1
|
Jhun CS, Clark JB, Gentile JI, Cysyk JP, Bohnenberger K, Scheib CM, Izer J, Lanza M, Tillinger M, Flory H, Yeager E, Weiss WJ, Rosenberg G. Preliminary Long-Term Biocompatibility Assessment of Penn State University Child Pump. ASAIO J 2024:00002480-990000000-00574. [PMID: 39729588 DOI: 10.1097/mat.0000000000002327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2024] Open
Affiliation(s)
- Choon-Sik Jhun
- From the Division of Applied Biomedical Engineering, Department of Surgery, College of Medicine, Penn State University, Hershey, Pennsylvania
| | - Joseph B Clark
- Division of Cardiovascular and Thoracic Surgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Javier I Gentile
- Children's Hospital of Philadelphia, Cardiac Center, Philadelphia, Pennsylvania
| | - Joshua P Cysyk
- From the Division of Applied Biomedical Engineering, Department of Surgery, College of Medicine, Penn State University, Hershey, Pennsylvania
| | - Karl Bohnenberger
- From the Division of Applied Biomedical Engineering, Department of Surgery, College of Medicine, Penn State University, Hershey, Pennsylvania
| | - Christopher M Scheib
- From the Division of Applied Biomedical Engineering, Department of Surgery, College of Medicine, Penn State University, Hershey, Pennsylvania
| | - Jenelle Izer
- Department of Comparative Medicine, College of Medicine, Penn State University, Hershey, Pennsylvania
| | - Matthew Lanza
- Department of Comparative Medicine, College of Medicine, Penn State University, Hershey, Pennsylvania
| | - Mindy Tillinger
- From the Division of Applied Biomedical Engineering, Department of Surgery, College of Medicine, Penn State University, Hershey, Pennsylvania
| | - Heidi Flory
- From the Division of Applied Biomedical Engineering, Department of Surgery, College of Medicine, Penn State University, Hershey, Pennsylvania
| | - Eric Yeager
- From the Division of Applied Biomedical Engineering, Department of Surgery, College of Medicine, Penn State University, Hershey, Pennsylvania
| | - William J Weiss
- From the Division of Applied Biomedical Engineering, Department of Surgery, College of Medicine, Penn State University, Hershey, Pennsylvania
- Department of Biomedical Engineering, College of Engineering, Penn State University, University Park, Pennsylvania
| | - Gerson Rosenberg
- From the Division of Applied Biomedical Engineering, Department of Surgery, College of Medicine, Penn State University, Hershey, Pennsylvania
- Department of Biomedical Engineering, College of Engineering, Penn State University, University Park, Pennsylvania
| |
Collapse
|
2
|
Scheib C, Newswanger R, Cysyk J, Bohnenberger K, Lukic B, Xu L, Yeager E, Bletcher K, Leibich P, Jackson Q, Flory H, Tillinger M, Weiss W, Rosenberg G, Jhun CS. Development of the PSU Child Pump. ASAIO J 2024; 70:892-897. [PMID: 38537074 DOI: 10.1097/mat.0000000000002202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2024] Open
Abstract
The Pennsylvania State University (PSU) Child Pump, a centrifugal continuous-flow ventricular assist device (cf-VAD), is being developed as a suitable long-term implantable device for pediatric heart failure patients between 10 and 35 kg, body surface area (BSA) of 0.5-1.2 m 2 , 1-11 years of age, and requiring a mean cardiac output of 1.0-3.5 L/min. In-vitro hydraulic and hemodynamic performances were evaluated on a custom mock circulatory loop with ovine blood. Normalized index of hemolysis (NIH) was evaluated under four conditions: 1) 8,300 rpm, 3.5 L/min, Δ P = 60 mm Hg, 2) 8,150 rpm, 5.1 L/min, Δ P = 20 mm Hg, 3) 8,400 rpm, 3.2 L/min, Δ P = 70 mm Hg, and 4) 9,850 rpm, 5.0 L/min, Δ P = 80 mm Hg, resulting in normalized index of hemolysis = 0.027 ± 0.013, 0.015 ± 0.006, 0.016 ± 0.008, and 0.026 ± 0.011 mg/dl, respectively. A mock fit study was conducted using a three-dimensional printed model of a 19 kg patient's thoracic cavity to compare the size of the PSU Child Pump to the HeartMate3 and the HVAD. Results indicate the PSU Child Pump will be a safer, appropriately sized device capable of providing the given patient cohort proper support while minimizing the risks of blood trauma as they wait for a transplant.
