). The membrane uptake of FITC-CS-AuNPs and their depth of permeation into the three-layer structure of the RWM, with or without prior USMB treatment, were visualized by z-stack confocal laser scanning microscopy. Ultrastructural changes in the RWM due to USMB-mediated cavitation appeared as sunburn-like peeling and various degrees of depression in the RWM surface, with pore-like openings forming in the outer epithelium. This disruption of the outer epithelium was paralleled by a transient reduction in tight junction (TJ)-associated protein levels in the RWM and an enhanced delivery of FITC-CS-AuNPs into the RWM. Without prior USMB exposure, the treatment with CS-AuNPs also caused a noticeable reduction in TJ proteins of the RWM. Our findings indicated that the combined treatment with USMBs and CS-AuNPs represents a promising and efficient drug and gene delivery vehicle for a trans-RWM approach for inner ear therapy. The outer epithelial layer of the RWM plays a decisive role in controlling the transmembrane transport of substances such as CS-AuNPs following the administration of USMBs. Most importantly, the enhanced permeation of AuNPs involved the transient disruption of the TJ-created paracellular barrier in the outer epithelium of the RWM.
Collapse
Affiliation(s)
- Yi-Chun Lin
- National Defense Medical Center, Graduate Institute of Medical Sciences, Taipei, Taiwan
| | - Cheng-Ping Shih
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hsin-Chien Chen
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ying-Liang Chou
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Department of Otorhinolaryngology, Taichung Armed Forces General Hospital, Taichung, Taiwan
| | - Huey-Kang Sytwu
- National Defense Medical Center, Graduate Institute of Medical Sciences, Taipei, Taiwan.,National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Mei-Cho Fang
- Laboratory Animal Center, National Defense Medical Center, Taipei, Taiwan
| | - Yuan-Yung Lin
- National Defense Medical Center, Graduate Institute of Medical Sciences, Taipei, Taiwan.,Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chao-Yin Kuo
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hsiao-Han Su
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Lien Hung
- Department of Otorhinolaryngology, Taichung Armed Forces General Hospital, Taichung, Taiwan
| | - Hang-Kang Chen
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Department of Otorhinolaryngology, Taichung Armed Forces General Hospital, Taichung, Taiwan
| | - Chih-Hung Wang
- National Defense Medical Center, Graduate Institute of Medical Sciences, Taipei, Taiwan.,Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Department of Otorhinolaryngology, Taichung Armed Forces General Hospital, Taichung, Taiwan.,National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| |
Collapse
|
26
|
Aksit A, Lalwani AK, Kysar JW, West AC. Simulation assisted design for microneedle manufacturing: Computational modeling of two-photon templated electrodeposition. JOURNAL OF MANUFACTURING PROCESSES 2021; 66:211-219. [PMID: 34012359 PMCID: PMC8128138 DOI: 10.1016/j.jmapro.2021.04.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Fully metallic micrometer-scale 3D architectures can be fabricated via a hybrid additive methodology combining multi-photon lithography with electrochemical deposition of metals. The methodology - referred to as two-photon templated electrodeposition (2PTE) - has significant design freedom that enables the creation of complicated, traditionally difficult-to-make, high aspect ratio metallic structures such as microneedles. These complicated geometries, combined with their fully metallic nature, can enable precision surgical applications such as inner ear drug delivery or fluid sampling. However, the process involves electrochemical deposition of metals into complicated 3D lithography patterns thicker than 500 μm. This causes potential and chemical gradients to develop within the 3D template, creating limitations to what can be designed. These limitations can be explored, understood, and overcome via numerical modeling. Herein we introduce a numerical model as a design tool that can predict growth for manufacturing complicated 3D metallic geometries. The model is successful in predicting the geometric result of 2PTE, and enables extraction of insights about geometric constraints through exploration of its mechanics.
