1
|
Kalbas Y, Stutz Y, Klingebiel FKL, Halvachizadeh S, Teuben MPJ, Ricklin J, Sivriev I, Hax J, Urgiles CO, Jensen KO, Oertel MF, Pape HC, Pfeifer R. Criteria to clear polytrauma patients with traumatic brain injury for safe definitive surgery (<24 h). Injury 2025:112149. [PMID: 39864965 DOI: 10.1016/j.injury.2025.112149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 01/03/2025] [Accepted: 01/05/2025] [Indexed: 01/28/2025]
Abstract
INTRODUCTION Optimizing treatment strategies in polytrauma patients is a key focus in trauma research and timing of major fracture care remains one of the most actively discussed topics. Besides physiologic factors, associated injuries, and injury patterns also require consideration. For instance, the exact impact and relevance of traumatic brain injury on the timing of fracture care have not yet been fully investigated. METHODS In this retrospectively cohort study at a level one trauma center, patients requiring trauma team activations from 2015 to 2020 were screened. Patients with an injury severity score >16 and at least one body region requiring operative fixation were included. Patients who underwent their first definitive surgery <24 h were stratified as group SDS (Safe Definitive Surgery) and >24 h as group DFC (Delayed Fracture Care). Outcomes were early mortality (<72 h), SIRS and sepsis, timing to first definitive surgery and completed reconstruction, total number of surgeries, and factors influencing the surgical strategy (e.g., unstable physiology). Odds ratios for treatment strategies and influencing factors were calculated using the Fisher`s exact test with conditional maximum likelihood estimate. RESULTS From a total of 901 patients screened, 239 were included in the analyzes (Group DFC: 151, Groups SDS: 88). Groups did not significantly differ regarding early mortality, SIRS and sepsis. Group SDS had a significantly lower mean number of operations (4.3 vs. 5.3; p = 0.037) and a significantly shorter mean time until completion of reconstructive operations (10 days vs. 15 days; p = 0.013). Unstable physiology and intracranial trauma sequelae with the necessity for neurosurgical interventions (NSI) were identified as most significant factors for delaying definitive fracture care (OR: 2.85; 95 % CIs: 1.56 to 5.33 and OR: 5.59; 95 % CIs: 1.63 to 29.85), while the presence of intracranial bleeding (IB) without NSI did not have a significant influence (OR: 1.21; 95 % CIs: 0.63 to 2.34). CONCLUSION The necessity of NSI and unstable physiology are highly relevant factors for delaying definitive fracture care in polytrauma patients, while the presence of IB without NSI had less impact. In this cohort, early definitive fracture care in physiologically stable patients without NSI, was not associated with increased patient morbidity.
Collapse
Affiliation(s)
- Yannik Kalbas
- Department of Trauma Surgery, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091 Zurich, Switzerland; Harald-Tscherne Laboratory for Orthopaedic and Trauma Research, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091 Zurich, Switzerland.
| | - Yannik Stutz
- Harald-Tscherne Laboratory for Orthopaedic and Trauma Research, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091 Zurich, Switzerland.
| | - Felix Karl-Ludwig Klingebiel
- Department of Trauma Surgery, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091 Zurich, Switzerland; Harald-Tscherne Laboratory for Orthopaedic and Trauma Research, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091 Zurich, Switzerland.
| | - Sascha Halvachizadeh
- Department of Trauma Surgery, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091 Zurich, Switzerland.
| | - Michel Paul Johan Teuben
- Department of Trauma Surgery, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091 Zurich, Switzerland.
| | - John Ricklin
- Harald-Tscherne Laboratory for Orthopaedic and Trauma Research, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091 Zurich, Switzerland.
| | - Ivan Sivriev
- Harald-Tscherne Laboratory for Orthopaedic and Trauma Research, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091 Zurich, Switzerland.
| | - Jakob Hax
- Department of Hip and Knee Surgery, Schulthess Clinic, Lengghalde 2, 8008 Zurich, Switzerland.
| | - Carlos Ordonez Urgiles
- Harald-Tscherne Laboratory for Orthopaedic and Trauma Research, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091 Zurich, Switzerland.
| | - Kai Oliver Jensen
- Department of Trauma Surgery, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091 Zurich, Switzerland.
| | - Markus Florian Oertel
- Department of Neurosurgery, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091 Zurich, Switzerland; Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091 Zurich, Switzerland.
| | - Hans-Christoph Pape
- Department of Trauma Surgery, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091 Zurich, Switzerland; Harald-Tscherne Laboratory for Orthopaedic and Trauma Research, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091 Zurich, Switzerland.
| | - Roman Pfeifer
- Department of Trauma Surgery, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091 Zurich, Switzerland; Harald-Tscherne Laboratory for Orthopaedic and Trauma Research, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091 Zurich, Switzerland.
