1
|
Jeong JH, Lee B, Hong J, Yang TH, Park YH. Reproduction of human blood pressure waveform using physiology-based cardiovascular simulator. Sci Rep 2023; 13:7856. [PMID: 37188872 DOI: 10.1038/s41598-023-35055-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/11/2023] [Indexed: 05/17/2023] Open
Abstract
This study presents a cardiovascular simulator that mimics the human cardiovascular system's physiological structure and properties to reproduce the human blood pressure waveform. Systolic, diastolic blood pressures, and its waveform are key indicators of cardiovascular health. The blood pressure waveform is closely related to the pulse wave velocity and the overlap of the forward and reflected pressure waves. The presented cardiovascular simulator includes an artificial aorta made of biomimetic silicone. The artificial aorta has the same shape and stiffness as the human standard and is encased with a compliance chamber. The compliance chamber prevents distortion of the blood pressure waveform from strain-softening by applying extravascular pressure. The blood pressure waveform reproduced by the simulator has a pressure range of 80-120 mmHg, a pulse wave velocity of 6.58 m/s, and an augmentation index of 13.3%. These values are in the middle of the human standard range, and the reproduced blood pressure waveform is similar to that of humans. The errors from the human standard values are less than 1 mmHg for blood pressure, 0.05 m/s for pulse wave velocity, and 3% for augmentation index. The changes in blood pressure waveform according to cardiovascular parameters, including heart rate, stroke volume, and peripheral resistance, were evaluated. The same pressure ranges and trends as in humans were observed for systolic and diastolic blood pressures according to cardiovascular parameters.
Collapse
Affiliation(s)
- Jae-Hak Jeong
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Bomi Lee
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Junki Hong
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Tae-Heon Yang
- Department of Electronic Engineering, Korea National University of Transportation, Chungju-si, Republic of Korea
| | - Yong-Hwa Park
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
2
|
Cappon F, Wu T, Papaioannou T, Du X, Hsu PL, Khir AW. Mock circulatory loops used for testing cardiac assist devices: A review of computational and experimental models. Int J Artif Organs 2021; 44:793-806. [PMID: 34581613 DOI: 10.1177/03913988211045405] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Heart failure is a major health risk, and with limited availability of donor organs, there is an increasing need for developing cardiac assist devices (CADs). Mock circulatory loops (MCL) are an important in-vitro test platform for CAD's performance assessment and optimisation. The MCL is a lumped parameter model constructed out of hydraulic and mechanical components aiming to simulate the native cardiovascular system (CVS) as closely as possible. Further development merged MCLs and numerical circulatory models to improve flexibility and accuracy of the system; commonly known as hybrid MCLs. A total of 128 MCLs were identified in a literature research until 25 September 2020. It was found that the complexity of the MCLs rose over the years, recent MCLs are not only capable of mimicking the healthy and pathological conditions, but also implemented cerebral, renal and coronary circulations and autoregulatory responses. Moreover, the development of anatomical models made flow visualisation studies possible. Mechanical MCLs showed excellent controllability and repeatability, however, often the CVS was overly simplified or lacked autoregulatory responses. In numerical MCLs the CVS is represented with a higher order of lumped parameters compared to mechanical test rigs, however, complex physiological aspects are often simplified. In hybrid MCLs complex physiological aspects are implemented in the hydraulic part of the system, whilst the numerical model represents parts of the CVS that are too difficult to represent by mechanical components per se. This review aims to describe the advances, limitations and future directions of the three types of MCLs.