Collapse
Affiliation(s)
- Aykut Aksit
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA
| | - Anil K. Lalwani
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA
- Department of Otolaryngology - Head & Neck Surgery, Columbia University College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Jeffrey W. Kysar
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA
- Department of Otolaryngology - Head & Neck Surgery, Columbia University College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Alan C. West
- Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA
- Department of Earth and Environmental Engineering, Columbia University, New York, NY, 10027, USA
| |
Collapse
|
27
|
Aksit A, Rastogi S, Nadal ML, Parker AM, Lalwani AK, West AC, Kysar JW. Drug delivery device for the inner ear: ultra-sharp fully metallic microneedles. Drug Deliv Transl Res 2021; 11:214-226. [PMID: 32488817 PMCID: PMC8649787 DOI: 10.1007/s13346-020-00782-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Drug delivery into the inner ear is a significant challenge due to its inaccessibility as a fluid-filled cavity within the temporal bone of the skull. The round window membrane (RWM) is the only delivery portal from the middle ear to the inner ear that does not require perforation of bone. Recent advances in microneedle fabrication enable the RWM to be perforated safely with polymeric microneedles as a means to enhance the rate of drug delivery from the middle ear to the inner ear. However, the polymeric material is not biocompatible and also lacks the strength of other materials. Herein we describe the design and development of gold-coated metallic microneedles suitable for RWM perforation. When developing microneedle technology for drug delivery, we considered three important general attributes: (1) high strength and ductility material, (2) high accuracy and precision of fabrication, and (3) broad design freedom. We developed a hybrid additive manufacturing method using two-photon lithography and electrochemical deposition to fabricate ultra-sharp gold-coated copper microneedles with these attributes. We refer to the microneedle fabrication methodology as two-photon templated electrodeposition (2PTE). We demonstrate the use of these microneedles by inducing a perforation with a minimal degree of trauma in a guinea pig RWM while the microneedle itself remains undamaged. Thus, this microneedle has the potential literally of opening the RWM for enhanced drug delivery into the inner ear. Finally, the 2PTE methodology can be applied to many different classes of microneedles for other drug delivery purposes as well the fabrication of small scale structures and devices for non-medical applications. Graphical Abstract Fully metallic ultra-sharp microneedle mounted at end of a 24-gauge stainless steel blunt syringe needle tip: (left) Size of microneedle shown relative to date stamp on U.S. one-cent coin; (right) Perforation through guinea pig round window membrane introduced with microneedle.
Collapse
Affiliation(s)
- Aykut Aksit
- Department of Mechanical Engineering, Columbia University, 500 West 120th Street, New York, NY, 10027, USA
| | - Shruti Rastogi
- Department of Mechanical Engineering, Columbia University, 500 West 120th Street, New York, NY, 10027, USA
| | - Maria L Nadal
- Department of Mechanical Engineering, Columbia University, 500 West 120th Street, New York, NY, 10027, USA
| | - Amber M Parker
- Department of Otolaryngology - Head & Neck Surgery, Columbia University College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Anil K Lalwani
- Department of Mechanical Engineering, Columbia University, 500 West 120th Street, New York, NY, 10027, USA
- Department of Otolaryngology - Head & Neck Surgery, Columbia University College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Alan C West
- Department of Chemical Engineering, Columbia University, 500 W. 120th St., New York, NY, 10027, USA
| | - Jeffrey W Kysar
- Department of Mechanical Engineering, Columbia University, 500 West 120th Street, New York, NY, 10027, USA.
- Department of Otolaryngology - Head & Neck Surgery, Columbia University College of Physicians and Surgeons, New York, NY, 10032, USA.
