1
|
Tărniceriu CC, Hurjui LL, Florea ID, Hurjui I, Gradinaru I, Tanase DM, Delianu C, Haisan A, Lozneanu L. Immune Thrombocytopenic Purpura as a Hemorrhagic Versus Thrombotic Disease: An Updated Insight into Pathophysiological Mechanisms. Medicina (B Aires) 2022; 58:medicina58020211. [PMID: 35208534 PMCID: PMC8875804 DOI: 10.3390/medicina58020211] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/25/2022] [Accepted: 01/29/2022] [Indexed: 11/16/2022] Open
Abstract
Immune thrombocytopenic purpura (ITP) is a blood disorder characterized by a low platelet count of (less than 100 × 109/L). ITP is an organ-specific autoimmune disease in which the platelets and their precursors become targets of a dysfunctional immune system. This interaction leads to a decrease in platelet number and, subsequently, to a bleeding disorder that can become clinically significant with hemorrhages in skin, on the mucous membrane, or even intracranial hemorrhagic events. If ITP was initially considered a hemorrhagic disease, more recent studies suggest that ITP has an increased risk of thrombosis. In this review, we provide current insights into the primary ITP physiopathology and their consequences, with special consideration on hemorrhagic and thrombotic events. The autoimmune response in ITP involves both the innate and adaptive immune systems, comprising both humoral and cell-mediated immune responses. Thrombosis in ITP is related to the pathophysiology of the disease (young hyperactive platelets, platelets microparticles, rebalanced hemostasis, complement activation, endothelial activation, antiphospholipid antibodies, and inhibition of natural anticoagulants), ITP treatment, and other comorbidities that altogether contribute to the occurrence of thrombosis. Physicians need to be vigilant in the early diagnosis of thrombotic events and then institute proper treatment (antiaggregant, anticoagulant) along with ITP-targeted therapy. In this review, we provide current insights into the primary ITP physiopathology and their consequences, with special consideration on hemorrhagic and thrombotic events. The accumulated evidence has identified multiple pathophysiological mechanisms with specific genetic predispositions, particularly associated with environmental conditions.
Collapse
Affiliation(s)
- Claudia Cristina Tărniceriu
- Department of Morpho-Functional Sciences I, Discipline of Anatomy, “Grigore T. Popa” University of Medicine and Pharmacy, Universității str 16, 700115 Iasi, Romania;
- Hematology Clinic, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Loredana Liliana Hurjui
- Department of Morpho-Functional Sciences II, Discipline of Physiology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Central Clinical Laboratory-Hematology Department, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania;
- Correspondence: authors: (L.L.H.); (I.D.F.)
| | - Irina Daniela Florea
- Department of Morpho-Functional Sciences I, Discipline of Imunology, “Grigore T. Popa” University of Medicine and Pharmacy, Universității str 16, 700115 Iasi, Romania
- Correspondence: authors: (L.L.H.); (I.D.F.)
| | - Ion Hurjui
- Department of Morpho-Functional Sciences II, Discipline of Biophysics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Irina Gradinaru
- Department of Implantology Removable Dentures Technology, “Grigore T. Popa” University of Medicine and Pharmacy, Universității str 16, 700115 Iasi, Romania;
| | - Daniela Maria Tanase
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700111 Iasi, Romania;
| | - Carmen Delianu
- Central Clinical Laboratory-Hematology Department, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania;
- Department of Biochemistry, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Anca Haisan
- Surgery Department, “Grigore T. Popa” University of Medicine and Pharmacy, Universității str 16, 700115 Iasi, Romania;
- Emergency Department, “Sf. Spiridon” Emergency County Hospital, 700111 Iasi, Romania
| | - Ludmila Lozneanu
- Department of Morpho-Functional Sciences I, Discipline of Histology, “Grigore T. Popa” University of Medicine and Pharmacy, Universității str 16, 700115 Iasi, Romania;
- Department of Pathology, “Sf. Spiridon” Emergency County Hospital, 700111 Iasi, Romania
| |
Collapse
|
2
|
Singh MV, Suwunnakorn S, Simpson SR, Weber EA, Singh VB, Kalinski P, Maggirwar SB. Monocytes complexed to platelets differentiate into functionally deficient dendritic cells. J Leukoc Biol 2021; 109:807-820. [PMID: 32663904 PMCID: PMC7854860 DOI: 10.1002/jlb.3a0620-460rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 06/25/2020] [Accepted: 06/27/2020] [Indexed: 12/12/2022] Open