Collapse
Affiliation(s)
- Femke Cappon
- Department of Mechanical and Aerospace Engineering, Brunel University London, Uxbridge, UK
| | - Tingting Wu
- Department of Mechanical and Electrical Engineering, Soochow University, Suzhou, China
| | - Theodore Papaioannou
- Biomedical Engineering Unit, First Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Zografou, Greece
| | - Xinli Du
- Department of Mechanical and Aerospace Engineering, Brunel University London, Uxbridge, UK
| | - Po-Lin Hsu
- Department of Mechanical and Electrical Engineering, Soochow University, Suzhou, China
| | - Ashraf W Khir
- Department of Mechanical and Aerospace Engineering, Brunel University London, Uxbridge, UK
| |
Collapse
|
3
|
Mechanical Forces Impacting Cleavage of Von Willebrand Factor in Laminar and Turbulent Blood Flow. FLUIDS 2021. [DOI: 10.3390/fluids6020067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Von Willebrand factor (VWF) is a large multimeric hemostatic protein. VWF is critical in arresting platelets in regions of high shear stress found in blood circulation. Excessive cleavage of VWF that leads to reduced VWF multimer size in plasma can cause acquired von Willebrand syndrome, which is a bleeding disorder found in some heart valve diseases and in patients receiving mechanical circulatory support. It has been proposed that hemodynamics (blood flow) found in these environments ultimately leads to VWF cleavage. In the context of experiments reported in the literature, scission theory, developed for polymers, is applied here to provide insight into flow that can produce strong extensional forces on VWF that leads to domain unfolding and exposure of a cryptic site for cleavage through a metalloproteinase. Based on theoretical tensile forces, laminar flow only enables VWF cleavage when shear rate is large enough (>2800 s−1) or when VWF is exposed to constant shear stress for nonphysiological exposure times (>20 min). Predicted forces increase in turbulence, increasing the chance for VWF cleavage. These findings can be used when designing blood-contacting medical devices by providing hemodynamic limits to these devices that can otherwise lead to acquired von Willebrand syndrome.
Collapse
|
4
|
Miyamoto T, Horvath DJ, Horvath DW, Kuban BD, Fukamachi K, Karimov JH. Analysis of Cleveland Clinic continuous-flow total artificial heart performance using the Virtual Mock Loop: Comparison with an in vivo study. Artif Organs 2020; 44:375-383. [PMID: 31573677 DOI: 10.1111/aor.13574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/16/2019] [Accepted: 09/24/2019] [Indexed: 11/28/2022]
Abstract
The Virtual Mock Loop (VML) is a mathematical model designed to simulate mechanism of the human cardiovascular system interacting with mechanical circulatory support devices. Here, we aimed to mimic the hemodynamic performance of Cleveland Clinic's self-regulating continuous-flow total artificial heart (CFTAH) via VML and evaluate the accuracy of the VML compared with an in vivo acute animal study. The VML reproduced 124 hemodynamic conditions from three acute in vivo experiments in calves. Systemic/pulmonary vascular resistances, pump rotational speed, pulsatility, and pulse rate were set for the VML from in vivo data. We compared outputs (pump flow, left and right pump pressure rises, and atrial pressure difference) between the two systems. The pump performance curves all fell in the designed range. There was a strong correlation between the VML and the in vivo study in the left pump flow (r2 = 0.84) and pressure rise (r2 = 0.80), and a moderate correlation in right pressure rise (r2 = 0.52) and atrial pressure difference (r2 = 0.59). Although there is room for improvement in simulating right-sided pump performance of self-regulating CFTAH, the VML acceptably simulated the hemodynamics observed in an in vivo study. These results indicate that pump flow and pressure rise can be estimated from vascular resistances and pump settings.
Collapse
Affiliation(s)
- Takuma Miyamoto
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | | | - Barry D Kuban
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Medical Device Solutions (Electronics Core), Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Kiyotaka Fukamachi
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jamshid H Karimov
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
5
|
Kado Y, Smith WA, Miyamoto T, Adams J, Polakowski AR, Dessoffy R, Horvath DJ, Fukamachi K, Karimov JH. Use of a Virtual Mock Loop model to evaluate a new left ventricular assist device for transapical insertion. Int J Artif Organs 2020; 43:677-683. [PMID: 32089074 DOI: 10.1177/0391398820907104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We are developing a novel type of miniaturized left ventricular assist device that is configured for transapical insertion. The aim of this study was to assess the performance and function of a new pump by using a Virtual Mock Loop system for device characterization and mapping. The results, such as pressure-flow performance curves, from pump testing in a physical mock circulatory loop were used to analyze its function as a left ventricular assist device. The Virtual Mock Loop system was programmed to mimic the normal heart condition, systolic heart failure, diastolic heart failure, and both systolic and diastolic heart failure, and to provide hemodynamic pressure values before and after the activation of several left ventricular assist device pump speeds (12,000, 14,000, and 16,000 r/min). With pump support, systemic flow and mean aortic pressure increased, and mean left atrial pressure and pulmonary artery pressure decreased for all heart conditions. Regarding high pump-speed support, the systemic flow, aortic pressure, left atrial pressure, and pulmonary artery pressure returned to the level of the normal heart condition. Based on the test results from the Virtual Mock Loop system, the new left ventricular assist device for transapical insertion may be able to ease the symptoms of patients with various types of heart failure. The Virtual Mock Loop system could be helpful to assess pump performance before in vitro bench testing.