| |
Collapse
|
28
|
Szeto B, Aksit A, Valentini C, Yu M, Werth EG, Goeta S, Tang C, Brown LM, Olson ES, Kysar JW, Lalwani AK. Novel 3D-printed hollow microneedles facilitate safe, reliable, and informative sampling of perilymph from guinea pigs. Hear Res 2021; 400:108141. [PMID: 33307286 PMCID: PMC8656365 DOI: 10.1016/j.heares.2020.108141] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/22/2020] [Accepted: 11/30/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Inner ear diagnostics is limited by the inability to atraumatically obtain samples of inner ear fluid. The round window membrane (RWM) is an attractive portal for accessing perilymph samples as it has been shown to heal within one week after the introduction of microperforations. A 1 µL volume of perilymph is adequate for proteome analysis, yet the total volume of perilymph within the scala tympani of the guinea pig is limited to less than 5 µL. This study investigates the safety and reliability of a novel hollow microneedle device to aspirate perilymph samples adequate for proteomic analysis. METHODS The guinea pig RWM was accessed via a postauricular surgical approach. 3D-printed hollow microneedles with an outer diameter of 100 µm and an inner diameter of 35 µm were used to perforate the RWM and aspirate 1 µL of perilymph. Two perilymph samples were analyzed by liquid chromatography-mass spectrometry-based quantitative proteomics as part of a preliminary study. Hearing was assessed before and after aspiration using compound action potential (CAP) and distortion product otoacoustic emissions (DPOAE). RWMs were harvested 72 h after aspiration and evaluated for healing using confocal microscopy. RESULTS There was no permanent damage to hearing at 72 h after perforation as assessed by CAP (n = 7) and DPOAE (n = 8), and all perforations healed completely within 72 h (n = 8). In the two samples of perilymph analyzed, 620 proteins were detected, including the inner ear protein cochlin, widely recognized as a perilymph marker. CONCLUSION Hollow microneedles can facilitate aspiration of perilymph across the RWM at a quality and volume adequate for proteomic analysis without causing permanent anatomic or physiologic dysfunction. Microneedles can mediate safe and effective intracochlear sampling and show great promise for inner ear diagnostics.
Collapse
Affiliation(s)
- Betsy Szeto
- Department of Otolaryngology - Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, 180 Fort Washington Avenue, Harkness Pavilion, 8th Floor, New York, NY 10032, United States
| | - Aykut Aksit
- Department of Mechanical Engineering, Columbia University, New York, NY, United States
| | - Chris Valentini
- Department of Otolaryngology - Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, 180 Fort Washington Avenue, Harkness Pavilion, 8th Floor, New York, NY 10032, United States
| | - Michelle Yu
- Department of Otolaryngology - Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, 180 Fort Washington Avenue, Harkness Pavilion, 8th Floor, New York, NY 10032, United States
| | - Emily G Werth
- Quantitative Proteomics and Metabolomics Center, Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Shahar Goeta
- Quantitative Proteomics and Metabolomics Center, Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Chuanning Tang
- Quantitative Proteomics and Metabolomics Center, Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Lewis M Brown
- Quantitative Proteomics and Metabolomics Center, Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Elizabeth S Olson
- Department of Biomedical Engineering, Columbia University, New York, NY, United States; Department of Otolaryngology - Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, 180 Fort Washington Avenue, Harkness Pavilion, 8th Floor, New York, NY 10032, United States
| | - Jeffrey W Kysar
- Department of Mechanical Engineering, Columbia University, New York, NY, United States; Department of Otolaryngology - Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, 180 Fort Washington Avenue, Harkness Pavilion, 8th Floor, New York, NY 10032, United States
| | - Anil K Lalwani
- Department of Otolaryngology - Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, 180 Fort Washington Avenue, Harkness Pavilion, 8th Floor, New York, NY 10032, United States; Department of Mechanical Engineering, Columbia University, New York, NY, United States.
| |
Collapse
|
29
|
Dabbagh SR, Sarabi MR, Rahbarghazi R, Sokullu E, Yetisen AK, Tasoglu S. 3D-printed microneedles in biomedical applications. iScience 2021; 24:102012. [PMID: 33506186 PMCID: PMC7814162 DOI: 10.1016/j.isci.2020.102012] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Conventional needle technologies can be advanced with emerging nano- and micro-fabrication methods to fabricate microneedles. Nano-/micro-fabricated microneedles seek to mitigate penetration pain and tissue damage, as well as providing accurately controlled robust channels for administrating bioagents and collecting body fluids. Here, design and 3D printing strategies of microneedles are discussed with emerging applications in biomedical devices and healthcare technologies. 3D printing offers customization, cost-efficiency, a rapid turnaround time between design iterations, and enhanced accessibility. Increasing the printing resolution, the accuracy of the features, and the accessibility of low-cost raw printing materials have empowered 3D printing to be utilized for the fabrication of microneedle platforms. The development of 3D-printed microneedles has enabled the evolution of pain-free controlled release drug delivery systems, devices for extracting fluids from the cutaneous tissue, biosignal acquisition, and point-of-care diagnostic devices in personalized medicine.