Abstract
In addition to their role in hemostasis, platelets store numerous immunoregulatory molecules such as CD40L, TGFβ, β2-microglobulin, and IL-1β and release them upon activation. Previous studies indicate that activated platelets form transient complexes with monocytes, especially in HIV infected individuals and induce a proinflammatory monocyte phenotype. Because monocytes can act as precursors of dendritic cells (DCs) during infection/inflammation as well as for generation of DC-based vaccine therapies, we evaluated the impact of activated platelets on monocyte differentiation into DCs. We observed that in vitro cultured DCs derived from platelet-monocyte complexes (PMCs) exhibit reduced levels of molecules critical to DC function (CD206, dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin, CD80, CD86, CCR7) and reduced antigen uptake capacity. DCs derived from PMCs also showed reduced ability to activate naïve CD4+ and CD8+ T cells, and secrete IL-12p70 in response to CD40L stimulation, resulting in decreased ability to promote type-1 immune responses to HIV antigens. Our results indicate that formation of complexes with activated platelets can suppress the development of functional DCs from such monocytes. Disruption of PMCs in vivo via antiplatelet drugs such as Clopidogrel/Prasugrel or the application of platelet-free monocytes for DCs generation in vitro, may be used to enhance immunization and augment the immune control of HIV.
Collapse
Affiliation(s)
- Meera V Singh
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Sumanun Suwunnakorn
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Department of Microbiology and Immunology and Tropical Medicine, George Washington School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Sydney R Simpson
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Emily A Weber
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Vir B Singh
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Pawel Kalinski
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Sanjay B Maggirwar
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Department of Microbiology and Immunology and Tropical Medicine, George Washington School of Medicine and Health Sciences, Washington, District of Columbia, USA
| |
Collapse
|
3
|
Cellular immune dysregulation in the pathogenesis of immune thrombocytopenia. Blood Coagul Fibrinolysis 2020; 31:113-120. [PMID: 31977328 DOI: 10.1097/mbc.0000000000000891] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
: Immune thrombocytopenia (ITP) is an acquired autoimmune hemorrhagic disease characterized by immune-mediated increased platelet destruction and decreased platelet production, resulting from immune intolerance to autoantigen. The pathogenesis of ITP remains unclear, although dysfunction of T and B lymphocytes has been shown to be involved in the pathogenesis of ITP. More recently, it is found that dendritic cells, natural killer, and myeloid-derived suppressor cells also play an important role in ITP. Elucidating its pathogenesis is expected to provide novel channels for the targeted therapy of ITP. This article will review the role of different immune cells in ITP.
Collapse
|
4
|
CD4 + T cell phenotypes in the pathogenesis of immune thrombocytopenia. Cell Immunol 2020; 351:104096. [PMID: 32199587 DOI: 10.1016/j.cellimm.2020.104096] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/03/2020] [Accepted: 03/12/2020] [Indexed: 12/14/2022]
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disorder characterized by low platelet counts due to enhanced platelet clearance and compromised production. Traditionally, ITP was regarded a B cell mediated disorder as anti-platelet antibodies are detected in most patients. The very nature of self-antigens, evident processes of isotype switching and the affinity maturation of anti-platelet antibodies indicate that B cells in order to mount anti-platelet immune response require assistance of auto-reactive CD4+ T cells. For a long time, ITP pathogenesis has been exclusively reviewed through the prism of the disturbed balance between Th1 and Th2 subsets of CD4+ T cells, however, more recently new subsets of these cells have been described including Th17, Th9, Th22, T follicular helper and regulatory T cells. In this paper, we review the current understanding of the role and immunological mechanisms by which CD4+ T cells contribute to the pathogenesis of ITP.