| |
Collapse
|
2
|
Flores-Prieto DE, Stabenfeldt SE. Nanoparticle targeting strategies for traumatic brain injury. J Neural Eng 2024; 21:061007. [PMID: 39622184 DOI: 10.1088/1741-2552/ad995b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024]
Abstract
Nanoparticle (NP)-based drug delivery systems hold immense potential for targeted therapy and diagnosis of neurological disorders, overcoming the limitations of conventional treatment modalities. This review explores the design considerations and functionalization strategies of NPs for precise targeting of the brain and central nervous system. This review discusses the challenges associated with drug delivery to the brain, including the blood-brain barrier and the complex heterogeneity of traumatic brain injury. We also examine the physicochemical properties of NPs, emphasizing the role of size, shape, and surface characteristics in their interactions with biological barriers and cellular uptake mechanisms. The review concludes by exploring the options of targeting ligands designed to augment NP affinity and retention to specific brain regions or cell types. Various targeting ligands are discussed for their ability to mimic receptor-ligand interaction, and brain-specific extracellular matrix components. Strategies to mimic viral mechanisms to increase uptake are discussed. Finally, the emergence of antibody, antibody fragments, and antibody mimicking peptides are discussed as promising targeting strategies. By integrating insights from these scientific fields, this review provides an understanding of NP-based targeting strategies for personalized medicine approaches to neurological disorders. The design considerations discussed here pave the way for the development of NP platforms with enhanced therapeutic efficacy and minimized off-target effects, ultimately advancing the field of neural engineering.
Collapse
Affiliation(s)
- David E Flores-Prieto
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States of America
| | - Sarah E Stabenfeldt
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States of America
| |
Collapse
|
3
|
Lapp L, Roper M, Kavanagh K, Bouamrane MM, Schraag S. Dynamic Prediction of Patient Outcomes in the Intensive Care Unit: A Scoping Review of the State-of-the-Art. J Intensive Care Med 2023; 38:575-591. [PMID: 37016893 PMCID: PMC10302367 DOI: 10.1177/08850666231166349] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/24/2023] [Accepted: 03/09/2023] [Indexed: 04/06/2023]
Abstract
INTRODUCTION Intensive care units (ICUs) are high-pressure, complex, technology-intensive medical environments where patient physiological data are generated continuously. Due to the complexity of interpreting multiple signals at speed, there are substantial opportunities and significant potential benefits in providing ICU staff with additional decision support and predictive modeling tools that can support and aid decision-making in real-time.This scoping review aims to synthesize the state-of-the-art dynamic prediction models of patient outcomes developed for use in the ICU. We define "dynamic" models as those where predictions are regularly computed and updated over time in response to updated physiological signals. METHODS Studies describing the development of predictive models for use in the ICU were searched, using PubMed. The studies were screened as per Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines, and the data regarding predicted outcomes, methods used to develop the predictive models, preprocessing the data and dealing with missing values, and performance measures were extracted and analyzed. RESULTS A total of n = 36 studies were included for synthesis in our review. The included studies focused on the prediction of various outcomes, including mortality (n = 17), sepsis-related complications (n = 12), cardiovascular complications (n = 5), and other complications (respiratory, renal complications, and bleeding, n = 5). The most common classification methods include logistic regression, random forest, support vector machine, and neural networks. CONCLUSION The included studies demonstrated that there is a strong interest in developing dynamic prediction models for various ICU patient outcomes. Most models reported focus on mortality. As such, the development of further models focusing on a range of other serious and well-defined complications-such as acute kidney injury-would be beneficial. Furthermore, studies should improve the reporting of key aspects of model development challenges.