Collapse
Affiliation(s)
- Sajjad Rahmani Dabbagh
- Department of Mechanical Engineering, Koç University, Sariyer, Istanbul 34450, Turkey
- Koç University Arçelik Research Center for Creative Industries (KUAR), Koç University, Sariyer, Istanbul 34450, Turkey
| | | | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 5166653431, Iran
| | - Emel Sokullu
- Koc University School of Medicine, Koç University, Sariyer, Istanbul 34450, Turkey
| | - Ali K. Yetisen
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Savas Tasoglu
- Department of Mechanical Engineering, Koç University, Sariyer, Istanbul 34450, Turkey
- Koç University Arçelik Research Center for Creative Industries (KUAR), Koç University, Sariyer, Istanbul 34450, Turkey
- Koc University Research Center for Translational Medicine, Koç University, Sariyer, Istanbul 34450, Turkey
- Boğaziçi Institute of Biomedical Engineering, Boğaziçi University, Çengelköy, Istanbul 34684, Turkey
| |
Collapse
|
30
|
Faraji Rad Z, Prewett PD, Davies GJ. High-resolution two-photon polymerization: the most versatile technique for the fabrication of microneedle arrays. MICROSYSTEMS & NANOENGINEERING 2021; 7:71. [PMID: 34567783 PMCID: PMC8433298 DOI: 10.1038/s41378-021-00298-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/01/2021] [Accepted: 07/16/2021] [Indexed: 05/05/2023]
Abstract
Microneedle patches have received much interest in the last two decades as drug/vaccine delivery or fluid sampling systems for diagnostic and monitoring purposes. Microneedles are manufactured using a variety of additive and subtractive micromanufacturing techniques. In the last decade, much attention has been paid to using additive manufacturing techniques in both research and industry, such as 3D printing, fused deposition modeling, inkjet printing, and two-photon polymerization (2PP), with 2PP being the most flexible method for the fabrication of microneedle arrays. 2PP is one of the most versatile and precise additive manufacturing processes, which enables the fabrication of arbitrary three-dimensional (3D) prototypes directly from computer-aided-design (CAD) models with a resolution down to 100 nm. Due to its unprecedented flexibility and high spatial resolution, the use of this technology has been widespread for the fabrication of bio-microdevices and bio-nanodevices such as microneedles and microfluidic devices. This is a pioneering transformative technology that facilitates the fabrication of complex miniaturized structures that cannot be fabricated with established multistep manufacturing methods such as injection molding, photolithography, and etching. Thus, microstructures are designed according to structural and fluid dynamics considerations rather than the manufacturing constraints imposed by methods such as machining or etching processes. This article presents the fundamentals of 2PP and the recent development of microneedle array fabrication through 2PP as a precise and unique method for the manufacture of microstructures, which may overcome the shortcomings of conventional manufacturing processes.