Collapse
Affiliation(s)
- Christopher Scheib
- From the Division of Applied Biomedical Engineering, Department of Surgery, College of Medicine, Penn State University, Hershey, Pennsylvania
| | - Raymond Newswanger
- From the Division of Applied Biomedical Engineering, Department of Surgery, College of Medicine, Penn State University, Hershey, Pennsylvania
| | - Joshua Cysyk
- From the Division of Applied Biomedical Engineering, Department of Surgery, College of Medicine, Penn State University, Hershey, Pennsylvania
| | - Karl Bohnenberger
- From the Division of Applied Biomedical Engineering, Department of Surgery, College of Medicine, Penn State University, Hershey, Pennsylvania
| | - Branka Lukic
- From the Division of Applied Biomedical Engineering, Department of Surgery, College of Medicine, Penn State University, Hershey, Pennsylvania
| | - Lichong Xu
- From the Division of Applied Biomedical Engineering, Department of Surgery, College of Medicine, Penn State University, Hershey, Pennsylvania
| | - Eric Yeager
- From the Division of Applied Biomedical Engineering, Department of Surgery, College of Medicine, Penn State University, Hershey, Pennsylvania
| | - Kirby Bletcher
- From the Division of Applied Biomedical Engineering, Department of Surgery, College of Medicine, Penn State University, Hershey, Pennsylvania
| | - Patrick Leibich
- From the Division of Applied Biomedical Engineering, Department of Surgery, College of Medicine, Penn State University, Hershey, Pennsylvania
| | - Quandashia Jackson
- From the Division of Applied Biomedical Engineering, Department of Surgery, College of Medicine, Penn State University, Hershey, Pennsylvania
| | - Heidi Flory
- From the Division of Applied Biomedical Engineering, Department of Surgery, College of Medicine, Penn State University, Hershey, Pennsylvania
| | - Mindy Tillinger
- From the Division of Applied Biomedical Engineering, Department of Surgery, College of Medicine, Penn State University, Hershey, Pennsylvania
| | - William Weiss
- From the Division of Applied Biomedical Engineering, Department of Surgery, College of Medicine, Penn State University, Hershey, Pennsylvania
- Department of Biomedical Engineering, College of Engineering, Penn State University, University Park, Pennsylvania
| | - Gerson Rosenberg
- From the Division of Applied Biomedical Engineering, Department of Surgery, College of Medicine, Penn State University, Hershey, Pennsylvania
- Department of Biomedical Engineering, College of Engineering, Penn State University, University Park, Pennsylvania
| | - Choon-Sik Jhun
- From the Division of Applied Biomedical Engineering, Department of Surgery, College of Medicine, Penn State University, Hershey, Pennsylvania
| |
Collapse
|
3
|
Kubicki C, Raich E, Selinsky P, Ponnaluri S, Weiss WJ, Manning KB. Fluid Dynamic Study of the Penn State Pediatric Total Artificial Heart. J Biomech Eng 2024; 146:101007. [PMID: 38652582 PMCID: PMC11110827 DOI: 10.1115/1.4065377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024]
Abstract
Penn State University is developing a pediatric total artificial heart (TAH) as a bridge-to-transplant device that supports infants and small children with single ventricle anomalies or biventricular heart failure to address high waitlist mortality rates for pediatric patients with severe congenital heart disease (CHD). Two issues with mechanical circulatory support devices are thrombus formation and thromboembolic events. This in vitro study characterizes flow within Penn State's pediatric total artificial heart under physiological operating conditions. Particle image velocimetry (PIV) is used to quantify flow within the pump and to calculate wall shear rates (WSRs) along the internal pump surface to identify potential thrombogenic regions. Results show that the diastolic inflow jets produce sufficient wall shear rates to reduce thrombus deposition potential along the inlet side of the left and right pumps. The inlet jet transitions to rotational flow, which promotes wall washing along the apex of the pumps, prevents flow stasis, and aligns flow with the outlet valve prior to systolic ejection. However, inconsistent high wall shear rates near the pump apex cause increased thrombogenic potential. Strong systolic outflow jets produce high wall shear rates near the outlet valve to reduce thrombus deposition risk. The right pump, which has a modified outlet port angle to improve anatomical fit, produces lower wall shear rates and higher thrombus susceptibility potential (TSP) compared to the left pump. In summary, this study provides a fluid dynamic understanding of a new pediatric total artificial heart and indicates thrombus susceptibility is primarily confined to the apex, consistent with similar pulsatile heart pumps.