Collapse
Affiliation(s)
| | | | | | - Matt-Mouley Bouamrane
- Usher Institute, College of Medicine and Veterinary Medicine, University of Edinburgh, Glasgow, UK
| | | |
Collapse
|
4
|
Yue JK, Krishnan N, Kanter JH, Deng H, Okonkwo DO, Puccio AM, Madhok DY, Belton PJ, Lindquist BE, Satris GG, Lee YM, Umbach G, Duhaime AC, Mukherjee P, Yuh EL, Valadka AB, DiGiorgio AM, Tarapore PE, Huang MC, Manley GT, Investigators TTRACKTBI. Neuroworsening in the Emergency Department Is a Predictor of Traumatic Brain Injury Intervention and Outcome: A TRACK-TBI Pilot Study. J Clin Med 2023; 12:2024. [PMID: 36902811 PMCID: PMC10004432 DOI: 10.3390/jcm12052024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
INTRODUCTION Neuroworsening may be a sign of progressive brain injury and is a factor for treatment of traumatic brain injury (TBI) in intensive care settings. The implications of neuroworsening for clinical management and long-term sequelae of TBI in the emergency department (ED) require characterization. METHODS Adult TBI subjects from the prospective Transforming Research and Clinical Knowledge in Traumatic Brain Injury Pilot Study with ED admission and disposition Glasgow Coma Scale (GCS) scores were extracted. All patients received head computed tomography (CT) scan <24 h post-injury. Neuroworsening was defined as a decline in motor GCS at ED disposition (vs. ED admission). Clinical and CT characteristics, neurosurgical intervention, in-hospital mortality, and 3- and 6-month Glasgow Outcome Scale-Extended (GOS-E) scores were compared by neuroworsening status. Multivariable regressions were performed for neurosurgical intervention and unfavorable outcome (GOS-E ≤ 3). Multivariable odds ratios (mOR) with [95% confidence intervals] were reported. RESULTS In 481 subjects, 91.1% had ED admission GCS 13-15 and 3.3% had neuroworsening. All neuroworsening subjects were admitted to intensive care unit (vs. non-neuroworsening: 26.2%) and were CT-positive for structural injury (vs. 45.4%). Neuroworsening was associated with subdural (75.0%/22.2%), subarachnoid (81.3%/31.2%), and intraventricular hemorrhage (18.8%/2.2%), contusion (68.8%/20.4%), midline shift (50.0%/2.6%), cisternal compression (56.3%/5.6%), and cerebral edema (68.8%/12.3%; all p < 0.001). Neuroworsening subjects had higher likelihoods of cranial surgery (56.3%/3.5%), intracranial pressure (ICP) monitoring (62.5%/2.6%), in-hospital mortality (37.5%/0.6%), and unfavorable 3- and 6-month outcome (58.3%/4.9%; 53.8%/6.2%; all p < 0.001). On multivariable analysis, neuroworsening predicted surgery (mOR = 4.65 [1.02-21.19]), ICP monitoring (mOR = 15.48 [2.92-81.85], and unfavorable 3- and 6-month outcome (mOR = 5.36 [1.13-25.36]; mOR = 5.68 [1.18-27.35]). CONCLUSIONS Neuroworsening in the ED is an early indicator of TBI severity, and a predictor of neurosurgical intervention and unfavorable outcome. Clinicians must be vigilant in detecting neuroworsening, as affected patients are at increased risk for poor outcomes and may benefit from immediate therapeutic interventions.
Collapse
Affiliation(s)
- John K. Yue
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94110, USA
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, CA 94110, USA
| | - Nishanth Krishnan
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94110, USA
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, CA 94110, USA
| | - John H. Kanter
- Section of Neurological Surgery, Dartmouth Hitchcock Medical Center, Lebanon, NH 03766, USA
| | - Hansen Deng
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| | - David O. Okonkwo
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| | - Ava M. Puccio
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| | - Debbie Y. Madhok
- Department of Emergency Medicine, University of California San Francisco, San Francisco, CA 94110, USA
| | - Patrick J. Belton
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94110, USA
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, CA 94110, USA
| | - Britta E. Lindquist
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, CA 94110, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA 94110, USA
| | - Gabriela G. Satris
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94110, USA
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, CA 94110, USA
| | - Young M. Lee
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94110, USA
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, CA 94110, USA
| | - Gray Umbach
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94110, USA
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, CA 94110, USA
| | - Ann-Christine Duhaime
- Department of Neurological Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Pratik Mukherjee
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, CA 94110, USA
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94110, USA
| | - Esther L. Yuh
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, CA 94110, USA
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94110, USA
| | - Alex B. Valadka
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Anthony M. DiGiorgio
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94110, USA
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, CA 94110, USA