Collapse
Affiliation(s)
- Yuichiro Kado
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Takuma Miyamoto
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Joseph Adams
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Anthony R Polakowski
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Raymond Dessoffy
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Kiyotaka Fukamachi
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jamshid H Karimov
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
6
|
Simulated Performance of the Cleveland Clinic Continuous-Flow Total Artificial Heart Using the Virtual Mock Loop. ASAIO J 2018; 65:565-572. [PMID: 30074965 DOI: 10.1097/mat.0000000000000857] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Our new Virtual Mock Loop (VML) is a mathematical model designed to simulate the human cardiovascular system and gauge performance of mechanical circulatory support devices. We aimed to mimic the hemodynamic performance of Cleveland Clinic's self-regulating continuous-flow total artificial heart (CFTAH) via VML and evaluate VML's accuracy versus bench data from our standard mock circulatory loop. The VML reproduced 23 hemodynamic conditions. Systemic/pulmonary vascular resistances and pump rotational speed were set for VML from bench test data. We compared outputs (pump flow, left/right pump pressure rise, normalized pump performance, and atrial pressure difference) of the two methods. Data from pump flow and left pump pressure rise were similar, but right pump pressure rise slightly differed. Left pump normalized pump performance curves were similar. Right pump VML results were within the same performance range indicated by bench tests. The plots of atrial pressure differences of VML versus bench-test data were similar, but slightly differed in the midrange of systemic/pulmonary gradients. Virtual Mock Loop successfully reproduced results from our mock circulatory loop of CFTAH test conditions. The CFTAH's self-regulation feature of right pump performance was also calculated effectively. We foresee using versions of the VML for training, simulating physiologic cardiac conditions, and patient monitoring.
Collapse
|
7
|
Telyshev DV, Pugovkin AA, Selishchev SV. A Mock Circulatory System for Testing Pediatric Rotary Blood Pumps. BIOMEDICAL ENGINEERING-MEDITSINSKAYA TEKNIKA 2017. [DOI: 10.1007/s10527-017-9689-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Wang Y, Smith PA, Timms DL, Hsu PL, McMahon RA. In Vitro Evaluation of the Dual-Diffuser Design for a Reversible Rotary Intra-Aortic Ventricular Assist Device. Artif Organs 2016; 40:884-93. [DOI: 10.1111/aor.12746] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 02/01/2016] [Accepted: 03/04/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Yaxin Wang
- Department of Engineering; University of Cambridge; Cambridge UK
| | | | | | - Po-Lin Hsu
- Artificial Organ Technology Laboratory; Soochow University; Suzhou China
| | | |
Collapse
|
9
|
Love HC, Timms DL, McMahon RA. In vitro study of an intra-aortic VAD: Effect of reverse-rotating mode on ventricular recovery. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2015:274-277. [PMID: 26736253 DOI: 10.1109/embc.2015.7318353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Cardiac recovery has been observed in end-stage heart failure patients with mechanical circulatory support. An intra-aortic ventricular assist device (IntraVAD) is a novel rotary blood pump designed to operate in the ascending aorta behind the aortic valve, working in series with the compromised left ventricle (LV). Such a device requires optimal motion control in order to enhance the myocardial perfusion and thus promote cardiac recovery. Therefore, a reverse-rotating control (RRc) mode has been proposed to increase the mean arterial pressure (MAP) in diastole where the most coronary flow occurs. The RRc mode consists of two motions - forward rotating speed (FS) and reversely rotating speed (RS). The capability of cardiac recovery of three control modes, including `continuous', `on/off ' and `RRc' modes, was evaluated in vitro. Stroke work (SW), ventricular volume, coronary perfusion pressure (CPP), and arterial pulsatility index (API) were used to evaluate LV unloading, myocardial perfusion and arterial pulsatility. The results show that, all three modes increased the LV stroke work (0.98W vs 1.00W vs 1.01W for continuous, on/off and RRc, respectively; baseline 0.9W) and decreased both end-diastolic volume (EDV) and end-systolic volume (ESV). The "RRc" mode improved CPP significantly (78.4 mm Hg compared to 66.4 mmHg and 70.9 mm Hg for continuous and on/off modes; baseline 71 mm Hg). The arterial pulsatility was higher in `RRc' mode (0.84 compared to 0.43 and 0.59; baseline 0.48). In summary, the IntraVAD operating in the RRc mode can successfully unload the LV, enhance the myocardial perfusion, and restore the arterial pulsatility; therefore, it could be a promising therapeutic option to bridge heart failure patients to recovery.