Collapse
Affiliation(s)
- Cody Kubicki
- Department of Biomedical Engineering, The Pennsylvania State University, 122 CBEB Shortlidge Road, University Park, PA 16802
| | - Emma Raich
- Department of Biomedical Engineering, The Pennsylvania State University, 122 CBEB Shortlidge Road, University Park, PA 16802
| | - Peter Selinsky
- Department of Biomedical Engineering, The Pennsylvania State University, 122 CBEB Shortlidge Road, University Park, PA 16802
| | - Sailahari Ponnaluri
- Department of Biomedical Engineering, The Pennsylvania State University, 122 CBEB Shortlidge Road, University Park, PA 16802
| | - William J. Weiss
- Department of Surgery, Penn State College of Medicine, 700 HMC Crescent Road, Hershey, PA 17033
| | - Keefe B. Manning
- Department of Biomedical Engineering, The Pennsylvania State University, 122 CBEB Shortlidge Road, University Park, PA 16802
| |
Collapse
|
4
|
Orgil BO, Chintanaphol M, Alberson NR, Letourneau L, Martinez HR, Towbin JA, Purevjav E. Animal Models for Mechanical Circulatory Support: A Research Review. Rev Cardiovasc Med 2024; 25:351. [PMID: 39484122 PMCID: PMC11522838 DOI: 10.31083/j.rcm2510351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/25/2024] [Accepted: 06/19/2024] [Indexed: 11/03/2024] Open
Abstract
Heart failure is a clinical syndrome that has become a leading public health problem worldwide. Globally, nearly 64 million individuals are currently affected by heart failure, causing considerable medical, financial, and social challenges. One therapeutic option for patients with advanced heart failure is mechanical circulatory support (MCS) which is widely used for short-term or long-term management. MCS with various ventricular assist devices (VADs) has gained traction in end-stage heart failure treatment as a bridge-to-recovery, -decision, -transplant or -destination therapy. Due to limitations in studying VADs in humans, animal studies have substantially contributed to the development and advancement of MCS devices. Large animals have provided an avenue for developing and testing new VADs and improving surgical strategies for VAD implantation and for evaluating the effects and complications of MCS on hemodynamics and organ function. VAD modeling by utilizing rodents and small animals has been successfully implemented for investigating molecular mechanisms of cardiac unloading after the implantation of MCS. This review will cover the animal research that has resulted in significant advances in the development of MCS devices and the therapeutic care of advanced heart failure.
Collapse
Affiliation(s)
- Buyan-Ochir Orgil
- The Heart Institute, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103, USA
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103, USA
| | - Michelle Chintanaphol
- College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Neely R. Alberson
- The Heart Institute, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103, USA
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103, USA
| | | | - Hugo R. Martinez
- The Heart Institute, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103, USA
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103, USA
| | - Jeffrey A. Towbin
- The Heart Institute, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103, USA
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103, USA
- Pediatric Cardiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Enkhsaikhan Purevjav
- The Heart Institute, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103, USA
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103, USA
| |
Collapse
|
5
|
Huang X, Shen Y, Liu Y, Zhang H. Current status and future directions in pediatric ventricular assist device. Heart Fail Rev 2024; 29:769-784. [PMID: 38530587 DOI: 10.1007/s10741-024-10396-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/07/2024] [Indexed: 03/28/2024]
Abstract
A ventricular assist device (VAD) is a form of mechanical circulatory support that uses a mechanical pump to partially or fully take over the function of a failed heart. In recent decades, the VAD has become a crucial option in the treatment of end-stage heart failure in adult patients. However, due to the lack of suitable devices and more complicated patient profiles, this therapeutic approach is still not widely used for pediatric populations. This article reviews the clinically available devices, adverse events, and future directions of design and implementation in pediatric VADs.
Collapse
Affiliation(s)
- Xu Huang
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, No. 1678, Dongfang Rd, Pudong District, Shanghai, 200127, China
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, No. 1678, Dongfang Rd, Pudong District, Shanghai, 200127, China
- Shanghai Clinical Research Center for Rare Pediatric Diseases, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, No. 1678, Dongfang Rd, Pudong District, Shanghai, 200127, China
| | - Yi Shen
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, No. 1678, Dongfang Rd, Pudong District, Shanghai, 200127, China
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, No. 1678, Dongfang Rd, Pudong District, Shanghai, 200127, China
- Shanghai Clinical Research Center for Rare Pediatric Diseases, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, No. 1678, Dongfang Rd, Pudong District, Shanghai, 200127, China
| | - Yiwei Liu
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, No. 1678, Dongfang Rd, Pudong District, Shanghai, 200127, China.