- Institute for Health Policy Studies, University of California San Francisco, San Francisco, CA 94158, USA
| | - Phiroz E. Tarapore
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94110, USA
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, CA 94110, USA
| | - Michael C. Huang
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94110, USA
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, CA 94110, USA
| | - Geoffrey T. Manley
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94110, USA
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, CA 94110, USA
| | | |
Collapse
|
5
|
Picetti E, Catena F, Abu-Zidan F, Ansaloni L, Armonda RA, Bala M, Balogh ZJ, Bertuccio A, Biffl WL, Bouzat P, Buki A, Cerasti D, Chesnut RM, Citerio G, Coccolini F, Coimbra R, Coniglio C, Fainardi E, Gupta D, Gurney JM, Hawrylux GWJ, Helbok R, Hutchinson PJA, Iaccarino C, Kolias A, Maier RW, Martin MJ, Meyfroidt G, Okonkwo DO, Rasulo F, Rizoli S, Rubiano A, Sahuquillo J, Sams VG, Servadei F, Sharma D, Shutter L, Stahel PF, Taccone FS, Udy A, Zoerle T, Agnoletti V, Bravi F, De Simone B, Kluger Y, Martino C, Moore EE, Sartelli M, Weber D, Robba C. Early management of isolated severe traumatic brain injury patients in a hospital without neurosurgical capabilities: a consensus and clinical recommendations of the World Society of Emergency Surgery (WSES). World J Emerg Surg 2023; 18:5. [PMID: 36624517 PMCID: PMC9830860 DOI: 10.1186/s13017-022-00468-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/01/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Severe traumatic brain-injured (TBI) patients should be primarily admitted to a hub trauma center (hospital with neurosurgical capabilities) to allow immediate delivery of appropriate care in a specialized environment. Sometimes, severe TBI patients are admitted to a spoke hospital (hospital without neurosurgical capabilities), and scarce data are available regarding the optimal management of severe isolated TBI patients who do not have immediate access to neurosurgical care. METHODS A multidisciplinary consensus panel composed of 41 physicians selected for their established clinical and scientific expertise in the acute management of TBI patients with different specializations (anesthesia/intensive care, neurocritical care, acute care surgery, neurosurgery and neuroradiology) was established. The consensus was endorsed by the World Society of Emergency Surgery, and a modified Delphi approach was adopted. RESULTS A total of 28 statements were proposed and discussed. Consensus was reached on 22 strong recommendations and 3 weak recommendations. In three cases, where consensus was not reached, no recommendation was provided. CONCLUSIONS This consensus provides practical recommendations to support clinician's decision making in the management of isolated severe TBI patients in centers without neurosurgical capabilities and during transfer to a hub center.
Collapse
Affiliation(s)
- Edoardo Picetti
- Department of Anesthesia and Intensive Care, Parma University Hospital, Parma, Italy.
| | - Fausto Catena
- grid.414682.d0000 0004 1758 8744Department of General and Emergency Surgery, Bufalini Hospital, Cesena, Italy
| | - Fikri Abu-Zidan
- grid.43519.3a0000 0001 2193 6666The Research Office, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Luca Ansaloni
- grid.8982.b0000 0004 1762 5736Unit of General Surgery, San Matteo Hospital Pavia, University of Pavia, Pavia, Italy
| | - Rocco A. Armonda
- grid.411663.70000 0000 8937 0972Department of Neurosurgery, 71541MedStar Georgetown University Hospital, Washington, DC USA ,grid.415235.40000 0000 8585 5745Department of Neurosurgery, 8405MedStar Washington Hospital Center, Washington, DC USA
| | - Miklosh Bala
- grid.9619.70000 0004 1937 0538Acute Care Surgery and Trauma Unit, Department of General Surgery, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem Kiriat Hadassah, Jerusalem, Israel
| | - Zsolt J. Balogh
- grid.413648.cDepartment of Traumatology, John Hunter Hospital, Hunter Medical Research Institute and University of Newcastle, Newcastle, NSW Australia
| | - Alessandro Bertuccio
- Department of Neurosurgery, SS Antonio E Biagio E Cesare Arrigo Alessandria Hospital, Alessandria, Italy
| | - Walt L. Biffl
- grid.415401.5Scripps Clinic Medical Group, La Jolla, CA USA
| | - Pierre Bouzat
- grid.450308.a0000 0004 0369 268XInserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Université Grenoble Alpes, Grenoble, France
| | - Andras Buki
- grid.15895.300000 0001 0738 8966Department of Neurosurgery, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Davide Cerasti
- grid.411482.aNeuroradiology Unit, Azienda Ospedaliero-Universitaria of Parma, Parma, Italy
| | - Randall M. Chesnut
- grid.34477.330000000122986657Department of Neurological Surgery, University of Washington, Seattle, WA USA ,grid.34477.330000000122986657Department of Orthopedics and Sports Medicine, University of Washington, Seattle, WA USA ,grid.34477.330000000122986657Department of Global Health, University of Washington, Seattle, WA USA
| | - Giuseppe Citerio
- grid.7563.70000 0001 2174 1754School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy ,grid.415025.70000 0004 1756 8604Neuroscience Department, NeuroIntensive Care Unit, Hospital San Gerardo, ASST Monza, Monza, Italy