Collapse
Affiliation(s)
- Zahra Faraji Rad
- School of Mechanical and Electrical Engineering, University of Southern Queensland, Springfield Central, QLD 4300 Australia
| | - Philip D. Prewett
- Department of Mechanical Engineering, University of Birmingham, Birmingham, B15 2TT UK
- Oxacus Ltd, Dorchester-on-Thames, OX10 7HN UK
| | - Graham J. Davies
- Faculty of Engineering, UNSW Australia, Kensington, NSW 2052 Australia
- College of Engineering and Physical Sciences, School of Engineering, University of Birmingham, Birmingham, B15 2TT UK
| |
Collapse
|
31
|
Valentini C, Szeto B, Kysar JW, Lalwani AK. Inner Ear Gene Delivery: Vectors and Routes. HEARING BALANCE AND COMMUNICATION 2020; 18:278-285. [PMID: 33604229 DOI: 10.1080/21695717.2020.1807261] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Objectives Current treatments for hearing loss offer some functional improvements in hearing, but do not restore normal hearing. The aim of this review is to highlight recent advances in viral and non-viral vectors for gene therapy and to discuss approaches for overcoming barriers inherent to inner ear delivery of gene products. Data Sources The databases used were Medline, EMBASE, Web of Science, and Google Scholar. Search terms were [("cochlea*" or "inner ear" or "transtympanic" or "intratympanic" or "intracochlear" or "hair cells" or "spiral ganglia" or "Organ of Corti") and ("gene therapy" or "gene delivery")]. The references section of resulting articles was also used to identify relevant studies. Results Both viral and non-viral vectors play important roles in advancing gene delivery to the inner ear. The round window membrane is one significant barrier to gene delivery that intratympanic delivery methods attempt to overcome through diffusion and intracochlear delivery methods bypass completely. Conclusions Gene therapy for hearing loss is a promising treatment for restoring hearing function by addressing innate defects. Recent technological advances in inner ear drug delivery techniques pose exciting opportunities for progress in gene therapy.
Collapse
Affiliation(s)
- Chris Valentini
- Department of Otolaryngology -- Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Betsy Szeto
- Department of Otolaryngology -- Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Jeffrey W Kysar
- Department of Otolaryngology -- Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, NY.,Department of Mechanical Engineering, School of Engineering, Columbia University, New York, New York
| | - Anil K Lalwani
- Department of Otolaryngology -- Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, NY.,Department of Mechanical Engineering, School of Engineering, Columbia University, New York, New York
| |
Collapse
|
32
|
Szeto B, Chiang H, Valentini C, Yu M, Kysar JW, Lalwani AK. Inner ear delivery: Challenges and opportunities. Laryngoscope Investig Otolaryngol 2020; 5:122-131. [PMID: 32128438 PMCID: PMC7042639 DOI: 10.1002/lio2.336] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/21/2019] [Accepted: 11/21/2019] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES The treatment of inner ear disorders remains challenging due to anatomic barriers intrinsic to the bony labyrinth. The purpose of this review is to highlight recent advances and strategies for overcoming these barriers and to discuss promising future avenues for investigation. DATA SOURCES The databases used were PubMed, EMBASE, and Web of Science. RESULTS Although some studies aimed to improve systemic delivery using nanoparticle systems, the majority enhanced local delivery using hydrogels, nanoparticles, and microneedles. Developments in direct intracochlear delivery include intracochlear injection and intracochlear implants. CONCLUSIONS In the absence of a systemic drug that targets only the inner ear, the best alternative is local delivery that harnesses a combination of new strategies to overcome anatomic barriers. The combination of microneedle technology with hydrogel and nanoparticle delivery is a promising area for future investigation. LEVEL OF EVIDENCE NA.
Collapse
Affiliation(s)
- Betsy Szeto
- Department of Otolaryngology–Head and Neck SurgeryColumbia University Vagelos College of Physicians and SurgeonsNew YorkNew York
| | - Harry Chiang
- Department of Otolaryngology–Head and Neck SurgeryColumbia University Vagelos College of Physicians and SurgeonsNew YorkNew York
| | - Chris Valentini
- Department of Otolaryngology–Head and Neck SurgeryColumbia University Vagelos College of Physicians and SurgeonsNew YorkNew York
| | - Michelle Yu
- Department of Otolaryngology–Head and Neck SurgeryColumbia University Vagelos College of Physicians and SurgeonsNew YorkNew York
| | - Jeffrey W. Kysar
- Department of Otolaryngology–Head and Neck SurgeryColumbia University Vagelos College of Physicians and SurgeonsNew YorkNew York
- Department of Mechanical Engineering, School of EngineeringColumbia UniversityNew YorkNew York
| | - Anil K. Lalwani
- Department of Otolaryngology–Head and Neck SurgeryColumbia University Vagelos College of Physicians and SurgeonsNew YorkNew York
- Department of Mechanical Engineering, School of EngineeringColumbia UniversityNew YorkNew York
| |
Collapse
|