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, No. 1678, Dongfang Rd, Pudong District, Shanghai, 200127, China.
- Shanghai Clinical Research Center for Rare Pediatric Diseases, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, No. 1678, Dongfang Rd, Pudong District, Shanghai, 200127, China.
| | - Hao Zhang
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, No. 1678, Dongfang Rd, Pudong District, Shanghai, 200127, China.
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, No. 1678, Dongfang Rd, Pudong District, Shanghai, 200127, China.
- Shanghai Clinical Research Center for Rare Pediatric Diseases, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, No. 1678, Dongfang Rd, Pudong District, Shanghai, 200127, China.
| |
Collapse
|
6
|
Ponnaluri SV, Houtz BL, Raich EC, Good BC, Deutsch S, Weiss WJ, Manning KB. Effect of Hematocrit and Elevated Beat Rate on the 12cc Penn State Pediatric Ventricular Assist Device. ASAIO J 2023; 69:1065-1073. [PMID: 37549654 PMCID: PMC10840605 DOI: 10.1097/mat.0000000000002028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023] Open
Abstract
Congenital heart disease affects approximately 40,000 infants annually in the United States with 25% requiring invasive treatment. Due to limited number of donor hearts and treatment options available for children, pediatric ventricular assist devices (PVADs) are used as a bridge to transplant. The 12cc pneumatic Penn State PVAD is optimized to prevent platelet adhesion and thrombus formation at patient nominal conditions; however, children demonstrate variable blood hematocrit and elevated heart rates. Therefore, with pediatric patients exhibiting greater variability, particle image velocimetry is used to evaluate the PVAD with three non-Newtonian hematocrit blood analogs (20%, 40%, and 60%) and at two beat rates (75 and 120 bpm) to understand the device's performance. The flow fields demonstrate a strong inlet jet that transitions to a solid body rotation during diastole. During systole, the rotation dissipates and reorganizes into an outlet jet. This flow field is consistent across all hematocrits and beat rates but at a higher velocity magnitude during 120 bpm. There are also minor differences in flow field timing and surface washing due to hematocrit. Therefore, despite patient differences in hematocrit or required pumping output, thorough surface washing can be achieved in the PVAD by altering operating conditions, thus reducing platelet adhesion potential.
Collapse
Affiliation(s)
- Sailahari V Ponnaluri
- From the Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania
| | - Brady L Houtz
- From the Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania
| | - Emma C Raich
- From the Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania
| | - Bryan C Good
- From the Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania
| | - Steven Deutsch
- From the Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania
| | - William J Weiss
- Department of Surgery, Penn State Hershey Medical Center, Hershey, Pennsylvania
| | - Keefe B Manning
- From the Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania
- Department of Surgery, Penn State Hershey Medical Center, Hershey, Pennsylvania
| |
Collapse
|
7
|
Kourouklis AP, Kaemmel J, Wu X, Baños M, Chanfon A, de Brot S, Ferrari A, Cesarovic N, Falk V, Mazza E. Transdermal wires for improved integration in vivo. BIOMATERIALS ADVANCES 2023; 153:213568. [PMID: 37591177 DOI: 10.1016/j.bioadv.2023.213568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/13/2023] [Accepted: 07/23/2023] [Indexed: 08/19/2023]
Abstract
Alternative engineering approaches have led the design of implants with controlled physical features to minimize adverse effects in biological tissues. Similar efforts have focused on optimizing the design features of percutaneous VAD drivelines with the aim to prevent infection, omitting however a thorough look on the implant-skin interactions that govern local tissue reactions. Here, we utilized an integrated approach for the biophysical modification of transdermal implants and their evaluation by chronic sheep implantation in comparison to the standard of care VAD drivelines. We developed a novel method for the transfer of breath topographical features on thin wires with modular size. We examined the impact of implant's diameter, surface topography, and chemistry on macroscopic, histological, and physical markers of inflammation, fibrosis, and mechanical adhesion. All implants demonstrated infection-free performance. The fibrotic response was enhanced by the increasing diameter of implants but not influenced by their surface properties. The implants of small diameter promoted mild inflammatory responses with improved mechanical adhesion and restricted epidermal downgrowth, in both silicone and polyurethane coated transdermal wires. On the contrary, the VAD drivelines with larger diameter triggered severe inflammatory reactions with frequent epidermal downgrowth. We validated these effects by quantifying the infiltration of macrophages and the level of vascularization in the fibrotic zone, highlighting the critical role of size reduction for the benign integration of transdermal implants with skin. This insight on how the biophysical properties of implants impact local tissue reactions could enable new solutions on the transdermal transmission of power, signal, and mass in a broad range of medical devices.