| | - Federico Coccolini
- grid.144189.10000 0004 1756 8209Department of Emergency and Trauma Surgery, Pisa University Hospital, Pisa, Italy
| | - Raul Coimbra
- grid.43582.380000 0000 9852 649XRiverside University Health System Medical Center, Loma Linda University School of Medicine, Riverside, CA USA
| | - Carlo Coniglio
- grid.416290.80000 0004 1759 7093Department of Anesthesia, Intensive Care and Prehospital Emergency, Ospedale Maggiore Carlo Alberto Pizzardi, Bologna, Italy
| | - Enrico Fainardi
- grid.8404.80000 0004 1757 2304Neuroradiology Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Deepak Gupta
- grid.413618.90000 0004 1767 6103Department of Neurosurgery, Neurosciences Centre and JPN Apex Trauma Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Jennifer M. Gurney
- grid.420328.f0000 0001 2110 0308Department of Trauma, San Antonio Military Medical Center and the U.S. Army Institute of Surgical Research, San Antonio, TX 78234 USA ,grid.461685.80000 0004 0467 8038The Department of Defense Center of Excellence for Trauma, Joint Trauma System (JTS), JBSA Fort Sam Houston, San Antonio, TX 78234 USA
| | - Gregory W. J. Hawrylux
- grid.239578.20000 0001 0675 4725Cleveland Clinic, 762 S. Cleveland-Massillon Rd, Akron, OH 44333 USA
| | - Raimund Helbok
- grid.5361.10000 0000 8853 2677Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Peter J. A. Hutchinson
- grid.5335.00000000121885934Department of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Corrado Iaccarino
- grid.413363.00000 0004 1769 5275Neurosurgery Unit, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Angelos Kolias
- grid.5335.00000000121885934National Institute for Health Research Global Health Research Group on Neurotrauma, University of Cambridge, Cambridge, UK ,grid.5335.00000000121885934Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke’s Hospital,, University of Cambridge, Cambridge, UK
| | - Ronald W. Maier
- grid.34477.330000000122986657Harborview Medical Center, University of Washington, Seattle, WA USA
| | - Matthew J. Martin
- grid.42505.360000 0001 2156 6853Division of Trauma and Acute Care Surgery, Los Angeles County + USC Medical Center, Los Angeles, CA USA
| | - Geert Meyfroidt
- grid.410569.f0000 0004 0626 3338Department of Intensive Care, University Hospitals Leuven, Louvain, Belgium ,grid.5596.f0000 0001 0668 7884Laboratory of Intensive Care Medicine, Katholieke Universiteit Leuven, Louvain, Belgium
| | - David O. Okonkwo
- grid.412689.00000 0001 0650 7433Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA USA
| | - Frank Rasulo
- grid.412725.7Department of Anesthesia, Critical Care and Emergency, Spedali Civili University Hospital, Brescia, Italy
| | - Sandro Rizoli
- grid.413542.50000 0004 0637 437XSurgery Department, Section of Trauma Surgery, Hamad General Hospital (HGH), Doha, Qatar
| | - Andres Rubiano
- grid.412195.a0000 0004 1761 4447INUB-MEDITECH Research Group, Institute of Neurosciences, Universidad El Bosque, Bogotá, Colombia
| | - Juan Sahuquillo
- grid.7080.f0000 0001 2296 0625Department of Neurosurgery, Vall d’Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Valerie G. Sams
- grid.413561.40000 0000 9881 9161Trauma Critical Care and Acute Care Surgery, Air Force Center for Sustainment of Trauma and Readiness Skills, University of Cincinnati Medical Center, Cincinnati, OH USA
| | - Franco Servadei
- grid.452490.eDepartment of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy ,grid.417728.f0000 0004 1756 8807Department of Neurosurgery, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Deepak Sharma
- grid.34477.330000000122986657Department of Anesthesiology and Pain Medicine and Neurological Surgery, University of Washington, Seattle, WA USA
| | - Lori Shutter
- grid.21925.3d0000 0004 1936 9000Department of Critical Care Medicine, UPMC/University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Philip F. Stahel
- grid.461417.10000 0004 0445 646XCollege of Osteopathic Medicine, Rocky Vista University, Parker, CO USA
| | - Fabio S. Taccone
- grid.410566.00000 0004 0626 3303Department of Intensive Care, Hôpital Universitaire de Bruxelles, Brussels, Belgium
| | - Andrew Udy
- grid.1623.60000 0004 0432 511XDepartment of Intensive Care and Hyperbaric Medicine, The Alfred, Melbourne, VIC 3004 Australia
| | - Tommaso Zoerle
- grid.4708.b0000 0004 1757 2822Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy ,grid.414818.00000 0004 1757 8749Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Vanni Agnoletti
- grid.414682.d0000 0004 1758 8744Anesthesia and Intensive Care Unit, AUSL Romagna, M. Bufalini Hospital, Cesena, Italy
| | - Francesca Bravi
- grid.415207.50000 0004 1760 3756Healthcare Administration, Santa Maria Delle Croci Hospital, Ravenna, Italy
| | - Belinda De Simone
- grid.418056.e0000 0004 1765 2558Department of General, Digestive and Metabolic Minimally Invasive Surgery, Centre Hospitalier Intercommunal De Poissy/St Germain en Laye, Poissy, France
| | - Yoram Kluger
- grid.413731.30000 0000 9950 8111Department of General Surgery, Rambam Health Care Campus, Haifa, Israel
| | - Costanza Martino
- Department of Anesthesiology and Acute Care, Umberto I Hospital of Lugo, Ausl Della Romagna, Lugo, Italy