Collapse
|
10
|
Jhun CS, Sun K, Cysyk JP. Continuous flow left ventricular pump support and its effect on regional left ventricular wall stress: finite element analysis study. Med Biol Eng Comput 2014; 52:1031-40. [PMID: 25284220 DOI: 10.1007/s11517-014-1205-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 09/22/2014] [Indexed: 11/25/2022]
Abstract
Left ventricular assist device (LVAD) support unloads left ventricular (LV) pressure and volume and decreases wall stress. This study investigated the effect of systematic LVAD unloading on the 3-dimensional myocardial wall stress by employing finite element models containing layered fiber structure, active contractility, and passive stiffness. The HeartMate II(®) (Thoratec, Inc., Pleasanton, CA) was used for LV unloading. The model geometries and hemodynamic conditions for baseline (BL) and LVAD support (LVsupport) were acquired from the Penn State mock circulatory cardiac simulator. Myocardial wall stress of BL was compared with that of LVsupport at 8,000, 9,000, 10,000 RPM, providing mean pump flow (Q(mean)) of 2.6, 3.2, and 3.7 l/min, respectively. LVAD support was more effective at unloading during diastole as compared to systole. Approximately 40, 50, and 60% of end-diastolic wall stress reduction were achieved at Q(mean) of 2.6, 3.2, and 3.7 l/min, respectively, as compared to only a 10% reduction of end-systolic wall stress at Q(mean) of 3.7 l/min. In addition, there was a stress concentration during systole at the apex due to the cannulation and reduced boundary motion. This modeling study can be used to further understand optimal unloading, pump control, patient management, and cannula design.
Collapse
Affiliation(s)
- Choon-Sik Jhun
- Division of Artificial Organs, Department of Surgery, College of Medicine, The Pennsylvania State University, 500 University Drive, Hershey, PA, 17033, USA,
| | | | | |
Collapse
|
11
|
Song Z, Gu K, Gao B, Wan F, Chang Y, Zeng Y. Hemodynamic effects of various support modes of continuous flow LVADs on the cardiovascular system: a numerical study. Med Sci Monit 2014; 20:733-41. [PMID: 24793178 PMCID: PMC4020910 DOI: 10.12659/msm.890824] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background The aim of this study was to determine the hemodynamic effects of various support modes of continuous flow left ventricular assist devices (CF-LVADs) on the cardiovascular system using a numerical cardiovascular system model. Material/Methods Three support modes were selected for controlling the CF-LVAD: constant flow mode, constant speed mode, and constant pressure head mode of CF-LVAD. The CF-LVAD is established between the left ventricular apex and the ascending aorta, and was incorporated into the numerical model. Various parameters were evaluated, including the blood assist index (BAI), the left ventricular external work (LVEW), the energy of blood flow (EBF), pulsatility index (PI), and surplus hemodynamic energy (SHE). Results The results show that the constant flow mode, when compared to the constant speed mode and the constant pressure head mode, increases LVEW by 31% and 14%, and EBF by 21% and 15%, respectively, indicating that this mode achieved the best ventricular unloading among the 3 support modes. As BAI is increased, PI and SHE are gradually decreased, whereas PI of the constant pressure head reaches the maximum value. Conclusions The study demonstrates that the continuous flow control mode of the CF-LVAD may achieve the highest ventricular unloading. In contrast, the constant rotational speed mode permits the optimal blood perfusion. Finally, the constant pressure head strategy, permitting optimal pulsatility, should optimize the vascular function.
