1
|
Nagler B, Buchtele N, Hermann A, Robak O, Bojic A, Schellongowski P, Staudinger T. Comparison of Weaning Strategies in Patients Receiving Venovenous Extracorporeal Membrane Oxygenation: An Exploratory Retrospective Study. ASAIO J 2024; 70:987-993. [PMID: 38713620 DOI: 10.1097/mat.0000000000002223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024] Open
Abstract
Venovenous extracorporeal membrane oxygenation (VV ECMO) facilitates the reduction of mechanical ventilation (MV) support in acute respiratory failure. Contrary to increasing evidence regarding its initiation, the optimal timing of VV ECMO weaning in interaction with MV weaning is undetermined. In this retrospective study, 47 patients who received VV ECMO between 2013 and 2021 and survived ≥1 day after ECMO cessation were divided according to their MV status before ECMO removal: 28 patients were classified into an "ECMO weaning during assisted MV/spontaneous breathing" group and 19 into an "ECMO weaning during controlled MV" group. Extracorporeal membrane oxygenation duration was longer in the "assisted MV/spontaneous breathing" group (17 [Interquartile range (IQR) = 11-35] vs. 6 [5-11] days, p < 0.001). These patients had a longer intensive care unit (ICU) stay after ECMO start (48 [29-66] vs. 31 [15-40] days, p = 0.01). No significant differences were found for MV duration after ECMO start (30 [19-45] vs. 19 [12-30] days, p = 0.06) and further ICU survival (86% vs. 89%, p ≥ 0.9). There was a trend toward more patients with mechanical ECMO complications in the "assisted MV/spontaneous breathing" group (57% vs. 32%, p = 0.08). Thus, our results suggest a possible benefit of early ECMO weaning during controlled MV.
Collapse
Affiliation(s)
- Bernhard Nagler
- From the Department of Medicine I-Intensive Care Unit 13i2, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
2
|
Fischbach A, Wiegand SB, Simons JA, Ammon L, Kopp R, Soccoro Matos GI, Baigorri JJ, Crowley JC, Bagchi A. The Ventilatory Ratio as a Predictor of Successful Weaning from a Veno-Venous Extracorporeal Membrane Oxygenator. J Clin Med 2024; 13:3758. [PMID: 38999326 PMCID: PMC11242634 DOI: 10.3390/jcm13133758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/11/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
Background: Veno-venous extracorporeal membrane oxygenation (VV-ECMO) is a critical intervention for patients with severe lung failure, especially acute respiratory distress syndrome (ARDS). The weaning process from ECMO relies largely on expert opinion due to a lack of evidence-based guidelines. The ventilatory ratio (VR), which correlates with dead space and mortality in ARDS, is calculated as [minute ventilation (mL/min) x arterial pCO2 (mmHg)]/[predicted body weight × 100 × 37.5]. Objectives: The aim of this study was to determine whether the VR alone can serve as a reliable predictor of safe or unsafe liberation from VV-ECMO in critically ill patients. Methods: A multicenter retrospective analysis was conducted, involving ARDS patients undergoing VV-ECMO weaning at Massachusetts General Hospital (January 2016 - December 2020) and at the University Hospital Aachen (January 2012-December 2021). Safe liberation was defined as no need for ECMO recannulation within 48 h after decannulation. Clinical parameters were obtained for both centers at the same time point: 30 min after the start of the SGOT (sweep gas off trial). Results: Of the patients studied, 83.3% (70/84) were successfully weaned from VV-ECMO. The VR emerged as a significant predictor of unsafe liberation (OR per unit increase: 0.38; CI: 0.17-0.81; p = 0.01). Patients who could not be safely liberated had longer ICU and hospital stays, with a trend towards higher mortality (38% vs. 13%; p = 0.05). Conclusions: The VR may be a valuable predictor for safe liberation from VV-ECMO in ARDS patients, with higher VR values associated with an elevated risk of unsuccessful weaning and adverse clinical outcomes.