| | - Ernest E. Moore
- grid.241116.10000000107903411Ernest E Moore Shock Trauma Center at Denver Health, University of Colorado, Denver, CO USA
| | | | - Dieter Weber
- grid.1012.20000 0004 1936 7910Department of General Surgery, Royal Perth Hospital, The University of Western Australia, Perth, Australia
| | - Chiara Robba
- grid.410345.70000 0004 1756 7871Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy ,grid.5606.50000 0001 2151 3065Department of Surgical Sciences and Integrated Sciences, University of Genoa, Genoa, Italy
| |
Collapse
|
6
|
Rahim S, Laugsand EA, Fyllingen EH, Rao V, Pantelatos RI, Müller TB, Vik A, Skandsen T. Moderate and severe traumatic brain injury in general hospitals: a ten-year population-based retrospective cohort study in central Norway. Scand J Trauma Resusc Emerg Med 2022; 30:68. [PMID: 36494745 PMCID: PMC9733333 DOI: 10.1186/s13049-022-01050-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Patients with moderate and severe traumatic brain injury (TBI) are admitted to general hospitals (GHs) without neurosurgical services, but few studies have addressed the management of these patients. This study aimed to describe these patients, the rate of and reasons for managing patients entirely at the GH, and differences between patients managed entirely at the GH (GH group) and patients transferred to the regional trauma centre (RTC group). We specifically examined the characteristics of elderly patients. METHODS Patients with moderate (Glasgow Coma Scale score 9-13) and severe (score ≤ 8) TBIs who were admitted to one of the seven GHs without neurosurgical services in central Norway between 01.10.2004 and 01.10.2014 were retrospectively identified. Demographic, injury-related and outcome data were collected from medical records. Head CT scans were reviewed. RESULTS Among 274 patients admitted to GHs, 137 (50%) were in the GH group. The transferral rate was 58% for severe TBI and 40% for moderate TBI. Compared to the RTC group, patients in the GH group were older (median age: 78 years vs. 54 years, p < 0.001), more often had a preinjury disability (50% vs. 39%, p = 0.037), and more often had moderate TBI (52% vs. 35%, p = 0.005). The six-month case fatality rate was low (8%) in the GH group when transferral was considered unnecessary due to a low risk of further deterioration and high (90%, median age: 87 years) when neurosurgical intervention was considered nonbeneficial. Only 16% of patients ≥ 80 years old were transferred to the RTC. For this age group, the in-hospital case fatality rate was 67% in the GH group and 36% in the RTC group and 84% and 73%, respectively, at 6 months. CONCLUSIONS Half of the patients were managed entirely at a GH, and these were mainly patients considered to have a low risk of further deterioration, patients with moderate TBI, and elderly patients. Less than two of ten patients ≥ 80 years old were transferred, and survival was poor regardless of the transferral status.
Collapse
Affiliation(s)
- Shavin Rahim
- grid.5947.f0000 0001 1516 2393Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Eivor Alette Laugsand
- grid.5947.f0000 0001 1516 2393Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway ,grid.414625.00000 0004 0627 3093Department of Surgery, Levanger Hospital, Nord-Trøndelag Hospital Trust, 7600 Levanger, Norway ,grid.52522.320000 0004 0627 3560Department of Surgery, St. Olavs Hospital, Trondheim University Hospital, 7006 Trondheim, Norway
| | - Even Hovig Fyllingen
- grid.52522.320000 0004 0627 3560Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, 7491 Trondheim, Norway ,grid.5947.f0000 0001 1516 2393Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), 7006 Trondheim, Norway
| | - Vidar Rao
- grid.5947.f0000 0001 1516 2393Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway ,grid.52522.320000 0004 0627 3560Department of Neurosurgery, St. Olavs Hospital, Trondheim University Hospital, 7006 Trondheim, Norway
| | - Rabea Iris Pantelatos
- grid.5947.f0000 0001 1516 2393Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Tomm Brostrup Müller
- grid.52522.320000 0004 0627 3560Department of Neurosurgery, St. Olavs Hospital, Trondheim University Hospital, 7006 Trondheim, Norway
| | - Anne Vik
- grid.5947.f0000 0001 1516 2393Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway ,grid.52522.320000 0004 0627 3560Department of Neurosurgery, St. Olavs Hospital, Trondheim University Hospital, 7006 Trondheim, Norway
| | - Toril Skandsen
- grid.5947.f0000 0001 1516 2393Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway ,grid.52522.320000 0004 0627 3560Clinic of Physical Medicine and Rehabilitation, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
7
|
Shammassian BH, Kelly ML. In Reply to the Letter to the Editor Regarding "Viscoelastic Hemostatic Assays and Outcomes in Traumatic Brain Injury: A Systematic Literature Review". World Neurosurg 2022; 166:294-295. [PMID: 36192855 PMCID: PMC9514965 DOI: 10.1016/j.wneu.2022.06.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Berje H Shammassian
- Department of Neurosurgery, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA; Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.