Collapse
Affiliation(s)
- Andreas P Kourouklis
- Department of Mechanical and Process Engineering, Institute for Mechanical Systems, ETH Zurich, 8092 Zurich, Switzerland
| | - Julius Kaemmel
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, 13353 Berlin, Germany
| | - Xi Wu
- Department of Mechanical and Process Engineering, Institute for Mechanical Systems, ETH Zurich, 8092 Zurich, Switzerland
| | - Miguel Baños
- Department of Mechanical and Process Engineering, Institute for Mechanical Systems, ETH Zurich, 8092 Zurich, Switzerland
| | - Astrid Chanfon
- COMPATH, Institute of Animal Pathology, University of Bern, 3012 Bern, Switzerland
| | - Simone de Brot
- COMPATH, Institute of Animal Pathology, University of Bern, 3012 Bern, Switzerland
| | - Aldo Ferrari
- EMPA, Swiss Federal Laboratories for Material Science and Technology, 8600 Dübendorf, Switzerland
| | - Nikola Cesarovic
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, 13353 Berlin, Germany; Department of Health Sciences and Technology, ETH Zürich, 8093 Zürich, Switzerland
| | - Volkmar Falk
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, 13353 Berlin, Germany; Department of Health Sciences and Technology, ETH Zürich, 8093 Zürich, Switzerland
| | - Edoardo Mazza
- Department of Mechanical and Process Engineering, Institute for Mechanical Systems, ETH Zurich, 8092 Zurich, Switzerland; EMPA, Swiss Federal Laboratories for Material Science and Technology, 8600 Dübendorf, Switzerland.
| |
Collapse
|
8
|
Palazzolo T, Hirschhorn M, Garven E, Day S, Stevens RM, Rossano J, Tchantchaleishvili V, Throckmorton AL. Technology Landscape of Pediatric Mechanical Circulatory Support Devices- A Systematic Review 2010-2021. Artif Organs 2022; 46:1475-1490. [PMID: 35357020 PMCID: PMC9256769 DOI: 10.1111/aor.14242] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/17/2022] [Accepted: 03/15/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Mechanical circulatory support (MCS) devices, such as ventricular assist devices (VADs) and total artificial hearts (TAHs), have become a vital therapeutic option in the treatment of end-stage heart failure for adult patients. Such therapeutic options continue to be limited for pediatric patients. Clinicians initially adapted or scaled existing adult devices for pediatric patients; however, these adult devices are not designed to support the anatomical structure and varying flow capacities required for this population and are generally operated "off-design", which risks complications such as hemolysis and thrombosis. Devices designed specifically for the pediatric population that seek to address these shortcomings are now emerging and gaining FDA approval. METHODS To analyze the competitive landscape of pediatric MCS devices, we conducted a systematic literature review. Approximately 27 devices were studied in detail: 8 were established or previously approved designs, and 19 were under development (11 VADs, 5 Fontan assist devices, and 3 TAHs). RESULTS Despite significant progress, there is still no pediatric pump technology that satisfies the unique and distinct design constraints and requirements to support pediatric patients, including the wide range of patient sizes, increased cardiovascular demand with growth, and anatomic and physiologic heterogeneity of congenital heart disease. CONCLUSIONS Forward-thinking design solutions are required to overcome these challenges and to ensure the translation of new therapeutic MCS devices for pediatric patients.
Collapse
Affiliation(s)
- Thomas Palazzolo
- BioCirc Research Laboratory, School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Matthew Hirschhorn
- BioCirc Research Laboratory, School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Ellen Garven
- BioCirc Research Laboratory, School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Steven Day
- Department of Biomedical Engineering, Kate Gleason College of Engineering, Rochester Institute of Technology, Rochester, NY, USA
| | - Randy M Stevens
- College of Medicine, St. Christopher's Hospital for Children, Drexel University, Philadelphia, PA, USA
| | - Joseph Rossano
- Division of Pediatric Cardiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Vakhtang Tchantchaleishvili
- Division of Cardiac Surgery, Department of Surgery, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Amy L Throckmorton
- BioCirc Research Laboratory, School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, USA
| |
Collapse
|