Collapse
|
5
|
Youssef MAM, Salah Eldeen E, Elsayh KI, Taha SF, Abo-Elela MGM. High dose dexamethasone as an alternative rescue therapy for active bleeding in children with chronic ITP: clinical and immunological effects. Platelets 2018; 30:886-892. [DOI: 10.1080/09537104.2018.1530347] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Mervat A M Youssef
- Assiut Children Hospital, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Eman Salah Eldeen
- Assiut Clinical Pathology Department, Faculty of medicine, Assiut University, Assiut, Egypt
| | - Khalid I Elsayh
- Assiut Children Hospital, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Samaher F Taha
- Assiut Children Hospital, Faculty of Medicine, Assiut University, Assiut, Egypt
| | | |
Collapse
|
6
|
Audia S, Mahévas M, Samson M, Godeau B, Bonnotte B. Pathogenesis of immune thrombocytopenia. Autoimmun Rev 2017; 16:620-632. [DOI: 10.1016/j.autrev.2017.04.012] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 03/17/2017] [Indexed: 01/19/2023]
|
7
|
Abstract
Immune thrombocytopenia (ITP) is an autoimmune bleeding disorder resulting from low platelet counts caused by inadequate production as well as increased destruction by autoimmune mechanisms. As with other autoimmune disorders, chronic ITP is characterized by perturbations of immune homeostasis with hyperactivated effector cells as well as defective regulatory arm of the adaptive immune system, which will be reviewed here. Interestingly, some ITP treatments are associated with restoring the regulatory imbalance, although it remains unclear whether the immune system is redirected to a state of tolerance once treatment is discontinued. Understanding the mechanisms that result in breakdown of immune homeostasis in ITP will help to identify novel pathways for restoring tolerance and inhibiting effector cell responses. This information can then be translated into developing therapies for averting autoimmunity not only in ITP but also many autoimmune disorders.
Collapse
|
8
|
Hallam S, Provan D, Newland AC. Immune thrombocytopenia – what are the new treatment options? Expert Opin Biol Ther 2013; 13:1173-85. [DOI: 10.1517/14712598.2013.801451] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
9
|
Hua F, Ji L, Zhan Y, Li F, Zou S, Wang X, Song D, Min Z, Gao S, Wu Y, Chen H, Cheng Y. Pulsed high-dose dexamethasone improves interleukin 10 secretion by CD5+ B cells in patients with primary immune thrombocytopenia. J Clin Immunol 2012; 32:1233-42. [PMID: 22669326 DOI: 10.1007/s10875-012-9714-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 05/28/2012] [Indexed: 12/29/2022]
Abstract
BACKGROUND B cells expressing CD5 are potentially capable of producing interleukin 10 (IL-10) which contributes to the regulatory function of B cells. This study was aimed at exploring the alteration of numbers of CD5(+) B cells and their ability of producing IL-10 in patients with immune thrombocytopenia (ITP), and the effects of pulsed high-dose dexamethasone (HD-DXM) therapy on CD5(+) B cells. METHODS Peripheral blood mononuclear cells from 25 adult ITP patients were stained with PE-CD5/FITC-CD19 antibodies for flow cytometry analyses before and after HD-DXM therapy. The expression of IL-10 mRNA was measured by RT-PCR. After 24 h culture with or without dexamethasone in the presence of PMA, ionomycin and Brefeldin A, cells were permeabilized and stained with APC-IL-10 antibody to investigate intracellular IL-10 expression. Supernatant IL-10 concentration was detected by ELISA. RESULTS The number of CD5(+) B cells was elevated in patients with ITP. Expression of IL-10 mRNA, percentage of IL-10(+) cells and intracellular IL-10 in CD5(+) B cells from untreated patients were significantly higher than that in controls. In contrast, ITP patients showed lower IL-10 concentration in supernatants than controls. After HD-DXM therapy, the number of CD5(+) B cells decreased to normal level, while intracellular IL-10 expression in CD5(+) B cells was further enhanced and IL-10 concentration in supernatants was also increased. Similar results were observed when dexamethasone was administrated in vitro. CONCLUSIONS Increased number of CD5(+) B cells in which IL-10 is accumulated with decreased IL-10 concentration in supernatants suggests that the ability of CD5(+) B cells to secret IL-10 is impaired in ITP patients. Both the aberrant number and ability of IL-10 secretion of CD5(+) B cells could be corrected by HD-DXM.
Collapse
Affiliation(s)
- Fanli Hua
- Department of Haematology, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|