| | - Michael L Kelly
- Case Western Reserve University School of Medicine, Cleveland, Ohio, USA; Department of Neurological Surgery, Metrohealth Medical Center, Cleveland, Ohio, USA
| |
Collapse
|
8
|
Datzmann T, Messerer DAC, Münz F, Hoffmann A, Gröger M, Mathieu R, Mayer S, Gässler H, Zink F, McCook O, Merz T, Scheuerle A, Wolfschmitt EM, Thebrath T, Zuech S, Calzia E, Asfar P, Radermacher P, Kapapa T. The effect of targeted hyperoxemia in a randomized controlled trial employing a long-term resuscitated, model of combined acute subdural hematoma and hemorrhagic shock in swine with coronary artery disease: An exploratory, hypothesis-generating study. Front Med (Lausanne) 2022; 9:971882. [PMID: 36072939 PMCID: PMC9442904 DOI: 10.3389/fmed.2022.971882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/04/2022] [Indexed: 11/24/2022] Open
Abstract
Controversial evidence is available regarding suitable targets for the arterial O2 tension (PaO2) after traumatic brain injury and/or hemorrhagic shock (HS). We previously demonstrated that hyperoxia during resuscitation from hemorrhagic shock attenuated cardiac injury and renal dysfunction in swine with coronary artery disease. Therefore, this study investigated the impact of targeted hyperoxemia in a long-term, resuscitated model of combined acute subdural hematoma (ASDH)-induced brain injury and HS. The prospective randomized, controlled, resuscitated animal investigation consisted of 15 adult pigs. Combined ASDH plus HS was induced by injection of 0.1 ml/kg autologous blood into the subdural space followed by controlled passive removal of blood. Two hours later, resuscitation was initiated comprising re-transfusion of shed blood, fluids, continuous i.v. noradrenaline, and either hyperoxemia (target PaO2 200 – 250 mmHg) or normoxemia (target PaO2 80 – 120 mmHg) during the first 24 h of the total of 54 h of intensive care. Systemic hemodynamics, intracranial and cerebral perfusion pressures, parameters of brain microdialysis and blood biomarkers of brain injury did not significantly differ between the two groups. According to the experimental protocol, PaO2 was significantly higher in the hyperoxemia group at the end of the intervention period, i.e., at 24 h of resuscitation, which coincided with a higher brain tissue PO2. The latter persisted until the end of observation period. While neurological function as assessed using the veterinary Modified Glasgow Coma Score progressively deteriorated in the control group, it remained unaffected in the hyperoxemia animals, however, without significant intergroup difference. Survival times did not significantly differ in the hyperoxemia and control groups either. Despite being associated with higher brain tissue PO2 levels, which were sustained beyond the intervention period, targeted hyperoxemia exerted neither significantly beneficial nor deleterious effects after combined ASDH and HS in swine with pre-existing coronary artery disease. The unavailability of a power calculation and, thus, the limited number of animals included, are the limitations of the study.
Collapse
Affiliation(s)
- Thomas Datzmann
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Ulm, Germany
- Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum Ulm, Ulm, Germany
- *Correspondence: Thomas Datzmann,
| | - David Alexander Christian Messerer
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Ulm, Germany
- Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum Ulm, Ulm, Germany
- Transfusionsmedizinische und Hämostaseologische Abteilung, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Franziska Münz
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Ulm, Germany
- Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum Ulm, Ulm, Germany
| | - Andrea Hoffmann
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Ulm, Germany
| | - Michael Gröger
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Ulm, Germany
| | - René Mathieu
- Klinik fuür Neurochirurgie, Bundeswehrkrankenhaus Ulm, Ulm, Germany
| | - Simon Mayer
- Klinik fuür Neurochirurgie, Bundeswehrkrankenhaus Ulm, Ulm, Germany
| | - Holger Gässler
- Klinik fuür Anästhesiologie, Intensivmedizin, Notfallmedizin und Schmerztherapie, Bundeswehrkrankenhaus Ulm, Ulm, Germany
| | - Fabian Zink
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Ulm, Germany
| | - Oscar McCook
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Ulm, Germany
| | - Tamara Merz
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Ulm, Germany
- Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum Ulm, Ulm, Germany
| | - Angelika Scheuerle
- Sektion Neuropathologie, Institut für Pathologie, Universitätsklinikum Ulm, Ulm, Germany
| | - Eva-Maria Wolfschmitt
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Ulm, Germany
| | - Timo Thebrath
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Ulm, Germany
| | - Stefan Zuech
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Ulm, Germany
| | - Enrico Calzia
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Ulm, Germany
| | - Pierre Asfar
- Département de Médecine Intensive – Réanimation et Médecine Hyperbare, Centre Hospitalier Universitaire, Angers, France
| | - Peter Radermacher
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Ulm, Germany
| | - Thomas Kapapa
- Klinik für Neurochirurgie, Universitätsklinikum Ulm, Ulm, Germany