Collapse
Affiliation(s)
- Anna Fischbach
- Department of Anesthesiology, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Steffen B. Wiegand
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Julia Alexandra Simons
- Department of Anesthesiology, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Liselotte Ammon
- Department of Anesthesiology, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Rüdger Kopp
- Department of Operative Intensive Care Medicine, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | | | | | - Jerome C. Crowley
- Department of Anesthesiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Aranya Bagchi
- Department of Anesthesiology, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
3
|
Teijeiro-Paradis R, Cherkos Dawit T, Munshi L, Ferguson ND, Fan E. Liberation From Venovenous Extracorporeal Membrane Oxygenation for Respiratory Failure: A Scoping Review. Chest 2023; 164:1184-1203. [PMID: 37353070 DOI: 10.1016/j.chest.2023.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/03/2023] [Accepted: 06/14/2023] [Indexed: 06/25/2023] Open
Abstract
BACKGROUND Safe and timely liberation from venovenous extracorporeal membrane oxygenation (ECMO) would be expected to reduce the duration of ECMO, the risk of complications, and costs. However, how to liberate patients from venovenous ECMO effectively remains understudied. RESEARCH QUESTION What is the current state of the evidence on liberation from venovenous ECMO? STUDY DESIGN AND METHODS We systematically searched for relevant publications on liberation from venovenous ECMO in Medline and EMBASE. Citations were included if the manuscripts provided any of the following: criteria for readiness for liberation, a liberation protocol, or a definition of successful decannulation or decannulation failure. We included randomized trials, observational trials, narrative reviews, guidelines, editorials, and commentaries. We excluded single case reports and citations where the full text was unavailable. RESULTS We screened 1,467 citations to identify 39 key publications on liberation from venovenous ECMO. We then summarized the data into five main topics: current strategies used for liberation, criteria used to define readiness for liberation, conducting liberation trials, criteria used to proceed with decannulation, and parameters used to predict decannulation outcomes. INTERPRETATION Practices on liberation from venovenous ECMO are heterogeneous and are influenced strongly by clinician preference. Additional research on liberation thresholds is needed to define optimal liberation strategies and to close existing knowledge gaps in essential topics on liberation from venovenous ECMO.
Collapse
Affiliation(s)
- Ricardo Teijeiro-Paradis
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Tsega Cherkos Dawit
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada; Mekelle University College of Health Sciences, Mekelle, Ethiopia
| | - Laveena Munshi
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada; Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada; Division of Respirology & Critical Care, Department of Medicine, Sinai Health System and University Health Network, Toronto, ON, Canada
| | - Niall D Ferguson
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada; Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada; Division of Respirology & Critical Care, Department of Medicine, Sinai Health System and University Health Network, Toronto, ON, Canada; Toronto General Hospital Research Institute, Toronto, ON, Canada
| | - Eddy Fan
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada; Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada; Division of Respirology & Critical Care, Department of Medicine, Sinai Health System and University Health Network, Toronto, ON, Canada; Toronto General Hospital Research Institute, Toronto, ON, Canada.
| |
Collapse
|
4
|
Collins PD, Giosa L, Camarda V, Camporota L. Physiological adaptations during weaning from veno-venous extracorporeal membrane oxygenation. Intensive Care Med Exp 2023; 11:7. [PMID: 36759388 PMCID: PMC9911184 DOI: 10.1186/s40635-023-00493-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/18/2023] [Indexed: 02/11/2023] Open
Abstract
Veno-venous extracorporeal membrane oxygenation (V-V ECMO) has an established evidence base in acute respiratory distress syndrome (ARDS) and has seen exponential growth in its use over the past decades. However, there is a paucity of evidence regarding the approach to weaning, with variation of practice and outcomes between centres. Preconditions for weaning, management of patients' sedation and mechanical ventilation during this phase, criteria defining success or failure, and the optimal duration of a trial prior to decannulation are all debated subjects. Moreover, there is no prospective evidence demonstrating the superiority of weaning the sweep gas flow (SGF), the extracorporeal blood flow (ECBF) or the fraction of oxygen of the SGF (FdO2), thereby a broad inter-centre variability exists in this regard. Accordingly, the aim of this review is to discuss the required physiological basis to interpret different weaning approaches: first, we will outline the physiological changes in blood gases which should be expected from manipulations of ECBF, SGF and FdO2. Subsequently, we will describe the resulting adaptation of patients' control of breathing, with special reference to the effects of weaning on respiratory effort. Finally, we will discuss pertinent elements of the monitoring and mechanical ventilation of passive and spontaneously breathing patients during a weaning trial. Indeed, to avoid lung injury, invasive monitoring is often required in patients making spontaneous effort, as pressures measured at the airway may not reflect the degree of lung strain. In the absence of evidence, our approach to weaning is driven largely by an understanding of physiology.
Collapse
Affiliation(s)
- Patrick Duncan Collins
- Department of Critical Care Medicine, Guy's and St. Thomas' National Health Service Foundation Trust, London, UK.
| | - Lorenzo Giosa
- grid.420545.20000 0004 0489 3985Department of Critical Care Medicine, Guy’s and St. Thomas’ National Health Service Foundation Trust, London, UK ,grid.13097.3c0000 0001 2322 6764Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, King’s College London, London, UK
| | - Valentina Camarda
- grid.420545.20000 0004 0489 3985Department of Critical Care Medicine, Guy’s and St. Thomas’ National Health Service Foundation Trust, London, UK
| | - Luigi Camporota
- grid.420545.20000 0004 0489 3985Department of Critical Care Medicine, Guy’s and St. Thomas’ National Health Service Foundation Trust, London, UK ,grid.13097.3c0000 0001 2322 6764Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, King’s College London, London, UK
| |
Collapse
|