Collapse
Affiliation(s)
- Zhiming Song
- Department of Cardiac Surgery, Peking University Third Hospital, Beijing, China (mainland)
| | - Kaiyun Gu
- School of Life Science and Bio-Engineering, Beijing University of Technology, Beijing, China (mainland)
| | - Bin Gao
- School of Life Science and Bio-Engineering, Beijing University of Technology, Beijing, China (mainland)
| | - Feng Wan
- Department of Cardiac Surgery, Peking University Third Hospital, Beijing, China (mainland)
| | - Yu Chang
- School of Life Science and Bio-Engineering, Beijing University of Technology, Beijing, China (mainland)
| | - Yi Zeng
- School of Life Science and Bio-Engineering, Beijing University of Technology, Beijing, China (mainland)
| |
Collapse
|
12
|
Gu K, Gao B, Chang Y, Zeng Y. The Hemodynamic Effect of Phase Differences Between the BJUT-II Ventricular Assist Device and Native Heart on the Cardiovascular System. Artif Organs 2014; 38:914-23. [DOI: 10.1111/aor.12298] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kaiyun Gu
- College of Life Science and Bioengineering; Beijing University of Technology; Beijing China
| | - Bin Gao
- College of Life Science and Bioengineering; Beijing University of Technology; Beijing China
| | - Yu Chang
- College of Life Science and Bioengineering; Beijing University of Technology; Beijing China
| | - Yi Zeng
- College of Life Science and Bioengineering; Beijing University of Technology; Beijing China
| |
Collapse
|
13
|
Noor MR, Bowles C, Banner NR. Relationship between pump speed and exercise capacity during HeartMate II left ventricular assist device support: influence of residual left ventricular function. Eur J Heart Fail 2014; 14:613-20. [DOI: 10.1093/eurjhf/hfs042] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Mumin R. Noor
- Heart Failure Care Group; Royal Brompton and Harefield NHS Foundation Trust, Harefield Hospital; Harefield, Middlesex UB9 6JH UK
- National Heart and Lung Institute; Imperial College London; London UK
| | - Christopher Bowles
- Heart Failure Care Group; Royal Brompton and Harefield NHS Foundation Trust, Harefield Hospital; Harefield, Middlesex UB9 6JH UK
- Imperial College London; London UK
| | - Nicholas R. Banner
- Heart Failure Care Group; Royal Brompton and Harefield NHS Foundation Trust, Harefield Hospital; Harefield, Middlesex UB9 6JH UK
- National Heart and Lung Institute; Imperial College London; London UK
| |
Collapse
|
14
|
Jhun CS, Cysyk JP. Ventricular Contractility and Compliance Measured During Axial Flow Blood Pump Support: In Vitro Study. Artif Organs 2013; 38:309-15. [DOI: 10.1111/aor.12165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Choon-Sik Jhun
- Department of Surgery; The Pennsylvania State University, College of Medicine; Hershey PA USA
| | - Joshua P. Cysyk
- Department of Surgery; The Pennsylvania State University, College of Medicine; Hershey PA USA
| |
Collapse
|
15
|
Gao B, Chang Y, Xuan Y, Zeng Y, Liu Y. The hemodynamic effect of the support mode for the intra-aorta pump on the cardiovascular system. Artif Organs 2013; 37:157-65. [PMID: 23379287 DOI: 10.1111/j.1525-1594.2012.01579.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Intra-aorta pump is a novel rotary ventricular assist device. Because of the special structure and connection with the native heart, the hemodynamic effect of support mode of this pump on the cardiovascular system is not clear. In this work, three support modes, including "constant speed" mode, "co-pulse" mode, and "counter-pulse" mode, have been designed for the intra-aorta pump to evaluate the hemodynamic effect of different support modes on the cardiovascular system. Simulation results demonstrate that that both "co-pulse" mode and "counter-pulse" mode can achieve better unloading performance than "constant speed" mode. The intra-aorta pump controlled by "co-pulse" mode is beneficial for improving coronary flow. Moreover, the external work, which is defined as the product of left ventricular pressure and cardiac output, under "co-pulse" mode is the minimum of the three support modes (0.783 w vs. 0.615 w vs. 0.702 w). The pulsatility ratio, defined as the ratio of the peak-to-peak value of arterial pressure (AP) to the mean arterial pressure value, under "co-pulse" mode is the maximum of the three modes (24% vs. 32.8% vs. 23.7%). The equivalent afterload value, which is the ratio of pulsatile pressure at the pump inflow and pulsatile pump flow, is larger than other support modes (0.596 mm Hg.s/mL vs. 0.9704 mm Hg.s/mL vs. 0.55 mm Hg.s/mL). In brief, the intra-aorta pump under "co-pulse" mode support is beneficial for improving myocardial perfusion and restoring pulsatility of AP, while "counter-pulse" mode is beneficial to the perfusion of vital organs.
Collapse
Affiliation(s)
- Bin Gao
- School of Life Science and BioEngineering, Beijing University of Technology, Beijing, China
| | | | | | | | | |
Collapse
|