| |
Collapse
|
9
|
Åkerlund CAI, Holst A, Stocchetti N, Steyerberg EW, Menon DK, Ercole A, Nelson DW. Clustering identifies endotypes of traumatic brain injury in an intensive care cohort: a CENTER-TBI study. Crit Care 2022; 26:228. [PMID: 35897070 PMCID: PMC9327174 DOI: 10.1186/s13054-022-04079-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 07/02/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND While the Glasgow coma scale (GCS) is one of the strongest outcome predictors, the current classification of traumatic brain injury (TBI) as 'mild', 'moderate' or 'severe' based on this fails to capture enormous heterogeneity in pathophysiology and treatment response. We hypothesized that data-driven characterization of TBI could identify distinct endotypes and give mechanistic insights. METHODS We developed an unsupervised statistical clustering model based on a mixture of probabilistic graphs for presentation (< 24 h) demographic, clinical, physiological, laboratory and imaging data to identify subgroups of TBI patients admitted to the intensive care unit in the CENTER-TBI dataset (N = 1,728). A cluster similarity index was used for robust determination of optimal cluster number. Mutual information was used to quantify feature importance and for cluster interpretation. RESULTS Six stable endotypes were identified with distinct GCS and composite systemic metabolic stress profiles, distinguished by GCS, blood lactate, oxygen saturation, serum creatinine, glucose, base excess, pH, arterial partial pressure of carbon dioxide, and body temperature. Notably, a cluster with 'moderate' TBI (by traditional classification) and deranged metabolic profile, had a worse outcome than a cluster with 'severe' GCS and a normal metabolic profile. Addition of cluster labels significantly improved the prognostic precision of the IMPACT (International Mission for Prognosis and Analysis of Clinical trials in TBI) extended model, for prediction of both unfavourable outcome and mortality (both p < 0.001). CONCLUSIONS Six stable and clinically distinct TBI endotypes were identified by probabilistic unsupervised clustering. In addition to presenting neurology, a profile of biochemical derangement was found to be an important distinguishing feature that was both biologically plausible and associated with outcome. Our work motivates refining current TBI classifications with factors describing metabolic stress. Such data-driven clusters suggest TBI endotypes that merit investigation to identify bespoke treatment strategies to improve care. Trial registration The core study was registered with ClinicalTrials.gov, number NCT02210221 , registered on August 06, 2014, with Resource Identification Portal (RRID: SCR_015582).
Collapse
Affiliation(s)
- Cecilia A I Åkerlund
- Section of Perioperative Medicine and Intensive Care, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden. .,School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden.
| | - Anders Holst
- School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Nino Stocchetti
- Neuroscience Intensive Care Unit, Department of Pathophysiology and Transplants, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Ewout W Steyerberg
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - David K Menon
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Ari Ercole
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, UK.,Centre for Artificial Intelligence in Medicine, University of Cambridge, Cambridge, UK
| | - David W Nelson
- Section of Perioperative Medicine and Intensive Care, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW To highlight recent findings on the evaluation and impact of frailty in the management of patients with traumatic brain injury (TBI). RECENT FINDINGS Frailty is not a direct natural consequence of aging. Rather, it commonly results from the intersection of age-related decline with chronic diseases and conditions. It is associated with adverse outcomes such as institutionalization, falls, and worsening health status. Growing evidence suggests that frailty should be a key consideration both in care planning and in adverse outcome prevention. The prevalence of elderly patients with TBI is increasing, and low-energy trauma (i.e., ground or low-level falls, which are typical in frail patients) is the major cause. Establishing the real incidence of frailty in TBI requires further studies. Failure to detect frailty potentially exposes patients to interventions that may not benefit them, and may even harm them. Moreover, considering patients as 'nonfrail' purely on the basis of their age is unacceptable. The future challenge is to shift to a new clinical paradigm characterized by more appropriate, goal-directed care of frail patients. SUMMARY The current review highlights the crucial importance of frailty evaluation in TBI, also given the changing epidemiology of this condition. To ensure adequate assessment, prevention and management, both in and outside hospital, there is an urgent need for a valid screening tool and a specific frailty-based and comorbidity-based clinical approach.
Collapse
|
11
|
Editorial: Recent advances in the management of acute neurological problems in the ICU. Curr Opin Crit Care 2021; 27:77-79. [PMID: 33464003 DOI: 10.1097/mcc.0000000000000808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|